3,158
Views
4
CrossRef citations to date
0
Altmetric
Invited Reviews

Pore characteristics of hydrochars and their role as a vector for soil bacteria: A critical review of engineering options

, ORCID Icon &
Pages 4147-4171 | Published online: 14 Sep 2021

References

  • Acea, M. J., Moore, C. R., & Alexander, M. (1988). Survival and growth of bacteria introduced into soil. Soil Biology and Biochemistry, 20(4), 509–515. https://doi.org/10.1016/0038-0717(88)90066-1
  • Ajeng, A. A., Abdullah, R., Ling, T. C., Ismail, S., Lau, B. F., Ong, H. C., Chew, K. W., Show, P. L., & Chang, J.-S. (2020). Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environmental Technology & Innovation, 20, 101168. https://doi.org/10.1016/j.eti.2020.101168
  • Alaya, M. N., Girgis, B. S., & Mourad, W. E. (2000). Activated Carbon from Some Agricultural Wastes Under Action of One-Step Steam Pyrolysis. Journal of Porous Materials, 7(4), 509–517. https://doi.org/10.1023/A:1009630928646
  • Albareda, M., Rodríguez-Navarro, D. N., Camacho, M., & Temprano, F. J. (2008). Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biology and Biochemistry, 40(11), 2771–2779. https://doi.org/10.1016/j.soilbio.2008.07.021
  • Ambrosini, A., Souza, R. d., & Luciane, M. P. P. (2016). Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant and Soil, 400(81–2), 193–207. https://doi.org/10.1007/s11104-015-2727-7
  • Ameloot, N., Sleutel, S., Case, S. D. C., Alberti, G., McNamara, N. P., Zavalloni, C., Vervisch, B., Vedove, G., Delle, & De Neve, S. (2014). C mineralization and microbial activity in four biochar field experiments several years after incorporation. Soil Biology and Biochemistry, 78, 195–203. https://doi.org/10.1016/j.soilbio.2014.08.004
  • Andert, J., & Mumme, J. (2015). Impact of pyrolysis and hydrothermal biochar on gas-emitting activity of soil microorganisms and bacterial and archaeal community composition. Applied Soil Ecology, 96, 225–239.
  • Antal, M. J., & Grønli, M. (2003). The Art, Science, and Technology of Charcoal Production. Industrial & Engineering Chemistry Research, 42(8), 1619–1640. https://doi.org/10.1021/ie0207919
  • Bai, M., Wilske, B., Buegger, F., Esperschütz, J., Kammann, C. I., Eckhardt, C., Koestler, M., Kraft, P., Bach, M., Frede, H.-G., & Breuer, L. (2013). Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils. Plant and Soil, 372(1–2), 375–387. https://doi.org/10.1007/s11104-013-1745-6
  • Baltrėnas, P., Baltrėnaitė, E., & Spudulis, E. (2015). Biochar from Pine and Birch Morphology and Pore Structure Change by Treatment in Biofilter. Water, Air, & Soil Pollution, 226, 69. https://doi.org/10.1007/s11270-015-2295-8
  • Bamminger, C., Marschner, B., & Jüschke, E. (2014). An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils. European Journal of Soil Science, 65(1), 72–82. https://doi.org/10.1111/ejss.12074
  • Bargmann, I., Martens, R., Rillig, M. C., Kruse, A., & Kücke, M. (2014). Hydrochar amendment promotes microbial immobilization of mineral nitrogen. Journal of Plant Nutrition and Soil Science, 177(1), 59–67. https://doi.org/10.1002/jpln.201300154
  • Başakçılardan Kabakcı, S., & Baran, S. S. (2019). Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars. Waste Management (New York, N.Y.), 100, 259–268. https://doi.org/10.1016/j.wasman.2019.09.021
  • Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J.-P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant and Soil, 378(1–2), 1–33. https://doi.org/10.1007/s11104-013-1956-x
  • Bashan, Y., Puente, M. E., Rodriguez-Mendoza, M. N., Toledo, G., Holguin, G., Ferrera-Cerrato, R., & Pedrin, S. (1995). Survival of Azospirillum brasilense in the Bulk Soil and Rhizosphere of 23 Soil Types. Applied and Environmental Microbiology, 61(5), 1938–1945.
