4,774
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: A review

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4016-4037 | Published online: 07 Sep 2021

References

  • Abate, G., & Masini, J. C. (2003). Influence of pH and ionic strength on removal processes of a sedimentary humic acid in a suspension of vermiculite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 226(1–3), 25–34. https://doi.org/10.1016/S0927-7757(03)00418-7
  • Adhikari, D., Sowers, T., Stuckey, J. W., Wang, X., Sparks, D. L., & Yang, Y. (2019). Formation and redox reactivity of ferrihydrite-organic carbon-calcium co-precipitates. Geochimica et Cosmochimica Acta, 244, 86–98. https://doi.org/10.1016/j.gca.2018.09.026
  • Adhikari, D., & Yang, Y. (2015). Selective stabilization of aliphatic organic carbon by iron oxide. Scientific Reports, 5, 11214. https://doi.org/10.1038/srep11214
  • Afsar, M. Z., Goodwin, C., Beebe, T. P., Jr., Jaisi, D. P., & Jin, Y. (2020). Quantification and molecular characterization of organo-mineral associations as influenced by redox oscillations. Science of the Total Environment, 704, 135454. https://doi.org/10.1016/j.scitotenv.2019.135454
  • Alcacio, T., Hesterberg, D., Chou, J., Martin, J., Beauchemin, S., & Sayers, D. (2001). Molecular scale characteristics of Cu (ІІ) bonding in goethite-humate complexes. Geochimica et Cosmochimica Acta, 65(9), 1355–1366. https://doi.org/10.1016/S0016-7037(01)00546-4
  • Amini, M., Antelo, J., Fiol, S., & Rahnemaie, R. (2020). Modeling the effects of humic acid and anoxic condition on phosphate adsorption onto goethite. Chemosphere, 253, 126691. https://doi.org/10.1016/j.chemosphere.2020.126691
  • Angelico, R., Ceglie, A., He, J. Z., Liu, Y. R., Palumbo, G., & Colombo, C. (2014). Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Chemosphere, 99, 239–247. https://doi.org/10.1016/j.chemosphere.2013.10.092
  • Arnarson, T. S., & Keil, R. G. (2000). Mechanisms of pore water organic matter adsorption to montmorillonite. Marine Chemistry, 71(3–4), 309–320. https://doi.org/10.1016/S0304-4203(00)00059-1
  • Bäckström, M., Dario, M., Karlsson, S., & Allard, B. (2003). Effects of a fulvic acid on the adsorption of mercury and cadmium on goethite. Science of the Total Environment, 304(1–3), 257–268. https://doi.org/10.1016/S0048-9697(02)00573-9
  • Bao, Y., Guo, C., Lu, G., Yi, X., Wang, H., & Dang, Z. (2018). Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. The Science of the Total Environment, 616–617, 647–657. https://doi.org/10.1016/j.scitotenv.2017.10.273
  • Bao, Y., Guo, C., Wang, H., Lu, G., Yang, C., Chen, M., & Dang, Z. (2017). Fe- and S-metabolizing microbial communities dominate an AMD-contaminated river ecosystem and play important roles in Fe and S cycling. Geomicrobiology Journal, 34(8), 695–705. https://doi.org/10.1080/01490451.2016.1243596
  • Bi, Y., Hesterberg, D. L., & Duckworth, O. W. (2010). Siderophore-promoted dissolution of cobalt from hydroxide minerals. Geochimica et Cosmochimica Acta, 74(10), 2915–2925. https://doi.org/10.1016/j.gca.2010.02.028
  • Bolan, N. S., Adriano, D. C., Kunhikrishnan, A., James, T., McDowell, R., & Senesi, N. (2011). Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy, 110, 1–75. https://doi.org/10.1016/B978-0-12-385531-2.00001-3
  • Chekli, L., Phuntsho, S., Roy, M., & Shon, H. K. (2013). Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter. The Science of the Total Environment, 461–462, 19–27. https://doi.org/10.1016/j.scitotenv.2013.04.083
  • Chen, C., Dynes, J. J., Wang, J., & Sparks, D. L. (2014). Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environmental Science & Technology, 48(23), 13751–13759. https://doi.org/10.1021/es503669u
  • Chen, C., & Thompson, A. (2018). Ferrous iron oxidation under varying pO2 Levels: The effect of Fe(III)/Al(III) oxide minerals and organic matter. Environmental Science & Technology, 52(2), 597–606. https://doi.org/10.1021/acs.est.7b05102
