931
Views
6
CrossRef citations to date
0
Altmetric
Invited Review

Understanding foliar accumulation of atmospheric Hg in terrestrial vegetation: Progress and challenges

, , ORCID Icon, , ORCID Icon, ORCID Icon, & show all
Pages 4331-4352 | Published online: 15 Oct 2021

References

  • Agnan, Y., Dantec, T. L., Moore, C. W., Edwards, G. C., & Obrist, D. (2016). New constraints on terrestrial surface-atmosphere fluxes of gaseous elemental mercury using a global database. Environmental Science & Technology, 50(2), 507–524. https://doi.org/10.1021/acs.est.5b04013
  • Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., & Toyota, K. (2015). Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions. Chemical Reviews, 115(10), 3760–3802. https://doi.org/10.1021/cr500667e
  • Arnold, J., Gustin, M. S., & Weisberg, P. J. (2018). Evidence for nonstomatal uptake of Hg by aspen and translocation of Hg from foliage to tree rings in Austrian pine. Environmental Science & Technology, 52(3), 1174–1182. https://doi.org/10.1021/acs.est.7b04468
  • Beauford, W., Barber, J., & Barringer, A. R. (1977). Uptake and distribution of mercury within higher plants. Physiologia Plantarum, 39(4), 261–266. https://doi.org/10.1111/j.1399-3054.1977.tb01880.x
  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. https://doi.org/10.1080/10643389.2017.1326277
  • Bishop, K. H., Lee, Y., Munthe, J., & Dambrine, E. (1998). Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry, 40(2/3), 101–113. https://doi.org/10.1023/A:1005983932240
  • Briat, J.-F. (2010). Arsenic tolerance in plants: “Pas de deux” between phytochelatin synthesis and ABCC vacuolar transporters. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 20853–20854. https://doi.org/10.1073/pnas.1016286107
  • Browne, C. L., & Fang, S. C. (1978). Uptake of mercury vapor by wheat: An assimilation model. Plant Physiology, 61(3), 430–433. https://doi.org/10.1104/pp.61.3.430
  • Browne, C. L., & Fang, S. C. (1983). Differential uptake of mercury vapor by gramineous c(3) and c(4) plants. Plant Physiology, 72(4), 1040–1042. https://doi.org/10.1104/pp.72.4.1040
  • Cabrita, M. T., Duarte, B., Cesário, R., Mendes, R., Hintelmann, H., Eckey, K., Dimock, B., Caçador, I., & Canário, J. (2019). Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms. The Science of the Total Environment, 650(Pt 1), 111–120. https://doi.org/10.1016/j.scitotenv.2018.08.335
  • Canário, J., Poissant, L., Pilote, M., Caetano, M., Hintelmann, H., & O'Driscoll, N. J. (2017). Salt-marsh plants as potential sources of Hg0 into the atmosphere. Atmospheric Environment, 152, 458–464. https://doi.org/10.1016/j.atmosenv.2017.01.011
  • Cardiano, P., Falcone, G., Foti, C., & Sammartano, S. (2011). Sequestration of Hg2+ by some biologically important thiols. Journal of Chemical & Engineering Data, 56(12), 4741–4750. https://doi.org/10.1021/je200735r
  • Carrasco-Gil, S., Álvarez-Fernández, A., Sobrino-Plata, J., Millán, R., Carpena-Ruiz, R. O., Leduc, D. L., Andrews, J. C., Abadía, J., Hernández, L. E., & Hernández, L. E. (2011). Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant, Cell & Environment, 34(5), 778–791. https://doi.org/10.1111/j.1365-3040.2011.02281.x
  • Carrasco-Gil, S., Siebner, H., LeDuc, D. L., Webb, S. M., Millán, R., Andrews, J. C., & Hernández, L. E. (2013). Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environmental Science & Technology, 47(7), 3082–3090. https://doi.org/10.1021/es303310t
  • Cavallini, A., Natali, L., Durante, M., & Maserti, B. (1999). Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Science of the Total Environment, 243–244(15), 119–127. https://doi.org/10.1016/S0048-9697(99)00367-8
  • Cesário, R., O’Driscoll, N. J., Justino, S., Wilson, C. E., Monteiro, C. E., Zilhão, H., & Canário, J. (2021). Air concentrations of gaseous elemental mercury and vegetation-air fluxes within saltmarshes of the Tagus Estuary. Atmosphere, 12(2), 228. https://doi.org/10.3390/atmos12020228
  • Chen, Y., Yin, Y., Shi, J., Liu, G., Hu, L., Liu, J., Cai, Y., & Jiang, G. (2017). Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury. Critical Reviews in Environmental Science and Technology, 47(24), 2415–2447. https://doi.org/10.1080/10643389.2018.1429764
  • Choi, H., Sharac, T. J., & Holsen, T. M. (2008). Mercury deposition in the Adirondacks: A comparison between precipitation and throughfall. Atmospheric Environment, 42(8), 1818–1827. https://doi.org/10.1016/j.atmosenv.2007.11.036