  • Beck, D. P. (1991). Suitability of charcoal-amended mineral soil as carrier for Rhizobium inoculants. Soil Biology and Biochemistry, 23(1), 41–44. https://doi.org/10.1016/0038-0717(91)90160-L
  • Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202–214. https://doi.org/10.1111/gcbb.12037
  • Bird, M. I., Ascough, P. L., Young, I. M., Wood, C. V., & Scott, A. C. (2008). X-ray microtomographic imaging of charcoal. Journal of Archaeological Science, 35(10), 2698–2706. https://doi.org/10.1016/j.jas.2008.04.018
  • Borrero-López, A. M., Masson, E., Celzard, A., & Fierro, V. (2018). Modelling the reactions of cellulose, hemicellulose and lignin submitted to hydrothermal treatment. Industrial Crops and Products, 124, 919–930. https://doi.org/10.1016/j.indcrop.2018.08.045
  • Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., Driver, L. E., Panzacchi, P., Zygourakis, K., & Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176–185. https://doi.org/10.1016/j.biombioe.2014.03.059
  • Brown, R. A., Kercher, A. K., Nguyen, T. H., Nagle, D. C., & Ball, W. P. (2006). Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry, 37(3), 321–333. https://doi.org/10.1016/j.orggeochem.2005.10.008
  • Cárdenas-Aguiar, E., Gascó, G., Paz-Ferreiro, J., & Méndez, A. (2019). Thermogravimetric analysis and carbon stability of chars produced from slow pyrolysis and hydrothermal carbonization of manure waste. Journal of Analytical and Applied Pyrolysis, 140, 434–443. https://doi.org/10.1016/j.jaap.2019.04.026
  • Cattelan, A. J., Hartel, P. G., & Fuhrmann, J. J. (1999). Screening for Plant Growth–Promoting Rhizobacteria to Promote Early Soybean Growth. Soil Science Society of America Journal, 63(6), 1670–1680. https://doi.org/10.2136/sssaj1999.6361670x
  • Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and Sorptive Properties of Crop Residue-Derived Chars. Environmental Science & Technology, 38(17), 4649–4655. https://doi.org/10.1021/es035034w
  • Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., & Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy, 5(2), 122–131. https://doi.org/10.1111/gcbb.12030
  • Datta, R., Kelkar, A., Baraniya, D., Molaei, A., Moulick, A., Meena, R. S., & Formánek, P. (2017). Enzymatic degradation of lignin in soil: A review. Sustainability, 9(7), 1163. https://doi.org/10.3390/su9071163
  • Domene, X., Hanley, K., Enders, A., & Lehmann, J. (2015). Short-term mesofauna responses to soil additions of corn stover biochar and the role of microbial biomass. Applied Soil Ecology, 89, 10–17. https://doi.org/10.1016/j.apsoil.2014.12.005
  • Duboc, O., Robbe, A., Santner, J., Folegnani, G., Gallais, P., Lecanuet, C., Zehetner, F., Nagl, P., & Wenzel, W. W. (2019). Silicon Availability from Chemically Diverse Fertilizers and Secondary Raw Materials. Environmental Science & Technology, 53(9), 5359–5368. https://doi.org/10.1021/acs.est.8b06597
  • Duboc, O., Santner, J., Golestani Fard, A., Zehetner, F., Tacconi, J., & Wenzel, W. W. (2017). Predicting phosphorus availability from chemically diverse conventional and recycling fertilizers. Science of the Total Environment, 599–600, 1160–1170. https://doi.org/10.1016/j.scitotenv.2017.05.054
  • Duboc, O., Steiner, K., Radosits, F., Wenzel, W. W., Goessler, W., & Santner, J. (2019). Functional Recycling of Biobased, Borate-Stabilized Insulation Materials As B Fertilizer. Environmental Science & Technology, 53(24), 14620–14629. https://doi.org/10.1021/acs.est.9b04234
