7,559
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Probing the nature of soil organic matter

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4072-4093 | Published online: 26 Sep 2021

References

  • Aber, J. D., Melillo, J. M., & McClaugherty, C. A. (1990). Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany, 68(10), 2201–2208. https://doi.org/10.1139/b90-287
  • Amelung, W., Brodowski, S., Sandhage-Hofmann, A., & Bol, R. (2008). Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Advances in Agronomy, 100, 155–250.
  • Amelung, W., Kaiser, K., Kammerer, G., & Sauer, G. (2002). Organic carbon at soil particle surfaces—evidence from x‐ray photoelectron spectroscopy and surface abrasion. Soil Science Society of America Journal, 66(5), 1526–1530. https://doi.org/10.2136/sssaj2002.1526
  • Angst, G., Mueller, K. E., Eissenstat, D. M., Trumbore, S., Freeman, K. H., Hobbie, S. E., Chorover, J., Oleksyn, J., Reich, P. B., & Mueller, C. W. (2019). Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Global Change Biology, 25, 1529–1546. https://doi.org/10.1111/gcb.14548
  • Angst, G., Mueller, K. E., Kögel-Knabner, I., Freeman, K. H., & Mueller, C. W. (2017). Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. Biogeochemistry, 132(3), 307–324. https://doi.org/10.1007/s10533-017-0304-2
  • Angst, G., Mueller, K. E., Nierop, K. G., & Simpson, M. J. (2021). Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 156, 108189. https://doi.org/10.1016/j.soilbio.2021.108189
  • Arai, M., Uramoto, G.-I., Asano, M., Uematsu, K., Uesugi, K., Takeuchi, A., Morono, Y., & Wagai, R. (2019). An improved method to identify osmium-stained organic matter within soil aggregate structure by electron microscopy and synchrotron X-ray micro-computed tomography. Soil and Tillage Research, 191, 275–281. https://doi.org/10.1016/j.still.2019.04.010
  • Archanjo, B. S., Baptista, D. L., Sena, L. A., Cançado, L. G., Falcão, N. P., Jório, A., & Achete, C. A. (2015). Nanoscale mapping of carbon oxidation in pyrogenic black carbon from ancient Amazonian anthrosols. Environmental Science: Processes & Impacts, 17, 775–779.
  • Archanjo, B. S., Mendoza, M. E., Albu, M., Mitchell, D. R., Hagemann, N., Mayrhofer, C., Mai, T. L. A., Weng, Z., Kappler, A., Behrens, S., Munroe, P., Achete, C. A., Donne, S., Araujo, J. R., van Zwieten, L., Horvat, J., Enders, A., & Joseph, S. (2017). Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma, 294, 70–79. https://doi.org/10.1016/j.geoderma.2017.01.037
  • Arneth, A., Denton, F., Agus, F., Elbehri, A., Erb, K. H., Elasha, B. O., Rahimi, M., Rounsevell, M., Spence, A., & Valentini, R. (2019). Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change (IPCC), 1–98.
  • Baldock, J., Oades, J., Waters, A., Peng, X., Vassallo, A., & Wilson, M. (1992). Aspects of the chemical structure of soil organic materials as revealed by solid-state 13 C NMR spectroscopy. Biogeochemistry, 16(1), 1–42. https://doi.org/10.1007/BF02402261
  • Briggs, D., & Seah, M. (1990). Empirically drived atomic sensitivity factors for XPS. Practical Surface Analysis, 1, 635–650.
  • Burdon, J. (2001). Are the traditional concepts of the structures of humic substances realistic? Soil Science, 166, 752–769.
  • Chen, C., & Sparks, D. L. (2015). Multi-elemental scanning transmission X-ray microscopy–near edge X-ray absorption fine structure spectroscopy assessment of organo–mineral associations in soils from reduced environments. Environmental Chemistry, 12(1), 64–73. https://doi.org/10.1071/EN14042
  • Chen, C., Dynes, J. J., Wang, J., & Sparks, D. L. (2014). Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environmental Science & Technology, 48(23), 13751–13759. https://doi.org/10.1021/es503669u
  • Chen, X., Jin, M., Duan, P., Mejia, J., Chu, W., Ye, X., Cao, X., Schmidt-Rohr, K., Thompson, M. L., Gao, H., & Mao, J. (2021). Structural composition of immobilized fertilizer N associated with decomposed wheat straw residues using advanced nuclear magnetic resonance spectroscopy combined with 13C and 15N labeling. Geoderma, 398, 115110. https://doi.org/10.1016/j.geoderma.2021.115110
  • Chenu, C., Rumpel, C., Lehmann, J., & Paul, E. (2015). Methods for studying soil organic matter: Nature, dynamics, spatial accessibility, and interactions with minerals. Soil Microbiology, Ecology and Biochemistry, 383–419.
  • Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., & Lugato, E. (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12(12), 989–994. https://doi.org/10.1038/s41561-019-0484-6
  • Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988–995. https://doi.org/10.1111/gcb.12113
  • Cowie, B., Tadich, A., & Thomsen, L. (2010). The current performance of the wide range (90–2500 eV) soft x‐ray beamline at the Australian Synchrotron. AIP Conference Proceedings, 1234(1), 307–310.
  • Dal Ferro, N., & Morari, F. (2015). From real soils to 3D‐printed soils: Reproduction of complex pore network at the real size in a Silty‐loam soil. Soil Science Society of America Journal, 79(4), 1008–1017. https://doi.org/10.2136/sssaj2015.03.0097
  • Dignac, M.-F., Bahri, H., Rumpel, C., Rasse, D., Bardoux, G., Balesdent, J., Girardin, C., Chenu, C., & Mariotti, A. (2005). Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: An appraisal at the Closeaux experimental field (France). Geoderma, 128(1–2), 3–17. https://doi.org/10.1016/j.geoderma.2004.12.022
  • Etschmann, B. E., Donner, E., Brugger, J., Howard, D. L., de Jonge, M. D., Paterson, D., Naidu, R., Scheckel, K. G., Ryan, C. G., & Lombi, E. (2014). Speciation mapping of environmental samples using XANES imaging. Environmental Chemistry, 11(3), 341–350. https://doi.org/10.1071/EN13189
  • Fike, D. A., Gammon, C. L., Ziebis, W., & Orphan, V. J. (2008). Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: A paired nanoSIMS and CARD-FISH approach. The ISME Journal, 2(7), 749–759. https://doi.org/10.1038/ismej.2008.39
  • Gerin, P. A., Genet, M., Herbillon, A., & Delvaux, B. (2003). Surface analysis of soil material by X‐ray photoelectron spectroscopy. European Journal of Soil Science, 54(3), 589–604. https://doi.org/10.1046/j.1365-2389.2003.00537.x
  • Gleixner, G. (2013). Soil organic matter dynamics: A biological perspective derived from the use of compound-specific isotopes studies. Ecological Research, 28(5), 683–695. https://doi.org/10.1007/s11284-012-1022-9
  • Gorka, S., Dietrich, M., Mayerhofer, W., Gabriel, R., Wiesenbauer, J., Martin, V., Zheng, Q., Imai, B., Prommer, J., Weidinger, M., Schweiger, P., Eichorst, S. A., Wagner, M., Richter, A., Schintlmeister, A., Woebken, D., & Kaiser, C. (2019). Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Frontiers in Microbiology, 10, 168. https://doi.org/10.3389/fmicb.2019.00168
  • Guttmann, P., Rehbein, S., Werner, S., Henzler, K., Tarek, B., & Schneider, G. (2013). Nanoscale spectroscopy and tomography with the HZB X-ray microscope: Applications in materials and life sciences. Journal of Physics: Conference Series, 463(1), 012032. https://doi.org/10.1088/1742-6596/463/1/012032
  • Hall, S. J., Ye, C., Weintraub, S. R., & Hockaday, W. C. (2020). Molecular trade-offs in soil organic carbon composition at continental scale. Nature Geoscience, 13(10), 687–692. https://doi.org/10.1038/s41561-020-0634-x
  • Hayes, M. H., & Swift, R. S. (2020). Vindication of humic substances as a key component of organic matter in soil and water. Advances in Agronomy, 163, 1.
  • Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton, T. I., Derry, L. A., & Galy, V. V. (2019). Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 570(7760), 228–231. https://doi.org/10.1038/s41586-019-1280-6
  • Hernandez-Soriano, M. C., Dalal, R. C., Warren, F. J., Wang, P., Green, K., Tobin, M. J., Menzies, N. W., & Kopittke, P. M. (2018). Soil organic carbon stabilization: Mapping carbon speciation from intact microaggregates. Environmental Science & Technology, 52(21), 12275–12284.