  • Chen, H., Koopal, L. K., Xu, J., Wang, M., & Tan, W. (2019). Selective adsorption of soil humic acid on binary systems containing kaolinite and goethite: Assessment of sorbent interactions. European Journal of Soil Science, 70, 1098–1107. https://doi.org/10.1111/ejss.12803
  • Chen, M., Lu, G., Wu, J., Yang, C., Niu, X., Tao, X., Shi, Z., Yi, X., & Dang, Z. (2018). Migration and fate of metallic elements in a waste mud impoundment and affected river downstream: A case study in Dabaoshan Mine, South China. Ecotoxicology and Environmental Safety, 164, 474–483. https://doi.org/10.1016/j.ecoenv.2018.08.063
  • Chen, Y., Wang, M., Zhou, X., Fu, H., Qu, X., & Zhu, D. (2021). Sorption fractionation of bacterial extracellular polymeric substances (EPS) on mineral surfaces and associated effects on phenanthrene sorption to EPS-mineral complexes. Chemosphere, 263, 128264. https://doi.org/10.1016/j.chemosphere.2020.128264
  • Cornell, R. M., & Schwertmann, U. (2003). The iron oxides structure, properties, reactions, occurrences and uses (pp. 9–29). Druckhaus Darmstadt Press. https://doi.org/10.1180/claymin.1999.034.1.20
  • Coward, E. K., Ohno, T., & Plante, A. F. (2018). Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity. Environmental Science & Technology, 52(3), 1036–1044. https://doi.org/10.1021/acs.est.7b04953
  • Cruz-Guzmán, M., Celis, R., Hermosín, M. C., Leone, P., Nègre, M., & Cornejo, J. (2003). Sorption-desorption of lead (II) and mercury (II) by model associations of soil colloids. Soil Science Society of America Journal, 67(5), 1378–1387. https://doi.org/10.2136/sssaj2003.1378
  • Dang, Z., Zeng, Y., Lu, G., Xie, Y., Chen, M., & Bao, Y. (2021). The geochemical processes of secondary minerals in acid mine drainage: From chemical and biological perspectives. Science Press.
  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182–4189. https://doi.org/10.1021/es030309t
  • Du, H., Huang, Q., Lei, M., & Tie, B. (2018). Sorption of Pb(II) by Nanosized Ferrihydrite Organo-Mineral Composites Formed by Adsorption versus Coprecipitation. ACS Earth and Space Chemistry, 2(6), 556–564. https://doi.org/10.1021/acsearthspacechem.8b00005
  • Du, H., Peacock, C. L., Chen, W., & Huang, Q. (2018). Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments. Chemosphere, 207, 404–412. https://doi.org/10.1016/j.chemosphere.2018.05.092
  • Du, H., Xu, Z., Hu, M., Zhang, H., Peacock, C. L., Liu, X., Nie, N., Xue, Q., Lei, M., & Tie, B. (2020). Natural organic matter decreases uptake of W(VI), and reduces W(VI) to W(V), during adsorption to ferrihydrite. Chemical Geology, 540, 119567. https://doi.org/10.1016/j.chemgeo.2020.119567
  • Eusterhues, K., Hädrich, A., Neidhardt, J., Küsel, K., Keller, T. F., Jandt, K. D., & Totsche, K. U. (2014). Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: Microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite. Biogeosciences, 11(18), 4953–4966. https://doi.org/10.5194/bg-11-4953-2014
  • Eusterhues, K., Rennert, T., Knicker, H., Kögel-Knabner, I., Totsche, K. U., & Schwertmann, U. (2011). Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation versus adsorption. Environmental Science & Technology, 45(2), 527–533. https://doi.org/10.1021/es1023898
  • Eusterhues, K., Wagner, F. E., Häusler, W., Hanzlik, M., Knicker, H., Totsche, K. U., Kögel-Knabner, I., & Schwertmann, U. (2008). Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mössbauer spectroscopy. Environmental Science & Technology, 42(21), 7891–7897. https://doi.org/10.1021/es800881w
  • Fan, C., Guo, C., Zhang, J., Ding, C., Li, X., Reinfelder, J. R., Lu, G., Shi, Z., & Dang, Z. (2019). Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms. Journal of Environmental Sciences (China), 80, 218–228. https://doi.org/10.1016/j.jes.2018.12.015
  • Fu, H., & Quan, X. (2006). Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere, 63(3), 403–410. https://doi.org/10.1016/j.chemosphere.2005.08.054
  • Gentile, L., Wang, T., Tunlid, A., Olsson, U., & Persson, P. (2018). Ferrihydrite nanoparticle aggregation induced by dissolved organic matter. The Journal of Physical Chemistry. A, 122(38), 7730–7738. https://doi.org/10.1021/acs.jpca.8b05622