  • Ducey, T. F., Ippolito, J. A., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2013). Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied Soil Ecology, 65, 65–72. https://doi.org/10.1016/j.apsoil.2013.01.006
  • Egamberdieva, D., Hua, M., Reckling, M., Wirth, S., & Bellingrath-Kimura, S. D. (2018). Potential effects of biochar-based microbial inoculants in agriculture. Environmental Sustainability, 1(1), 19–24. https://doi.org/10.1007/s42398-018-0010-6
  • Egamberdieva, D., Reckling, M., & Wirth, S. (2017). Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 78, 38–42. https://doi.org/10.1016/j.ejsobi.2016.11.007
  • Egamberdieva, D., Wirth, S., Behrendt, U., Abd Allah, E. F., & Berg, G. (2016). Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria. Frontiers in Microbiology, 7, 209. https://doi.org/10.3389/fmicb.2016.00209
  • Eibisch, N., Schroll, R., Fuß, R., Mikutta, R., Helfrich, M., & Flessa, H. (2015). Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural soil. Chemosphere, 119, 155–162. https://doi.org/10.1016/j.chemosphere.2014.05.059
  • Ezawa, T., Yamamoto, K., & Yoshida, S. (2002). Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Science and Plant Nutrition, 48(6), 189–203.
  • Fang, J., Zhan, L., Ok, S. Y., & Gao, B. (2018). Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry, 57, 15–21. https://doi.org/10.1016/j.jiec.2017.08.026
  • FAO. (2015). World fertilizer trends and outlook to 2018. Rome.
  • Foster, E. J., Baas, P., Wallenstein, M. D., & Cotrufo, M. F. (2020). Precision biochar and inoculum applications shift bacterial community structure and increase specific nutrient availability and maize yield. Applied Soil Ecology, 151, 103541. https://doi.org/10.1016/j.apsoil.2020.103541
  • Foster, R. C. (1988). Microenvironments of soil microorganisms. Biology and Fertility of Soils, 6, 189–203. https://doi.org/10.1007/BF00260816
  • Fu, M.-M., Mo, C.-H., Li, H., Zhang, N.-Y., Huang, W.-X., & Wong, M. H. (2019). Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production, 236, 117637. https://doi.org/10.1016/j.jclepro.2019.117637
  • Fuertes, A. B., Arbestain, M. C., Sevilla, M., Maciá-Agulló, J. A., Fiol, S., López, R., Smernik, R. J., Aitkenhead, W. P., Arce, F., & Macías, F. (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Research, 48(7), 618–626. https://doi.org/10.1071/SR10010
  • Funke, A., Mumme, J., Koon, M., & Diakité, M. (2013). Cascaded production of biogas and hydrochar from wheat straw: Energetic potential and recovery of carbon and plant nutrients. Biomass and Bioenergy, 58, 229–237. https://doi.org/10.1016/j.biombioe.2013.08.018
  • Gai, C., Guo, Y., Liu, T., Peng, N., & Liu, Z. (2016). Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge. International Journal of Hydrogen Energy, 41(5), 3363–3372. https://doi.org/10.1016/j.ijhydene.2015.12.188
  • Gajić, A., Ramke, H.-G., Hendricks, A., & Koch, H.-J. (2012). Microcosm study on the decomposability of hydrochars in a Cambisol. Biomass and Bioenergy, 47, 250–259. https://doi.org/10.1016/j.biombioe.2012.09.036
  • Gao, Y., Wang, X., Wang, J., Li, X., Cheng, J., Yang, H., & Chen, H. (2013). Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy, 58, 376–383. https://doi.org/10.1016/j.energy.2013.06.023
  • Garlapalli, R. K., Wirth, B., & Reza, M. T. (2016). Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Bioresource Technology, 220, 168–174. https://doi.org/10.1016/j.biortech.2016.08.071