  • Herrmann, A. M., Ritz, K., Nunan, N., Clode, P. L., Pett-Ridge, J., Kilburn, M. R., Murphy, D. V., O’Donnell, A. G., & Stockdale, E. A. (2007). Nano-scale secondary ion mass spectrometry—A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biology and Biochemistry, 39(8), 1835–1850. https://doi.org/10.1016/j.soilbio.2007.03.011
  • Hoppe, P., Cohen, S., & Meibom, A. (2013). N ano SIMS: Technical aspects and applications in cosmochemistry and biological geochemistry. Geostandards and Geoanalytical Research, 37(2), 111–154. https://doi.org/10.1111/j.1751-908X.2013.00239.x
  • Hou, L., Gao, W., van der Bom, F., Weng, Z., Doolette, C. L., Maksimenko, A., Hausermann, D., Zheng, Y., Tang, C., Lombi, E. & Kopittke, P.M. (2021). Use of X-ray tomography for examining root architecture in soils. Geoderma. https://doi.org/10.1016/j.geoderma.2021.115405
  • Huang, X., Li, Y., Guggenberger, G., Kuzyakov, Y., Liu, B. F., & Wu, J. (2020). Direct evidence for thickening nanoscale organic films at soil biogeochemical interfaces and its relevance to organic matter preservation. Environmental Science: Nano, 7(9), 2747–2758. https://doi.org/10.1039/D0EN00489H
  • IPCC. (2019). Land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. 2019 The approved Summary for Policymakers (SPM) was presented at a press conference.
  • Johnston, C., & Aochi, Y. (1996). Fourier transform infrared and Raman spectroscopy. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 269–321.
  • Kaiser, C., Kilburn, M. R., Clode, P. L., Fuchslueger, L., Koranda, M., Cliff, J. B., Solaiman, Z. M., & Murphy, D. V. (2015). Exploring the transfer of recent plant photosynthates to soil microbes: Mycorrhizal pathway vs direct root exudation. The New Phytologist, 205(4), 1537–1551. https://doi.org/10.1111/nph.13138
  • Kaiser, K., Eusterhues, K., Rumpel, C., Guggenberger, G., & Kögel‐Knabner, I. (2002). Stabilization of organic matter by soil minerals—investigations of density and particle‐size fractions from two acid forest soils. Journal of Plant Nutrition and Soil Science, 165(4), 451–459. https://doi.org/10.1002/1522-2624(200208)165:4<451::AID-JPLN451>3.0.CO;2-B
  • Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., & Kleber, M. (2015). Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5(6), 588–595. https://doi.org/10.1038/nclimate2580
  • Keiluweit, M., Bougoure, J. J., Zeglin, L. H., Myrold, D. D., Weber, P. K., Pett-Ridge, J., Kleber, M., & Nico, P. S. (2012). Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr) oxides in a forest soil O-horizon. Geochimica et Cosmochimica Acta, 95, 213–226. https://doi.org/10.1016/j.gca.2012.07.001
  • Kelleher, B. P., & Simpson, A. J. (2006). Humic substances in soils: Are they really chemically distinct? Environmental Science & Technology, 40(15), 4605–4611. https://doi.org/10.1021/es0608085
  • Kemner, K. M., Kelly, S. D., Lai, B., Maser, J., O’Loughlin, E. J., Sholto-Douglas, D., Cai, Z., Schneegurt, M. A., Kulpa, C. F., & Nealson, K. H. (2004). Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science (New York, NY), 306(5696), 686–687. https://doi.org/10.1126/science.1103524
  • Keuper, F., Wild, B., Kummu, M., Beer, C., Blume-Werry, G., Fontaine, S., Gavazov, K., Gentsch, N., Guggenberger, G., Hugelius, G., Jalava, M., Koven, C., Krab, E. J., Kuhry, P., Monteux, S., Richter, A., Shahzad, T., Weedon, J. T., & Dorrepaal, E. (2020). Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nature Geoscience, 13(8), 560–565. https://doi.org/10.1038/s41561-020-0607-0
  • Kleber, M., & Johnson, M. G. (2010). Advances in understanding the molecular structure of soil organic matter: Implications for interactions in the environment. In L. S. Donald (Ed.), Advances in agronomy (pp. 77–142). Academic Press.
  • Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., & Nico, P. S. (2015). Mineral-organic associations: Formation. Properties, and Relevance in Soil Environments Advances in Agronomy, 130, 1–140.
  • Knicker, H., & Lüdemann, H.-D. (1995). N-15 and C-13 CPMAS and solution NMR studies of N-15 enriched plant material during 600 days of microbial degradation. Organic Geochemistry, 23(4), 329–341. https://doi.org/10.1016/0146-6380(95)00007-2
  • Knicker, H., Hatcher, P. G., & González-Vila, F. J. (2002). Formation of heteroaromatic nitrogen after prolonged humification of vascular plant remains as revealed by nuclear magnetic resonance spectroscopy.
  • Kögel-Knabner, I. (1997). 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma, 80(3–4), 243–270. https://doi.org/10.1016/S0016-7061(97)00055-4
  • Kögel-Knabner, I. (2000). Analytical approaches for characterizing soil organic matter. Organic Geochemistry, 31(7–8), 609–625. https://doi.org/10.1016/S0146-6380(00)00042-5
  • Kollmer, F., Pirkl, A., Kayser, S., Arlinghaus, H., Moellers, R., Havercroft, N., & Niehuis, E. (2020). Recent advances in 2D and 3D TOF SIMS analysis of organic and inorganic surfaces. Microscopy and Microanalysis, 26(S2), 76–77. https://doi.org/10.1017/S143192762001329X
  • Kononova, M. (1966). Soil organic matter (2nd English ed.). Pergamon Press.
  • Kopittke, P. M., Dalal, R. C., Hoeschen, C., Li, C., Menzies, N. W., & Mueller, C. W. (2020a). Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio. Geoderma, 357, 113974. https://doi.org/10.1016/j.geoderma.2019.113974
  • Kopittke, P. M., de Jonge, M. D., Wang, P., McKenna, B. A., Lombi, E., Paterson, D. J., Howard, D. L., James, S. A., Spiers, K. M., Ryan, C. G., Johnson, A. A. T., & Menzies, N. W. (2014). Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging. The New Phytologist, 201(4), 1251–1262. https://doi.org/10.1111/nph.12595
  • Kopittke, P. M., Hernandez‐Soriano, M. C., Dalal, R. C., Finn, D., Menzies, N. W., Hoeschen, C., & Mueller, C. W. (2018). Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. Global Change Biology, 24(4), 1762–1770. https://doi.org/10.1111/gcb.14009
  • Kopittke, P. M., Lombi, E., van der Ent, A., Wang, P., Laird, J. S., Moore, K. L., Persson, D. P., & Husted, S. (2020b). Methods to visualize elements in plants. Plant Physiology, 182(4), 1869–1882. https://doi.org/10.1104/pp.19.01306
  • Kramer, M. G., & Chadwick, O. A. (2018). Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nature Climate Change, 8(12), 1104–1108. https://doi.org/10.1038/s41558-018-0341-4
  • Lal, R., Smith, P., Jungkunst, H. F., Mitsch, W. J., Lehmann, J., Nair, P. K. R., McBratney, A. B., de Moraes Sá, J. C., Schneider, J., Zinn, Y. L., Skorupa, A. L. A., Zhang, H.-L., Minasny, B., Srinivasrao, C., & Ravindranath, N. H. (2018). The carbon sequestration potential of terrestrial ecosystems. Journal of Soil and Water Conservation, 73(6), 145A–152A. https://doi.org/10.2489/jswc.73.6.145A
  • Lammel, D. R., Arlt, T., Manke, I., & Rillig, M. C. (2019). Testing contrast agents to improve micro computerized tomography (μCT) for spatial location of organic matter and biological material in soil. Frontiers in Environmental Science, 7, 153. https://doi.org/10.3389/fenvs.2019.00153
  • Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60–68. https://doi.org/10.1038/nature16069
  • Lehmann, J., & Solomon, D. (2010). Organic carbon chemistry in soils observed by synchrotron-based spectroscopy Developments in soil science (pp. 289–312). Elsevier.
  • Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N., Reichstein, M., Schimel, J. P., Torn, M. S., Wieder, W. R., & Kögel-Knabner, I. (2020). Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 13(8), 529–534. https://doi.org/10.1038/s41561-020-0612-3
  • Lehmann, J., Kinyangi, J., & Solomon, D. (2007). Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry, 85(1), 45–57. https://doi.org/10.1007/s10533-007-9105-3
  • Lehmann, J., Solomon, D., Kinyangi, J., Dathe, L., Wirick, S., & Jacobsen, C. (2008). Spatial complexity of soil organic matter forms at nanometre scales. Nature Geoscience, 1(4), 238–242. https://doi.org/10.1038/ngeo155
  • Lemmens, H. J., Butcher, A. R., & Botha, P. W. S. K. (2011). FIB/SEM and SEM/EDX: A new dawn for the SEM in the core lab? Petrophysics, 52, 452–456.
  • Liu, X., Eusterhues, K., Thieme, J., Ciobota, V., Höschen, C., Mueller, C. W., Küsel, K., Kögel-Knabner, I., Rösch, P., Popp, J., & Totsche, K. U. (2013). STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite. Environmental Science & Technology, 47(7), 3158–3166. https://doi.org/10.1021/es3039505
  • Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., & Cotrufo, M. F. (2021). Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 14(5), 295–300. https://doi.org/10.1038/s41561-021-00744-x
  • Marinkovic, N. S., Huang, R., Bromberg, P., Sullivan, M., Toomey, J., Miller, L. M., Sperber, E., Moshe, S., Jones, K. W., Chouparova, E., Lappi, S., Franzen, S., & Chance, M. R. (2002). Center for Synchrotron Biosciences' U2B beamline: An international resource for biological infrared spectroscopy. Journal of Synchrotron Radiation, 9(Pt 4), 189–197. https://doi.org/10.1107/s0909049502008543
  • Melillo, J. M., Aber, J. D., & Muratore, J. F. (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63(3), 621–626. https://doi.org/10.2307/1936780
  • Mikutta, R., Schaumann, G. E., Gildemeister, D., Bonneville, S., Kramer, M. G., Chorover, J., Chadwick, O. A., & Guggenberger, G. (2009). Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochimica et Cosmochimica Acta, 73(7), 2034–2060. https://doi.org/10.1016/j.gca.2008.12.028
  • Milne, A. E., Lehmann, J., Solomon, D., & Lark, R. M. (2011). Wavelet analysis of soil variation at nanometre‐to micrometre‐scales: An example of organic carbon content in a micro‐aggregate. European Journal of Soil Science, 62(4), 617–628. https://doi.org/10.1111/j.1365-2389.2011.01352.x
  • Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., … Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
  • Mueller, C. W., & Kögel-Knabner, I. (2009). Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biology and Fertility of Soils, 45(4), 347–359. https://doi.org/10.1007/s00374-008-0336-9
  • Mueller, C. W., Kölbl, A., Hoeschen, C., Hillion, F., Heister, K., Herrmann, A. M., & Kögel-Knabner, I. (2012). Submicron scale imaging of soil organic matter dynamics using NanoSIMS–from single particles to intact aggregates. Organic Geochemistry, 42(12), 1476–1488. https://doi.org/10.1016/j.orggeochem.2011.06.003
  • Mueller, C. W., Steffens, M., & Buddenbaum, H. (2021). Permafrost soil complexity evaluated by laboratory imaging Vis-NIR spectroscopy. European Journal of Soil Science, 72(1), 114–119. https://doi.org/10.1111/ejss.12927
  • Mueller, C. W., Weber, P. K., Kilburn, M. R., Hoeschen, C., Kleber, M., & Pett-Ridge, J. (2013). Advances in the analysis of biogeochemical interfaces: NanoSIMS to investigate soil microenvironments. Advances in Agronomy, 121, 1–46.
  • Myneni, S. C. B.,Brown, J. T.,Martinez, G. A., &Meyer-Ilse, W. (1999). Imaging of humic substance macromolecular structures in water and soils. Science, 286(5443), 1335–1337.
  • Newcomb, C. J., Qafoku, N. P., Grate, J. W., Bailey, V. L., & De Yoreo, J. J. (2017). Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding. Nature Communications, 8(1), 2017–2018.