  • Cobbett, C. S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 123(3), 825–832. https://doi.org/10.1104/pp.123.3.825
  • Cobbett, C. S., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182. https://doi.org/10.1146/annurev.arplant.53.100301.135154
  • Converse, A. D., Riscassi, A. L., & Scanlon, T. M. (2010). Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow. Atmospheric Environment, 44(18), 2176–2185. https://doi.org/10.1016/j.atmosenv.2010.03.024
  • Demers, J. D., Blum, J. D., & Zak, D. R. (2013). Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles, 27(1), 222–238. https://doi.org/10.1002/gbc.20021
  • Demers, J. D., Driscoll, C. T., Fahey, T. J., & Yavitt, J. B. (2007). Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecological Applications, 17(5), 1341–1351. https://doi.org/10.1890/06-1697.1
  • Du, S., & Fang, S. C. (1982). Uptake of elemental mercury vapor by C3 and C4 species velocities. Environmental and Experimental Botany, 22(4), 437–443. https://doi.org/10.1016/0098-8472(82)90054-5
  • Du, S., & Fang, S. C. (1983). Catalase activity of C3 and C4 species and its relationship to mercury vapor uptake. Environmental and Experimental Botany, 23(4), 347–353. https://doi.org/10.1016/0098-8472(83)90009-6
  • Eccles, K. M., Littlewood, E. S., Thomas, P. J., & Chan, H. M. (2019). Distribution of organic and inorganic mercury across the pelts of Canadian river otter (Lontra canadensis). Scientific Reports, 9(1), 1–11.
  • Enescu, M., Nagy, K. L., & Manceau, A. (2016). Nucleation of mercury sulfide by dealkylation. Scientific Reports, 6, 39359.
  • Ericksen, J. A., Gustin, M. S., Schorran, D. E., Johnson, D. W., Lindberg, S. E., & Coleman, J. S. (2003). Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37(12), 1613–1622. https://doi.org/10.1016/S1352-2310(03)00008-6
  • Fay, L., & Gustin, M. S. (2007). Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water, Air, and Soil Pollution, 181(1–4), 373–384. https://doi.org/10.1007/s11270-006-9308-6
  • Fernández-Martínez, R., Larios, R., Gómez-Pinilla, I., Gómez-Mancebo, B., López-Andrés, S., Loredo, J., Ordóñez, A., & Rucandio, I. (2015). Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma, 253–254, 30–38. https://doi.org/10.1016/j.geoderma.2015.04.005
  • Filho, G. M. A., Andrade, L. R., Farina, M., & Malm, O. (2002). Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor. Atmospheric Environment, 36(5), 881–887. https://doi.org/10.1016/S1352-2310(01)00496-4
  • Foti, C., Giuffrè, O., Lando, G., & Sammartano, S. (2009). Interaction of inorganic mercury(II) with polyamines, polycarboxylates, and amino acids. Journal of Chemical & Engineering Data, 54(3), 893–903. https://doi.org/10.1021/je800685c
  • Frescholtz, T. F., Gustin, M. S., Schorran, D. E., & Fernandez, G. C. J. (2003). Assessing the source of mercury in foliar tissue of quaking aspen. Environmental Toxicology and Chemistry, 22(9), 2114–2119. https://doi.org/10.1002/etc.5620220922
  • Fu, X., Feng, X., Dong, Z., Yin, R., Wang, J., Yang, Z., & Zhang, H. (2010). Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics, 10(5), 2425–2437. https://doi.org/10.5194/acp-10-2425-2010
  • Fu, X., Zhang, H., Liu, C., Zhang, H., Lin, C.-J., & Feng, X. (2019). Significant seasonal variations in isotopic composition of atmospheric total gaseous mercury at forest sites in China caused by vegetation and mercury sources. Environmental Science & Technology, 53(23), 13748–13756. https://doi.org/10.1021/acs.est.9b05016
  • Fu, X., Zhu, W., Zhang, H., Sommar, J., Yu, B., Yang, X., Wang, X., Lin, C.-J., & Feng, X. (2016). Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmospheric Chemistry and Physics, 16(20), 12861–12873. https://doi.org/10.5194/acp-16-12861-2016
  • Fujii, H., Yoshimura, T., & Kamada, H. (1997). Imidazole and p-nitrophenolate complexes of oxoiron(IV) porphyrin π-cation radicals as models for compounds I of peroxidase and catalase. Inorganic Chemistry, 36(27), 6142–6143. https://doi.org/10.1021/ic970271j
  • Gaggi, C., Chemello, G., & Bacci, E. (1991). Mercury vapour accumulation in azalea leaves. Chemosphere, 22(9–10), 869–872. https://doi.org/10.1016/0045-6535(91)90244-8
  • Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W. M., Kelly, C. A., Hall, B. D., & Mowat, L. D. (2008). Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environmental Science & Technology, 42(22), 8345–8351. https://doi.org/10.1021/es801056j