  • Gascó, G., Paz-Ferreiro, J., Álvarez, M. L., Saa, A., & Méndez, A. (2018). Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Management (New York, N.Y.), 79, 395–403. https://doi.org/10.1016/j.wasman.2018.08.015
  • Giesche, H. (2006). Mercury porosimetry: A general (practical) overview. Particle & Particle Systems Characterization, 23(1), 9–19. https://doi.org/10.1002/ppsc.200601009
  • Głodowska, M., Husk, B., Schwinghamer, T., & Smith, D. (2016). Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agronomy for Sustainable Development, 36(1), 21. https://doi.org/10.1007/s13593-016-0356-z
  • Gratuito, M. K. B., Panyathanmaporn, T., Chumnanklang, R. A., Sirinuntawittaya, N., & Dutta, A. (2008). Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresource Technology, 99(11), 4887–4895. https://doi.org/10.1016/j.biortech.2007.09.042
  • Gray, M., Johnson, M. G., Dragila, M. I., & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196–205. https://doi.org/10.1016/j.biombioe.2013.12.010
  • Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture Ecosystems and Environment, 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015
  • Hale, L., Luth, M., & Crowley, D. (2015). Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology and Biochemistry, 81, 228–235. https://doi.org/10.1016/j.soilbio.2014.11.023
  • Hale, L., Luth, M., Kenney, R., & Crowley, D. (2014). Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Applied Soil Ecology, 84, 192–199. https://doi.org/10.1016/j.apsoil.2014.08.001
  • Halmi, M. F. A., & Simarani, K. (2021). Effect of two contrasting biochars on soil microbiota in the humid tropics of Peninsular Malaysia. Geoderma, 395, 115088. https://doi.org/10.1016/j.geoderma.2021.115088
  • Hao, W., Björkman, E., Lilliestråle, M., & Hedin, N. (2013). Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Applied Energy, 112, 526–532. https://doi.org/10.1016/j.apenergy.2013.02.028
  • Hardie, M., Clothier, B., Bound, S., Oliver, G., & Close, D. (2014). Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376(1–2), 347–361. https://doi.org/10.1007/s11104-013-1980-x
  • Hattori, T. (1988). Soil aggregates as microhabitats of microorganisms. Reports of the Institute for Agricultural Research - Tohoku University (Japan), 37, 23–36.
  • He, H., Qian, T.-T., Liu, W.-J., Jiang, H., & Yu, H.-Q. (2014). Biological and chemical phosphorus solubilization from pyrolytical biochar in aqueous solution. Chemosphere, 113, 175–181. https://doi.org/10.1016/j.chemosphere.2014.05.039
  • Heijnen, C. E., Hok-A-Hin, C. H., & Veen, J. A. (1991). Protection of Rhizobium by bentonite clay against predation by flagellates in liquid cultures. FEMS Microbiology Ecology, 8(1), 65–71. https://doi.org/10.1111/j.1574-6941.1991.tb01709.x
  • Hyväluoma, J., Hannula, M., Arstila, K., Wang, H., Kulju, S., & Rasa, K. (2018). Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar. Journal of Analytical and Applied Pyrolysis, 134, 446–453. https://doi.org/10.1016/j.jaap.2018.07.011
  • Hyväluoma, J., Kulju, S., Hannula, M., Wikberg, H., Källi, A., & Rasa, K. (2017). Quantitative characterization of pore structure of several biochars with 3D imaging. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-017-8823-x
  • Jaafar, N. M., Clode, P. L., & Abbott, L. K. (2014). Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. Journal of Integrative Agriculture, 13(3), 483–490. https://doi.org/10.1016/S2095-3119(13)60703-0
  • Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal and the Biochemical Engineering Journal, 283, 789–805. https://doi.org/10.1016/j.cej.2015.08.014
  • Jeffery, S., Meinders, M. B. J., Stoof, C. R., Bezemer, T. M., van de Voorde, T. F. J., Mommer, L., & van Groenigen, J. W. (2015). Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma, 251–252, 47–54. https://doi.org/10.1016/j.geoderma.2015.03.022
  • Jin, J., Li, Y., Zhang, J., Wu, S., Cao, Y., Liang, P., Zhang, J., Wong, M. H., Wang, M., Shan, S., & Christie, P. (2016). Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. Journal of Hazardous Materials, 320, 417–426. https://doi.org/10.1016/j.jhazmat.2016.08.050
  • Jones, K., Ramakrishnan, G., Uchimiya, M., & Orlov, A. (2015). New applications of X-ray tomography in pyrolysis of biomass: Biochar imaging. Energy & Fuels, 29(3), 1628–1634. https://doi.org/10.1021/ef5027604
  • Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M., & Behrens, S. (2014). Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science & Technology Letters, 1(8), 339–344. https://doi.org/10.1021/ez5002209
  • Khadem, A., & Raiesi, F. (2017). Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Applied Soil Ecology, 114, 16–27. https://doi.org/10.1016/j.apsoil.2017.02.018
  • Killham, K., & Prosser, J. I. (2015). Chapter 3: The bacteria and archaea. In E. A. Paul (Ed.), Soil microbiology, ecology and biochemistry (4th ed., pp. 41–76). Academic Press. https://doi.org/10.1016/B978-0-12-415955-6.00003-7
  • Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4), 990–1000. https://doi.org/10.2134/jeq2011.0070
  • Laine, J., Simoni, S., & Calles, R. (1991). Preparation of activated carbon from coconut shell in a small scale cocurrent flow rotary kiln. Chemical Engineering Communications, 99(1), 15–23. https://doi.org/10.1080/00986449108911575
  • Lanza, G., Rebensburg, P., Kern, J., Lentzsch, P., & Wirth, S. (2016). Impact of chars and readily available carbon on soil microbial respiration and microbial community composition in a dynamic incubation experiment. Soil and Tillage Research, 164, 18–24. https://doi.org/10.1016/j.still.2016.01.005
  • Lehmann, J. (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). Routledge.
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—A review. Soil Biology and Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072
  • Li, M., Liu, M., Li, Z., Jiang, C., & Wu, M. (2016). Soil N transformation and microbial community structure as affected by adding biochar to a paddy soil of subtropical China. Journal of Integrative Agriculture, 15(1), 209–219. https://doi.org/10.1016/S2095-3119(15)61136-4
  • Li, Y., Meas, A., Shan, S., Yang, R., & Gai, X. (2016). Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol. Bioresource Technology, 207, 379–386. https://doi.org/10.1016/j.biortech.2016.02.012
  • Liang, B., Lehmann, J., Sohi, S. P., Thies, J. E., O’Neill, B., Trujillo, L., Gaunt, J., Solomon, D., Grossman, J., Neves, E. G., & Luizão, F. J. (2010). Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry, 41(2), 206–213. https://doi.org/10.1016/j.orggeochem.2009.09.007
  • Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M.-M., Fühner, C., Bens, O., Kern, J., & Emmerich, K.-H. (2011). Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71–106. https://doi.org/10.4155/bfs.10.81