  • Oades, J. M., Vassallo, A. M., Waters, A. G., & Wilson, M. A. (1987). Characterization of organic matter in particle size and density fractions from a red-brown earth by solid state 13C NMR. Soil Research, 25(1), 71–82. https://doi.org/10.1071/SR9870071
  • Ogle, S. M., Breidt, F. J., & Paustian, K. (2005). Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry, 72(1), 87–121. https://doi.org/10.1007/s10533-004-0360-2
  • Oldfield, E. E., Bradford, M. A., & Wood, S. A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil, 5(1), 15–32. https://doi.org/10.5194/soil-5-15-2019
  • Paetsch, L., Mueller, C. W., Rumpel, C., Angst, Š., Wiesheu, A. C., Girardin, C., Ivleva, N. P., Niessner, R., & Kögel-Knabner, I. (2017). A multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter composition. Organic Geochemistry, 112, 177–186. https://doi.org/10.1016/j.orggeochem.2017.06.012
  • Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N., & Calderón, F. J. (2014). Soil chemical insights provided through vibrational spectroscopy. Advances in Agronomy, 126, 1–148.
  • Peng, X., Zhu, Q., Zhang, Z., & Hallett, P. D. (2017). Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers. Soil Biology and Biochemistry, 109, 81–94. https://doi.org/10.1016/j.soilbio.2017.02.002
  • Peth, S., Chenu, C., Leblond, N., Mordhorst, A., Garnier, P., Nunan, N., Pot, V., Ogurreck, M., & Beckmann, F. (2014). Localization of soil organic matter in soil aggregates using synchrotron-based X-ray microtomography. Soil Biology and Biochemistry, 78, 189–194. https://doi.org/10.1016/j.soilbio.2014.07.024
  • Piccolo, A. (2001). The supramolecular structure of humic substances. Soil Science, 166, 810–832.
  • Possinger, A. R., Bailey, S. W., Inagaki, T. M., Kögel-Knabner, I., Dynes, J. J., Arthur, Z. A., & Lehmann, J. (2020b). Organo-mineral interactions and soil carbon mineralizability with variable saturation cycle frequency. Geoderma, 375, 114483. https://doi.org/10.1016/j.geoderma.2020.114483
  • Possinger, A. R., Zachman, M. J., Enders, A., Levin, B. D., Muller, D. A., Kourkoutis, L. F., & Lehmann, J. (2020a). Organo-organic and organo-mineral interfaces in soil at the nanometer scale. Nature Communications, 11(1), 6103–6111. https://doi.org/10.1038/s41467-020-19792-9
  • Prater, I., Zubrzycki, S., Buegger, F., Zoor-Füllgraff, L. C., Angst, G., Dannenmann, M., & Mueller, C. W. (2020). From fibrous plant residues to mineral-associated organic carbon–the fate of organic matter in Arctic permafrost soils. Biogeosciences, 17(13), 3367–3383. https://doi.org/10.5194/bg-17-3367-2020
  • Quigley, M. Y., Rivers, M. L., & Kravchenko, A. N. (2018). Patterns and sources of spatial heterogeneity in soil matrix from contrasting long term management practices. Frontiers in Environmental Science, 6, 28. https://doi.org/10.3389/fenvs.2018.00028
  • Rawlins, B. G., Wragg, J., Reinhard, C., Atwood, R. C., Houston, A., Lark, R. M., & Rudolph, S. (2016). Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography. SOIL, 2(4), 659–671. https://doi.org/10.5194/soil-2-659-2016
  • Rice, J. A. (2001). Humin. Soil Science, 166, 848–857.