  • Gimenez, J., Martinez, M., de Pablo, J., Rovira, M., & Duro, L. (2007). Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 141(3), 575–580. https://doi.org/10.1016/j.jhazmat.2006.07.020
  • Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1995). Adsorption and desorption of different organic matter fractions on iron oxide. Geochimica et Cosmochimica Acta, 59(2), 219–229. https://doi.org/10.1016/0016-7037(94)00282-Q
  • Guo, X., Xie, X., Liu, Y., Wang, C., Yang, M., & Huang, Y. (2020). Effects of digestate DOM on chemical behavior of soil heavy metals in an abandoned copper mining areas. Journal of Hazardous Materials, 393, 122436. https://doi.org/10.1016/j.jhazmat.2020.122436
  • Henneberry, Y. K., Kraus, T. E. C., Nico, P. S., & Horwath, W. R. (2012). Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Organic Geochemistry, 48, 81–89. https://doi.org/10.1016/j.orggeochem.2012.04.005
  • Hiemstra, T., Antelo, J., Rahnemaie, R., & Riemsdijk, WHv. (2010). Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples. Geochimica et Cosmochimica Acta, 74(1), 41–58. https://doi.org/10.1016/j.gca.2009.10.018
  • Hur, J., & Schlautman, M. A. (2003). Molecular weight fractionation of humic substances by adsorption onto minerals. Journal of Colloid and Interface Science, 264(2), 313–321. https://doi.org/10.1016/S0021-9797(03)00444-2
  • Islam, M. A., Morton, D. W., Johnson, B. B., & Angove, M. J. (2020). Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Separation and Purification Technology, 247, 116949. https://doi.org/10.1016/j.seppur.2020.116949
  • Jönsson, J., Sjoberg, S., & Lovgren, L. (2006). Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter. Water Research, 40(5), 969–974. https://doi.org/10.1016/j.watres.2006.01.006
  • Jones, A. M., Griffin, P. J., & Waite, T. D. (2015). Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid. Geochimica et Cosmochimica Acta, 160, 117–131. https://doi.org/10.1016/j.gca.2015.03.026
  • Kaiser, K., & Guggenberger, G. (2003). Mineral surfaces and soil organic matter. European Journal of Soil Science, 54(2), 219–236. https://doi.org/10.1046/j.1365-2389.2003.00544.x
  • Karlsson, T., & Persson, P. (2010). Coordination chemistry and hydrolysis of Fe(III) in a peat humic acid studied by X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 74(1), 30–40. https://doi.org/10.1016/j.gca.2009.09.023
  • Karlsson, T., & Persson, P. (2012). Complexes with aquatic organic matter suppress hydrolysis and precipitation of Fe(III). Chemical Geology, 322–323, 19–27. https://doi.org/10.1016/j.chemgeo.2012.06.003
  • Kikuchi, T., Fujii, M., Terao, K., Jiwei, R., Lee, Y. P., & Yoshimura, C. (2017). Correlations between aromaticity of dissolved organic matter and trace metal concentrations in natural and effluent waters: A case study in the Sagami River Basin, Japan. The Science of the Total Environment, 576, 36–45. https://doi.org/10.1016/j.scitotenv.2016.10.068
  • Kim, E. J., Hwang, B. R., & Baek, K. (2015). Effects of natural organic matter on the coprecipitation of arsenic with iron. Environmental Geochemistry and Health, 37(6), 1029–1039. https://doi.org/10.1007/s10653-015-9692-1
  • Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., & Nico, P. S. (2015). Mineral-Organic Associations: Formation, Properties, and Relevance in Soil Environments. Advances in Agronomy, 130, 1–140. https://doi.org/10.1016/bs.agron.2014.10.005
  • Kubicki, J. D., Tunega, D., & Kraemer, S. (2017). A density functional theory investigation of oxalate and Fe(II) adsorption onto the (010) goethite surface with implications for ligand- and reduction-promoted dissolution. Chemical Geology, 464, 14–22. https://doi.org/10.1016/j.chemgeo.2016.08.010
  • Kumar, A., & Sharma, M. P. (2014). Review of methodology for estimation of labile organic carbon in reservoirs and Lakes for GHG emission. Journal of Material and Environmental Science, 5, 653–660.