  • Graydon, J. A., St. Louis, V. L., Lindberg, S. E., Hintelmann, H., & Krabbenhoft, D. P. (2006). Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber. Environmental Science & Technology, 40(15), 4680–4688. https://doi.org/10.1021/es0604616
  • Grigal, D. F. (2003). Mercury sequestration in forests and peatlands. Journal of Environment Quality, 32(2), 393–405. https://doi.org/10.2134/jeq2003.0393
  • Guentzel, J. L., Landing, W. M., Gill, G. A., & Pollman, C. D. (1998). Mercury and major ions in rainfall, throughfall, and foliage from the Florida Everglades. Science of the Total Environment, 213(1–3), 43–51. https://doi.org/10.1016/S0048-9697(98)00071-0
  • Guo, J., Xu, W., & Ma, M. (2012). The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. Journal of Hazardous Materials, 199–200, 309–313. https://doi.org/10.1016/j.jhazmat.2011.11.008
  • Gustin, M. S., Lindberg, S. E., & Weisberg, P. J. (2008). An update on the natural sources and sinks of atmospheric mercury. Applied Geochemistry, 23(3), 482–493. https://doi.org/10.1016/j.apgeochem.2007.12.010
  • Hall, B. D., & St. Louis, V. L. (2004). Methylmercury and total mercury in plant litter decomposing in upland forests and flooded landscapes. Environmental Science & Technology, 38(19), 5010–5021. https://doi.org/10.1021/es049800q
  • Hall, B. D., St. Louis, V. L., & Bodaly, R. A. D. (2004). The stimulation of methylmercury production by decomposition of flooded birch leaves and jack pine needles. Biogeochemistry, 68(1), 107–129. https://doi.org/10.1023/B:BIOG.0000025745.28447.8b
  • Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. G., & Kim, K.-H. (1995). Foliar exchange of mercury vapor: Evidence for a compensation point. Water, Air, & Soil Pollution, 80(1–4), 373–382. https://doi.org/10.1007/BF01189687
  • Heyes, A., Moore, T. R., & Rudd, J. W. M. (1998). Mercury and methylmercury in decomposing vegetation of a pristine and impounded wetland. Journal of Environmental Quality, 27(3), 591–599. https://doi.org/10.2134/jeq1998.00472425002700030017x
  • Hintelmann, H., Harris, R., Heyes, A., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., Lindberg, S., Rudd, J. W. M., Scott, K. J., & St. Louis, V. L. (2002). Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Environmental Science & Technology, 36(23), 5034–5040. https://doi.org/10.1021/es025572t
  • Holley, E. A., McQuillan, A. J., Craw, D., Kim, J. P., & Sander, S. G. (2007). Mercury mobilization by oxidative dissolution of cinnabar (α-HgS) and metacinnabar (β-HgS). Chemical Geology, 240(3–4), 313–325. https://doi.org/10.1016/j.chemgeo.2007.03.001
  • Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., & Slemr, F. (2010). Global atmospheric model for mercury including oxidation by bromine atoms. Atmospheric Chemistry and Physics, 10(24), 12037–12057. https://doi.org/10.5194/acp-10-12037-2010
  • Iverfeldt, Å. (1991). Mercury in forest canopy throughfall water and its relation to atmospheric deposition. Water Air & Soil Pollution, 56(1), 553–564. https://doi.org/10.1007/BF00342299
  • Jiskra, M., Sonke, J. E., Agnan, Y., Helmig, D., & Obrist, D. (2019). Insights from mercury stable isotopes on terrestrial-atmosphere exchange of Hg(0) in the Arctic tundra. Biogeosciences, 16(20), 4051–4064. https://doi.org/10.5194/bg-16-4051-2019
  • Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C. L., Pfaffhuber, K. A., Wängberg, I., Kyllönen, K., Worthy, D., Martin, L. G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., & Dommergue, A. (2018). A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nature Geoscience, 11(4), 244–250. https://doi.org/10.1038/s41561-018-0078-8
  • Kenmotsu, K. (1980). Metallic mercury uptake by catalase Part 1 in vitro metallic mercury uptake by various kind of animals’ erythrocytes and purified human erythrocyte catalase. Okayama Igakkai Zasshi (Journal of Okayama Medical Association), 92(9–10), 999–1005. https://doi.org/10.4044/joma1947.92.9-10_999
  • Kenmotsu, K. (1981). Metallic mercury uptake by catalase in vitro metallic mercury uptake by rat liver dissociated cells, homogenate, cell components, heme protein and ferric ion, with the effect of ethyl and methyl alcohol on the uptake. Okayama Igakkai Zasshi (Journal of Okayama Medical Association), 93(9–10), 835–843.