  • Roth, V.-N., Lange, M., Simon, C., Hertkorn, N., Bucher, S., Goodall, T., Griffiths, R. I., Mellado-Vázquez, P. G., Mommer, L., Oram, N. J., Weigelt, A., Dittmar, T., & Gleixner, G. (2019). Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nature Geoscience, 12(9), 755–761. https://doi.org/10.1038/s41561-019-0417-4
  • Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L.-S., Ladha, J., Madari, B., Shirato, Y., Smith, P., Soudi, B., Soussana, J.-F., Whitehead, D., & Wollenberg, E. (2020). The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio, 49(1), 350–360. https://doi.org/10.1007/s13280-019-01165-2
  • Rumpel, C., Baumann, K., Remusat, L., Dignac, M.-F., Barré, P., Deldicque, D., Glasser, G., Lieberwirth, I., & Chabbi, A. (2015). Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth. Soil Biology and Biochemistry, 85, 82–88. https://doi.org/10.1016/j.soilbio.2015.02.017
  • Salmeron, M., & Schlögl, R. (2008). Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology. Surface Science Reports, 63(4), 169–199. https://doi.org/10.1016/j.surfrep.2008.01.001
  • Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114(36), 9575–9580. https://doi.org/10.1073/pnas.1706103114
  • Schlüter, S., Eickhorst, T., & Mueller, C. W. (2019). Correlative imaging reveals holistic view of soil microenvironments. Environmental Science & Technology, 53(2), 829–837. https://doi.org/10.1021/acs.est.8b05245
  • Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386
  • Schöning, I., Knicker, H., & Kögel-Knabner, I. (2005). Intimate association between O/N-alkyl carbon and iron oxides in clay fractions of forest soils. Organic Geochemistry, 36(10), 1378–1390. https://doi.org/10.1016/j.orggeochem.2005.06.005
  • Schopf, J. W., Kitajima, K., Spicuzza, M. J., Kudryavtsev, A. B., & Valley, J. W. (2018). SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proceedings of the National Academy of Sciences of the United States of America, 115(1), 53–58. https://doi.org/10.1073/pnas.1718063115
  • Schumacher, M., Christl, I., Scheinost, A. C., Jacobsen, C., & Kretzschmar, R. (2005). Chemical heterogeneity of organic soil colloids investigated by scanning transmission X-ray microscopy and C-1s NEXAFS microspectroscopy. Environmental Science & Technology, 39(23), 9094–9100. https://doi.org/10.1021/es050099f
  • Schweizer, S. A., Hoeschen, C., Schlüter, S., Kögel‐Knabner, I., & Mueller, C. W. (2018). Rapid soil formation after glacial retreat shaped by spatial patterns of organic matter accrual in microaggregates. Global Change Biology, 24(4), 1637–1650. https://doi.org/10.1111/gcb.14014
  • Seligman, A. M., Wasserkrug, H. L., & Hanker, J. S. (1966). A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). The Journal of Cell Biology, 30(2), 424–432. https://doi.org/10.1083/jcb.30.2.424
  • Smernik, R. J. (2005). A New Way to Use solid-state carbon-13 nuclear magnetic resonance spectroscopy to study the sorption of organic compounds to soil organic matter. Journal of Environmental Quality, 34(4), 1194–1204. https://doi.org/10.2134/jeq2004.0371
  • Smernik, R. J., & Baldock, J. A. (2005). Does solid-state 15 N NMR spectroscopy detect all soil organic nitrogen? Biogeochemistry, 75(3), 507–528. https://doi.org/10.1007/s10533-005-2857-8
  • Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A., & Klumpp, K. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26(1), 219–241. https://doi.org/10.1111/gcb.14815
  • Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma, 74(1–2), 65–105. https://doi.org/10.1016/S0016-7061(96)00036-5
  • Solomon, D., Lehmann, J., Harden, J., Wang, J., Kinyangi, J., Heymann, K., Karunakaran, C., Lu, Y., Wirick, S., & Jacobsen, C. (2012). Micro-and nano-environments of carbon sequestration: Multi-element STXM–NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations. Chemical Geology, 329, 53–73. https://doi.org/10.1016/j.chemgeo.2012.02.002
  • Steffens, M., & Buddenbaum, H. (2013). Laboratory imaging spectroscopy of a stagnic luvisol profile - High resolution soil characterisation, classification and mapping of elemental concentrations. Geoderma, 195–196, 122–132. https://doi.org/10.1016/j.geoderma.2012.11.011
  • Steffens, M., Rogge, D. M., Mueller, C. W., Höschen, C., Lugmeier, J., Kölbl, A., & Kögel-Knabner, I. (2017). Identification of distinct functional microstructural domains controlling C storage in soil. Environmental Science & Technology, 51(21), 12182–12189. https://doi.org/10.1021/acs.est.7b03715
  • Stuckey, J. W., Yang, J., Wang, J., & Sparks, D. L. (2017). Advances in scanning transmission X-ray microscopy for elucidating soil biogeochemical processes at the submicron scale. Journal of Environmental Quality, 46(6), 1166–1174. https://doi.org/10.2134/jeq2016.10.0399
  • Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science & Technology, 39(23), 9009–9015.