  • Lalonde, K., Mucci, A., Ouellet, A., & Gelinas, Y. (2012). Preservation of organic matter in sediments promoted by iron. Nature, 483(7388), 198–200. https://doi.org/10.1038/nature10855
  • Lee, Y. K., & Hur, J. (2020). Adsorption of microplastic-derived organic matter onto minerals. Water Research, 187, 116426. https://doi.org/10.1016/j.watres.2020.116426
  • Li, L., Fan, M., Brown, R. C., Van Leeuwen, J., Wang, J., Wang, W., Song, Y., & Zhang, P. (2006). Synthesis, Properties, and Environmental Applications of Nanoscale Iron-Based Materials: A Review. Critical Reviews in Environmental Science and Technology, 36(5), 405–431. https://doi.org/10.1080/10643380600620387
  • Liu, Q., Li, X., Tang, J., Zhou, Y., Lin, Q., Xiao, R., & Zhang, M. (2019). Characterization of goethite-fulvic acid composites and their impact on the immobility of Pb/Cd in soil. Chemosphere, 222, 556–563. https://doi.org/10.1016/j.chemosphere.2019.01.171
  • Liu, Y., Cheng, Z., Zhi, L., & Zhou, S. (2020). Binding of Hg to preformed ferrihydrite-humic acid composites synthesized via co-precipitation and adsorption with different morphologies. Ecotoxicology and Environmental Safety, 204, 111097. https://doi.org/10.1016/j.ecoenv.2020.111097
  • Lu, Y., Hu, S., Liu, F., Liang, Y., & Shi, Z. (2020). Effects of humic acid and fulvic acid on the sequestration of copper and carbon during the iron oxide transformation. Chemical Engineering Journal, 383, 123194. https://doi.org/10.1016/j.cej.2019.123194
  • Lv, J., Zhang, S., Wang, S., Luo, L., Cao, D., & Christie, P. (2016). Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides. Environmental Science & Technology, 50(5), 2328–2336. https://doi.org/10.1021/acs.est.5b04996
  • Masset, S., Monteil-Rivera, F., Dupont, L., Dumonceau, J., & Aplincourt, M. (2000). Influence of humic acid on sorption of Co(II), Sr(II), and Se(IV) on goethite. Agronomie, 20(5), 525–535. https://doi.org/10.1051/agro:2000147
  • Mikutta, C. (2011). X-ray absorption spectroscopy study on the effect of hydroxybenzoic acids on the formation and structure of ferrihydrite. Geochimica et Cosmochimica Acta, 75(18), 5122–5139. https://doi.org/10.1016/j.gca.2011.06.002
  • Mikutta, R., Lorenz, D., Guggenberger, G., Haumaier, L., & Freund, A. (2014). Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption. Geochimica et Cosmochimica Acta, 144, 258–276. https://doi.org/10.1016/j.gca.2014.08.026
  • Mitsunobu, S., & Takahashi, Y. (2006). Study of the water solubility and sorption on particulate matters of phthalate in the presence of humic acid using 14C labelled di-(2-ethylhexyl)phthalate. Water, Air, and Soil Pollution, 175(1–4), 99–115. https://doi.org/10.1007/s11270-006-9115-0
  • Mu, C. C., Zhang, T. J., Zhao, Q., Guo, H., Zhong, W., Su, H., & Wu, Q. B. (2016). Soil organic carbon stabilization by iron in permafrost regions of the Qinghai‐Tibet Plateau. Geophysical Research Letters, 43(19), 10286–10294. https://doi.org/10.1002/2016GL070071
  • Nguyen, M. L., Hockaday, W. C., & Lau, B. L. T. (2018). Is the adsorption of soil organic matter to haematite (α‐Fe2O3) temperature dependent? European Journal of Soil Science, 69(5), 892–901. https://doi.org/10.1111/ejss.12694
  • Ni, L., Su, L., Li, S., Wang, P., Li, D., Ye, X., Li, Y., Li, Y., Li, Y., & Wang, C. (2017). The characterization of dissolved organic matter extracted from different sources and their influence on cadmium uptake by Microcystis aeruginosa. Environmental Toxicology and Chemistry, 36(7), 1856–1863. https://doi.org/10.1002/etc.3728