  • Liu, H., Basar, I. A., Nzihou, A., & Eskicioglu, C. (2021). Hydrochar derived from municipal sludge through hydrothermal processing: A critical review on its formation, characterization, and valorization. Water Research, 199, 117186. https://doi.org/10.1016/j.watres.2021.117186
  • Lu, H., Lashari, M. S., Liu, X., Ji, H., Li, L., Zheng, J., Kibue, G. W., Joseph, S., & Pan, G. (2015). Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China. European Journal of Soil Biology, 70, 67–76. https://doi.org/10.1016/j.ejsobi.2015.07.005
  • Lu, S., & Zong, Y. (2018). Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Environmental Science and Pollution Research International, 25, 30401–30409. https://doi.org/10.1007/s11356-018-3018-7
  • Lu, Y., Hu, Y., Tang, L., Xie, Q., Liu, Q., Zhong, L., Fu, L., & Fan, C. (2021). Effects and mechanisms of modified biochars on microbial iron reduction of Geobacter sulfurreducens. Chemosphere, 283, 130983. https://doi.org/10.1016/j.chemosphere.2021.130983
  • Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., Devonshire, B. J., & Brookes, P. C. (2013). Microbial biomass growth, following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH. Soil Biology and Biochemistry, 57, 513–523. https://doi.org/10.1016/j.soilbio.2012.10.033
  • Martínez, M. L., Torres, M. M., Guzmán, C. A., & Maestri, D. M. (2006). Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 23(1), 23–28. https://doi.org/10.1016/j.indcrop.2005.03.001
  • Méndez, A., Gascó, G., Ruiz, B., & Fuente, E. (2019). Hydrochars from industrial macroalgae “Gelidium Sesquipedale” biomass wastes. Bioresource Technology, 275, 386–393. https://doi.org/10.1016/j.biortech.2018.12.074
  • Messing, R. A., & Oppermann, R. A. (1979). Pore dimensions for accumulating biomass. I. Microbes that reproduce by fission or by budding. Biotechnology and Bioengineering, 21(1), 49–58. https://doi.org/10.1002/bit.260210105
  • Montes, V., & Hill, J. M. (2018). Activated carbon production: Recycling KOH to minimize waste. Materials Letters, 220, 238–240. https://doi.org/10.1016/j.matlet.2018.03.019
  • Nathan, C., & Cunningham-Bussel, A. (2013). Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nature Reviews. Immunology, 13(5), 349–361. https://doi.org/10.1038/nri3423
  • Nizamuddin, S., Jaya Kumar, N. S., Narayan Sahu, J., Ganesan, P., Mujawar Mubarak, N., & Mazari, S. A. (2015). Synthesis and characterization of hydrochars produced by hydrothermal carbonization of oil palm shell. The Canadian Journal of Chemical Engineering, 93(11), 1916–1921. https://doi.org/10.1002/cjce.22293
  • Noraini, M. J. P. L. C. L. K. A. (2015). Soil microbial responses to biochars varying in particle size, surface and pore properties. Soil Circle: English version, 25, 770–780. https://doi.org/10.1016/S1002-0160(15)30058-8
  • Ogawa, M., & Okimori, Y. (2010). Pioneering works in biochar research, Japan. Soil Research, 48(7), 489–500. https://doi.org/10.1071/SR10006
  • Oginni, O., Singh, K., Oporto, G., Dawson-Andoh, B., McDonald, L., & Sabolsky, E. (2019). Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresource Technology Reports, 7, 100266. https://doi.org/10.1016/j.biteb.2019.100266
  • Parshetti, G. K., Kent Hoekman, S., & Balasubramanian, R. (2013). Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresource Technology, 135, 683–689. https://doi.org/10.1016/j.biortech.2012.09.042
  • Pienisch, S. (2018). Nutrient recycling using biowastes from diverse sources. Lincoln University, University of Natural Resources and Life Science.