  • Torres-Rojas, D., Hestrin, R., Solomon, D., Gillespie, A. W., Dynes, J. J., Regier, T. Z., & Lehmann, J. (2020). Nitrogen speciation and transformations in fire-derived organic matter. Geochimica et Cosmochimica Acta, 276, 170–185. https://doi.org/10.1016/j.gca.2020.02.034
  • Trumbore, S. E. (1997). Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences, 94(16), 8284–8291. https://doi.org/10.1073/pnas.94.16.8284
  • Urquhart, S., & Ade, H. (2002). Trends in the carbonyl core (C 1S, O 1S)→ π* C = O transition in the near-edge X-ray absorption fine structure spectra of organic molecules. The Journal of Physical Chemistry B, 106(34), 8531–8538. https://doi.org/10.1021/jp0255379
  • Vidal, A., Hirte, J., Bender, S. F., Mayer, J., Gattinger, A., Höschen, C., Schädler, S., Iqbal, T. M., & Mueller, C. W. (2018). Linking 3D soil structure and plant-microbe-soil carbon transfer in the rhizosphere. Frontiers in Environmental Science, 6, 9. https://doi.org/10.3389/fenvs.2018.00009
  • Vidal, A., Watteau, F., Remusat, L., Mueller, C. W., Nguyen Tu, T.-T., Buegger, F., Derenne, S., & Quenea, K. (2019). Earthworm cast formation and development: A shift from plant litter to mineral associated organic matter. Frontiers in Environmental Science, 7, 55. https://doi.org/10.3389/fenvs.2019.00055
  • Vogel, C., Mueller, C. W., Höschen, C., Buegger, F., Heister, K., Schulz, S., Schloter, M., & Kögel-Knabner, I. (2014). Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications, 5(1), 7. https://doi.org/10.1038/ncomms3947
  • Vongsvivut, J., Pérez-Guaita, D., Wood, B. R., Heraud, P., Khambatta, K., Hartnell, D., Hackett, M. J., & Tobin, M. J. (2019). Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells. The Analyst, 144(10), 3226–3238. https://doi.org/10.1039/C8AN01543K
  • Weng, Z., Van Zwieten, L., Singh, B. P., Tavakkoli, E., Joseph, S., Macdonald, L. M., Rose, T. J., Rose, M. T., Kimber, S. W. L., Morris, S., Cozzolino, D., Araujo, J. R., Archanjo, B. S., & Cowie, A. (2017). Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature Climate Change, 7(5), 371–376. https://doi.org/10.1038/nclimate3276
  • Wilson, M. A. (2013). NMR techniques & applications in geochemistry & soil chemistry. Elsevier.
  • Witzgall, K., Vidal, A., Schubert, D. I., Höschen, C., Schweizer, S. A., Buegger, F., Pouteau, V., Chenu, C., & Mueller, C. W. (2021). Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 12(1), 4115. https://doi.org/10.1038/s41467-021-24192-8
  • Woche, S. K., Goebel, M.-O., Mikutta, R., Schurig, C., Kaestner, M., Guggenberger, G., & Bachmann, J. (2017). Soil wettability can be explained by the chemical composition of particle interfaces - An XPS study. Scientific Reports, 7, 42877. https://doi.org/10.1038/srep42877
  • Woolf, D., & Lehmann, J. (2019). Microbial models with minimal mineral protection can explain long-term soil organic carbon persistence. Scientific Reports, 9(1), 6522. https://doi.org/10.1038/s41598-019-43026-8
  • Xiao, J., He, X., Hao, J., Zhou, Y., Zheng, L., Ran, W., Shen, Q., & Yu, G. (2016). New strategies for submicron characterization the carbon binding of reactive minerals in long-term contrasting fertilized soils: Implications for soil carbon storage. Biogeosciences, 13(12), 3607–3618. https://doi.org/10.5194/bg-13-3607-2016
  • Zbik, M. S., Martens, W. N., Frost, R. L., Song, Y. F., Chen, Y. M., & Chen, J. H. (2008). Transmission X-ray microscopy (TXM) reveals the nanostructure of a smectite gel. Langmuir, 24(16), 8954–8958. https://doi.org/10.1021/la800986t

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.