  • Orsetti, S., Quiroga, M. d l M., & Andrade, E. M. (2006). Binding of Pb(II) in the system humic acid/goethite at acidic pH. Chemosphere, 65(11), 2313–2321. https://doi.org/10.1016/j.chemosphere.2006.05.009
  • Pena-Mendez, E. M., Havel, J., & Patocka, J. (2005). Humic substances—Compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. Journal of Applied Biomedicine, 3(1), 13–24. https://doi.org/10.1590/S0101-31222011000200010 https://doi.org/10.32725/jab.2005.002
  • Rahman, M. S., Whalen, M., & Gagnon, G. A. (2013). Adsorption of dissolved organic matter (DOM) onto the synthetic iron pipe corrosion scales (goethite and magnetite): Effect of pH. Chemical Engineering Journal, 234, 149–157. https://doi.org/10.1016/j.cej.2013.08.077
  • Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science & Technology, 36(13), 2889–2896. https://doi.org/10.1021/es0112801
  • Reichard, P. U., Kretzschmar, R., & Kraemer, S. M. (2007). Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochimica et Cosmochimica Acta, 71(23), 5635–5650. https://doi.org/10.1016/j.gca.2006.12.022
  • Schulten, H.-R., & Leinweber, P. (2000). New insights into organic-mineral particles: Composition, properties and models of molecular structure. Biology and Fertility of Soils, 30(5–6), 399–432. https://doi.org/10.1007/s003740050020
  • Sharma, P., Ofner, J., & Kappler, A. (2010). Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environmental Science & Technology, 44(12), 4479–4485. https://doi.org/10.1021/es100066s
  • Shields, M. R., Bianchi, T. S., Gélinas, Y., Allison, M. A., & Twilley, R. R. (2016). Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophysical Research Letters, 43(3), 1149–1157. https://doi.org/10.1002/2015GL067388
  • Singh, M., Sarkar, B., Biswas, B., Churchman, J., & Bolan, N. S. (2016). Adsorption-desorption behavior of dissolved organic carbon by soil clay fractions of varying mineralogy. Geoderma, 280, 47–56. https://doi.org/10.1016/j.geoderma.2016.06.005
  • Sodano, M., Lerda, C., Nisticò, R., Martin, M., Magnacca, G., Celi, L., & Said-Pullicino, D. (2017). Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron. Geoderma, 307, 19–29. https://doi.org/10.1016/j.geoderma.2017.07.022
  • Sowers, T. D., Holden, K. L., Coward, E. K., & Sparks, D. L. (2019). Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (oxyhydr)oxides. Environmental Science & Technology, 53(8), 4295–4304. https://doi.org/10.1021/acs.est.9b00540
  • Stewart, A. G., Hudson-Edwards, K. A., & Dubbin, W. E. (2016). Effect of desferrioxamine B and Suwannee River fulvic acid on Fe(III) release and Cr(III) desorption from goethite. Geochimica et Cosmochimica Acta, 178, 62–75. https://doi.org/10.1016/j.gca.2015.11.047
  • Sun, S., Zhu, J., Zheng, Z., Li, J., & Gan, M. (2019). Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption. Powder Technology, 342, 181–192. https://doi.org/10.1016/j.powtec.2018.09.072
  • Tang, W. W., Zeng, G. M., Gong, J. L., Liang, J., Xu, P., Zhang, C., & Huang, B. B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. The Science of the Total Environment, 468–469, 1014–1027. https://doi.org/10.1016/j.scitotenv.2013.09.044
  • Tessier, A., Fortin, D., Belzile, N., DeVitre, R. R., & Leppard, G. G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: Narrowing the gap between field and laboratory measurements. Geochimica et Cosmochimica Acta, 60(3), 387–404. https://doi.org/10.1016/0016-7037(95)00413-0
  • Tipping, E., Griffith, J. R., & Hilton, J. (1983). The effect of adsorbed humic substances on the uptake of copper(II) by goethite. Croatica Chemica Acta, 56, 613–621.