  • Pietikäinen, J., Kiikkilä, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89(2), 231–242. https://doi.org/10.1034/j.1600-0706.2000.890203.x
  • Postma, J., Clematis, F., Nijhuis, E. H., & Someus, E. (2013). Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f.sp. radicis lycopersici in tomato. Biological Control, 67(2), 284–291. https://doi.org/10.1016/j.biocontrol.2013.07.002
  • Postma, J., Nijhuis, E. H., & Someus, E. (2010). Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Applied Soil Ecology, 46(3), 464–469. https://doi.org/10.1016/j.apsoil.2010.08.016
  • Postma, J., Schilder, M. T., Bloem, J., & van Leeuwen-Haagsma, W. K. (2008). Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biology and Biochemistry, 40(9), 2394–2406. https://doi.org/10.1016/j.soilbio.2008.05.023
  • Quilliam, R. S., Glanville, H. C., Wade, S. C., & Jones, D. L. (2013). Life in the ‘charosphere’—Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology and Biochemistry, 65, 287–293. https://doi.org/10.1016/j.soilbio.2013.06.004
  • Rafique, M., Sultan, T., Ortas, I., & Chaudhary, H. J. (2017). Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Science & Plant Nutrition, 63(5), 460–469. https://doi.org/10.1080/00380768.2017.1373599
  • Rex, D., Schimmelpfennig, S., Jansen-Willems, A., Moser, G., Kammann, C., & Müller, C. (2015). Microbial community shifts 2.6 years after top dressing of Miscanthus biochar, hydrochar and feedstock on a temperate grassland site. Plant and Soil, 397(1–2), 261–271. https://doi.org/10.1007/s11104-015-2618-y
  • Reza, M. T., Rottler, E., Herklotz, L., & Wirth, B. (2015). Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresource Technology, 182, 336–344. https://doi.org/10.1016/j.biortech.2015.02.024
  • Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F., & Castaldi, S. (2014). Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 60, 9–15. https://doi.org/10.1016/j.ejsobi.2013.10.007
  • Saito, M. (1990). Charcoal as a micro-habitat for VA mycorrhizal fungi, and its practical implication. Agriculture Ecosystems and Environment, 29(1–4), 341–344. https://doi.org/10.1016/0167-8809(90)90298-R
  • Samonin, V., & Elikova, E. (2004). A study of the adsorption of bacterial cells on porous materials. Microbiology, 73(6), 696–701. https://doi.org/10.1007/s11021-005-0011-1
  • Sangeetha, D., & Stella, D. (2012). Survival of plant growth promoting bacterial inoculants in different carrier materials. International Journal of Pharmaceutical and Biological Archive, 3(1), 170–178.
  • Saqib, N., Oh, M., Jo, W., Park, S.-K., & Lee, J.-Y. (2015). Conversion of dry leaves into hydrochar through hydrothermal carbonization (HTC). Journal of Material Cycles and Waste Management, 19(1), 111–117. https://doi.org/10.1007/s10163-015-0371-1
  • Schnee, L. S., Knauth, S., Hapca, S., Otten, W., & Eickhorst, T. (2016). Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat. Plant and Soil, 408(1–2), 357–368. https://doi.org/10.1007/s11104-016-2935-9
  • Sevilla, M., & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 47(9), 2281–2289. https://doi.org/10.1016/j.carbon.2009.04.026
  • Sevilla, M., Maciá-Agulló, J. A., & Fuertes, A. B. (2011). Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass and Bioenergy, 35(7), 3152–3159. https://doi.org/10.1016/j.biombioe.2011.04.032
  • Singh Kambo, H., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378. https://doi.org/10.1016/j.rser.2015.01.050
  • Sun, D., Hale, L., & Crowley, D. (2016). Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier. Biology and Fertility of Soils, 52(4), 515–522. https://doi.org/10.1007/s00374-016-1093-9