  • Verbeeck, M., Hiemstra, T., Thiry, Y., & Smolders, E. (2017). Soil organic matter reduces the sorption of arsenate and phosphate: A soil profile study and geochemical modelling. European Journal of Soil Science, 68(5), 678–688. https://doi.org/10.1111/ejss.12447
  • Vithana, C. L., Sullivan, L. A., Burton, E. D., & Bush, R. T. (2014). Liberation of acidity and arsenic from schwertmannite: Effect of fulvic acid. Chemical Geology, 372, 1–11. https://doi.org/10.1016/j.chemgeo.2014.02.012
  • Vithana, C. L., Sullivan, L. A., Burton, E. D., & Bush, R. T. (2015). Stability of schwertmannite and jarosite in an acidic landscape: Prolonged field incubation. Geoderma, 239–240, 47–57. https://doi.org/10.1016/j.geoderma.2014.09.022
  • Walcott, J., Bruce, S., & Sims, J. (2009). Soil carbon for carbon sequestration and trading: A review of issues for agriculture and forestry. Bureau of Rural Sciences, Department of Agriculture, Fisheries & Forestry.
  • Wang, L., Li, Y., Weng, L., Sun, Y., Ma, J., & Chen, Y. (2019). Using chromatographic and spectroscopic parameters to characterize preference and kinetics in the adsorption of humic and fulvic acid to goethite. The Science of the Total Environment, 666, 766–777. https://doi.org/10.1016/j.scitotenv.2019.02.235
  • Wei, S., & Xiang, W. (2013). Adsorption removal of Pb(II) from aqueous solution by fulvic acid-coated ferrihydrite. Journal of Food Agriculture and Environment, 11, 1376–1380. https://doi.org/10.3402/fnrv57i0.21245
  • Weng, L., Van Riemsdijk, W. H., & Hiemstra, T. (2007). Adsorption of humic acids onto goethite: Effects of molar mass, pH and ionic strength. Journal of Colloid and Interface Science, 314(1), 107–118. https://doi.org/10.1016/j.jcis.2007.05.039
  • Weng, L., Van Riemsdijk, W. H., & Hiemstra, T. (2008). Cu2+ and Ca2+adsorption to goethite in the presence of fulvic acids. Geochimica et Cosmochimica Acta, 72(24), 5857–5870. https://doi.org/10.1016/j.gca.2008.09.015
  • Weng, L., Van Riemsdiik, W. H., & Hiemstra, T. (2009). Effects of fulvic and humic acids on arsenate adsorption to goethite: Experiments and modeling. Environmental Science & Technology, 43(19), 7198–7204. https://doi.org/10.1021/es9000196
  • Weng, L. P., Koopal, L. K., Hiemstra, T., Meeussen, J. C. L., & Van Riemsdijk, W. H. (2005). Interactions of calcium and fulvic acid at the goethite-water interface. Geochimica et Cosmochimica Acta, 69(2), 325–339. https://doi.org/10.1016/j.gca.2004.07.002
  • Weng, L. P., Van Riemsdijk, W. H., Koopal, L. K., & Hiemstra, T. (2006). Adsorption of humic substances on goethite: Comparison between humic acids and fulvic acids. Environmental Science & Technology, 40(24), 7494–7500. https://doi.org/10.1021/es060777d
  • Wiederhold, J. G., Kraemer, S. M., Teutsch, N., Borer, P. M., Halliday, A. N., & Kretzschmar, R. (2006). Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environmental Science & Technology, 40(12), 3787–3793. https://doi.org/10.1021/es052228y
  • Wu, H., Lin, Y., Wu, J., Zeng, L., Zeng, D., & Du, J. (2008). Surface adsorption of iron oxide minerals for phenol and dissolved organic matter. Earth Science Frontiers, 15(6), 133–141. https://doi.org/10.1016/S1872-5791(09)60013-0
  • Xie, X., & Cheng, H. (2021). Adsorption and desorption of phenylarsonic acid compounds on metal oxide and hydroxide, and clay minerals. The Science of the Total Environment, 757, 143765. https://doi.org/10.1016/j.scitotenv.2020.143765
  • Xie, Y., Yi, X., Shah, K. J., Reinfelder, J. R., Ye, H., Chiang, P.-C., Shi, Z., Dang, Z., & Lu, G. (2019). Elucidation of desferrioxamine B on the liberation of chromium from schwertmannite. Chemical Geology, 513, 133–142. https://doi.org/10.1016/j.chemgeo.2019.03.013
  • Xiong, J., Koopal, L. K., Weng, L., Wang, M., & Tan, W. (2015). Effect of soil fulvic and humic acid on binding of Pb to goethite-water interface: Linear additivity and volume fractions of HS in the Stern layer. Journal of Colloid and Interface Science, 457, 121–130. https://doi.org/10.1016/j.jcis.2015.07.001
  • Xiong, J., Weng, L., Koopal, L. K., Wang, M., Shi, Z., Zheng, L., & Tan, W. (2018). Effect of soil fulvic and humic acids on Pb binding to the goethite/solution interface: Ligand charge distribution modeling and speciation distribution of Pb. Environmental Science & Technology, 52(3), 1348–1356. https://doi.org/10.1021/acs.est.7b05412
  • Xue, Q., Ran, Y., Tan, Y., Peacock, C. L., & Du, H. (2019). Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments. Chemosphere, 224, 103–110. https://doi.org/10.1016/j.chemosphere.2019.02.118
  • Yang, Y., Saiers, J. E., & Barnett, M. O. (2013). Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions. Environmental Science & Technology, 47(6), 2661–2669. https://doi.org/10.1021/es304013r
  • Yeasmin, S., Singh, B., Ohnston, C. T., & Sparks, D. L. (2017). Organic carbon characteristics in density fractions of soils with contrasting mineralogies. Geochimica et Cosmochimica Acta, 218, 215–236. https://doi.org/10.1016/j.gca.2017.09.007
  • Zhao, B., Yao, P., Bianchi, T. S., Shields, M. R., Cui, X. Q., Zhang, X. W., Huang, X. Y., Schröeder, C., Zhao, J., & Yu, Z. G. (2018). The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments. Journal of Geophysical Research: Biogeosciences, 123(12), 3556–3569. https://doi.org/10.1029/2018JG004649
  • Zhao, Q., Poulson, S. R., Obrist, D., Sumaila, S., Dynes, J. J., McBeth, J. M., & Yang, Y. (2016). Iron-bound organic carbon in forest soils: Quantification and characterization. Biogeosciences, 13(16), 4777–4788. https://doi.org/10.5194/bg-13-4777-2016
  • Zhou, Y., Zhang, Y., Li, P., Li, G., & Jiang, T. (2014). Comparative study on the adsorption interactions of humic acid onto natural magnetite, hematite and quartz: Effect of initial HA concentration. Powder Technology, 251, 1–8. https://doi.org/10.1016/j.powtec.2013.10.011
  • Zhu, J., Pigna, M., Cozzolino, V., Caporale, A. G., & Violante, A. (2010). Competitive sorption of copper(II), chromium(III) and lead(II) on ferrihydrite and two organomineral complexes. Geoderma, 159(3–4), 409–416. https://doi.org/10.1016/j.geoderma.2010.09.006
  • Zhu, M., Hu, X., Tu, C., Zhang, H., Song, F., Luo, Y., & Christie, P. (2019). Sorption mechanisms of diphenylarsinic acid on ferrihydrite, goethite and hematite using sequential extraction, FTIR measurement and XAFS spectroscopy. The Science of the Total Environment, 669, 991–1000. https://doi.org/10.1016/j.scitotenv.2019.03.166
  • Zulfikar, M. A., Afrita, S., Wahyuningrum, D., & Ledyastuti, M. (2016). Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption. Environmental Nanotechnology, Monitoring & Management, 6, 64–75. https://doi.org/10.1016/j.enmm.2016.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.