  • Sun, D., Meng, J., Liang, H., Yang, E., Huang, Y., Chen, W., Jiang, L., Lan, Y., Zhang, W., & Gao, J. (2015). Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. Journal of Soils and Sediments, 15(2), 271–281. https://doi.org/10.1007/s11368-014-0996-z
  • Teutscherova, N., Lojka, B., Houška, J., Masaguer, A., Benito, M., & Vazquez, E. (2018). Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. European Journal of Soil Biology, 88, 15–26. https://doi.org/10.1016/j.ejsobi.2018.06.002
  • Titirici, M.-M., White, R. J., Falco, C., & Sevilla, M. (2012). Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energy & Environmental Science, 5(5), 6796–6822. https://doi.org/10.1039/c2ee21166a
  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191–215. https://doi.org/10.1007/s11157-020-09523-3
  • Tripti, A., Usmani, K., Vipin, Z., & Anshumali, K. (2017). Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. Journal of Environmental Management, 190, 20–27. https://doi.org/10.1016/j.jenvman.2016.11.060
  • Vanek, S. J., & Thies, J. (2016). Pore-size and water activity effects on survival of rhizobium tropici in biochar inoculant carriers. Journal of Microbial & Biochemical Technology, 8(4), 296–306. https://doi.org/10.4172/1948-5948.1000300
  • Wang, T., Zhai, Y., Zhu, Y., Li, C., & Zeng, G. (2018). A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews, 90, 223–247. https://doi.org/10.1016/j.rser.2018.03.071
  • Wildman, J., & Derbyshire, F. (1991). Origins and functions of macroporosity in activated carbons from coal and wood precursors. Fuel, 70(5), 655–661. https://doi.org/10.1016/0016-2361(91)90181-9
  • Wilk, M., Magdziarz, A., Jayaraman, K., Szymańska-Chargot, M., & Gökalp, I. (2019). Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass and Bioenergy, 120, 166–175. https://doi.org/10.1016/j.biombioe.2018.11.016
  • Wright, D. A., Killham, K., Glover, L. A., & Prosser, J. I. (1995). Role of Pore Size Location in Determining Bacterial Activity during Predation by Protozoa in Soil. Applied and Environmental Microbiology, 61(10), 3537–3543. https://doi.org/10.1128/aem.61.10.3537-3543.1995
  • Yu, X., Liu, S., Lin, G., Yang, Y., Zhang, S., Zhao, H., Zheng, C., & Gao, X. (2020). KOH-activated hydrochar with engineered porosity as sustainable adsorbent for volatile organic compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 588, 124372. https://doi.org/10.1016/j.colsurfa.2019.124372
  • Yue, Y., Lin, Q., Xu, Y., Li, G., & Zhao, X. (2017). Slow pyrolysis as a measure for rapidly treating cow manure and the biochar characteristics. Journal of Analytical and Applied Pyrolysis, 124, 355–361. https://doi.org/10.1016/j.jaap.2017.01.008
  • Zhang, J., Lin, Q., & Zhao, X. (2014). The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations. Journal of Integrative Agriculture, 13(3), 471–482. https://doi.org/10.1016/S2095-3119(13)60702-9
  • Zhang, T., Walawender, W. P., Fan, L. T., Fan, M., Daugaard, D., & Brown, R. C. (2004). Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal and the Biochemical Engineering Journal, 105(1–2), 53–59. https://doi.org/10.1016/j.cej.2004.06.011
  • Zhou, H., Zhang, D., Wang, P., Liu, X., Cheng, K., Li, L., Zheng, J., Zhang, X., Zheng, J., Crowley, D., van Zwieten, L., & Pan, G. (2017). Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A meta-analysis. Agriculture Ecosystems and Environment, 239, 80–89. https://doi.org/10.1016/j.agee.2017.01.006
  • Zhu, X., Liu, Y., Qian, F., Zhou, C., Zhang, S., & Chen, J. (2015). Role of hydrochar properties on the porosity of hydrochar-based porous carbon for their sustainable application. ACS Sustainable Chemistry & Engineering, 3(5), 833–840. https://doi.org/10.1021/acssuschemeng.5b00153
  • Zimmerman, A. R., Gao, B., & Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169–1179. https://doi.org/10.1016/j.soilbio.2011.02.005