  • Khan, T. R., Obrist, D., Agnan, Y., Selin, N. E., & Perlinger, J. A. (2019). Atmosphere-terrestrial exchange of gaseous elemental mercury: Parameterization improvement through direct comparison with measured ecosystem fluxes. Environmental Science: Processes & Impacts, 21(10), 1699–1712.
  • Krupp, E. M., Mestrot, A., Wielgus, J., Meharg, A. A., & Feldmann, J. (2009). The molecular form of mercury in biota: Identification of novel mercury peptide complexes in plants. Chemical Communications, (28), 4257–4259. https://doi.org/10.1039/b823121d
  • Kwon, S. Y., Blum, J. D., Yin, R., Tsui, M. T.-K., Yang, Y. H., & Choi, J. W. (2020). Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury. Earth-Science Reviews, 203, 103111. https://doi.org/10.1016/j.earscirev.2020.103111
  • Laacouri, A., Nater, E. A., & Kolka, R. K. (2013). Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, U.S.A. Environmental Science & Technology, 47(18), 10462–10470. https://doi.org/10.1021/es401357z
  • Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., & Sarret, G. (2014). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. Journal of Hazardous Materials, 264, 98–106. https://doi.org/10.1016/j.jhazmat.2013.10.053
  • Leonard, T. L., Taylor, G. E., Gustin, M. S., & Fernandez, G. C. J. (1998). Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environmental Toxicology and Chemistry, 17(10), 2063–2071. https://doi.org/10.1002/etc.5620171024
  • Lin, C.-J., Pongprueksa, P., Lindberg, S. E., Pehkonen, S. O., Byun, D., & Jang, C. (2006). Scientific uncertainties in atmospheric mercury models I: Model science evaluation. Atmospheric Environment, 40(16), 2911–2928. https://doi.org/10.1016/j.atmosenv.2006.01.009
  • Lindberg, S. E., Hanson, P. J., Meyers, T. P., & Kim, K. H. (1998). Air/surface exchange of mercury vapor over forests-The need for a reassessment of continental biogenic emissions. Atmospheric Environment, 32(5), 895–908. https://doi.org/10.1016/S1352-2310(97)00173-8
  • Lindberg, S. E., Meyers, T. P., Taylor, G. E., Turner, R. R., & Schroeder, W. H. (1992). Atmosphere‐surface exchange of mercury in a forest: Results of modeling and gradient approaches. Journal of Geophysical Research, 97(D2), 2519–2528. https://doi.org/10.1029/91JD02831
  • Liu, J., Meng, B., Poulain, A. J., Meng, Q., & Feng, X. (2021). Stable isotope tracers identify sources and transformations of mercury in rice (Oryza sativa L.) growing in a mercury mining area. Fundamental Research, 1(3), 259–268. https://doi.org/10.1016/j.fmre.2021.04.003
  • Liu, J., Wang, J., Ning, Y., Yang, S., Wang, P., Shaheen, S. M., Feng, X., & Rinklebe, J. (2019). Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools. Environment International, 129, 461–469. https://doi.org/10.1016/j.envint.2019.04.068
  • Lodenius, M., Tulisalo, E., & Soltanpour-Gargari, A. (2003). Exchange of mercury between atmosphere and vegetation under contaminated conditions. The Science of the Total Environment, 304(1–3), 169–174. https://doi.org/10.1016/S0048-9697(02)00566-1
  • Lyman, S. N., Cheng, I., Gratz, L. E., Weiss-Penzias, P., & Zhang, L. (2020). An updated review of atmospheric mercury. The Science of the Total Environment, 707, 135575. https://doi.org/10.1016/j.scitotenv.2019.135575
  • Ma, M., Du, H., & Wang, D. (2019). A new perspective is required to understand the role of forest ecosystems in global mercury cycle: A Review. Bulletin of Environmental Contamination and Toxicology, 102(5), 650–656. https://doi.org/10.1007/s00128-019-02569-2
  • Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., Wang, Y., & Wei, S. (2016). Mercury dynamics and mass balance in a subtropical forest, southwestern China. Atmospheric Chemistry and Physics, 16(7), 4529–4537. https://doi.org/10.5194/acp-16-4529-2016
  • Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., & Wei, S. (2015). Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China. Environmental Science and Pollution Research International, 22(24), 20007–20018. https://doi.org/10.1007/s11356-015-5152-9
  • Magos, L., Halbach, S., & Clarkson, T. W. (1978). Role of catalase in the oxidation of mercury vapor. Biochemical Pharmacology, 27(9), 1373–1377. https://doi.org/10.1016/0006-2952(78)90122-3
  • Manceau, A., Lemouchi, C., Enescu, M., Gaillot, A., Lanson, M., Magnin, V., Glatzel, P., Poulin, B. A., Ryan, J. N., Aiken, G. R., Gautier-Luneau, I., & Nagy, K. L. (2015). Formation of mercury sulfide from Hg(II)-thiolate complexes in natural organic matter. Environmental Science & Technology, 49(16), 9787–9796. https://doi.org/10.1021/acs.est.5b02522
  • Manceau, A., Wang, J., Rovezzi, M., Glatzel, P., & Feng, X. (2018). Biogenesis of mercury-sulfur nanoparticles in plant leaves from atmospheric gaseous mercury. Environmental Science & Technology, 52(7), 3935–3948. https://doi.org/10.1021/acs.est.7b05452
  • Mao, Y., Li, Y., Richards, J., & Cai, Y. (2013). Investigating uptake and translocation of mercury species by sawgrass (Cladium jamaicense) using a stable isotope tracer technique. Environmental Science & Technology, 47(17), 9678–9684. https://doi.org/10.1021/es400546s
  • Meng, B., Feng, X., Qiu, G., Cai, Y., Wang, D., Li, P., Shang, L., & Sommar, J. (2010). Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. Journal of Agricultural and Food Chemistry, 58(8), 4951–4958. https://doi.org/10.1021/jf904557x
  • Meng, B., Li, Y., Cui, W., Jiang, P., Liu, G., Wang, Y., Richards, J., Feng, X., & Cai, Y. (2018). Tracing the uptake, transport, and fate of mercury in sawgrass (Cladium jamaicense) in the Florida Everglades using a multi-isotope technique. Environmental Science & Technology, 52(6), 3384–3391. https://doi.org/10.1021/acs.est.7b04150
  • Meng, M., Li, B., Shao, J. J., Wang, T., He, B., Shi, J. B., Ye, Z. H., & Jiang, G. B. (2014). Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China. Environmental Pollution (Barking, Essex: 1987), 184, 179–186. https://doi.org/10.1016/j.envpol.2013.08.030
  • Millhollen, A. G., Gustin, M. S., & Obrist, D. (2006). Foliar mercury accumulation and exchange for three tree species. Environmental Science & Technology, 40(19), 6001–6006. https://doi.org/10.1021/es0609194
  • Mowat, L. D., St. Louis, V. L., Graydon, J. A., & Lehnherr, I. (2011). Influence of forest canopies on the deposition of methylmercury to boreal ecosystem watersheds. Environmental Science & Technology, 45(12), 5178–5185. https://doi.org/10.1021/es104377y
  • Munthe, J., Hultberg, H., & Iverfeldt, Å. (1995). Mechanisms of deposition of methylmercury and mercury to coniferous forests. Water, Air, & Soil Pollution, 80(1–4), 363–371. https://doi.org/10.1007/BF01189686
  • Naharro, R., Esbrí, J. M., Amorós, J. Á., García-Navarro, F. J., & Higueras, P. L. (2019). Assessment of mercury uptake routes at the soil-plant-atmosphere interface. Geochemistry: Exploration, Environment, Analysis, 19(2), 146–154. https://doi.org/10.1144/geochem2018-019
  • Naharro, R., Esbrí, J. M., Amorós, J. A., & Higueras, P. L. (2020). Experimental assessment of the daily exchange of atmospheric mercury in Epipremnum aureum. Environmental Geochemistry and Health, 42(10), 3185–3198. https://doi.org/10.1007/s10653-020-00557-8
  • Natasha, Shahid, M., Khalid, S., Bibi, I., Bundschuh, J., Niazi, N. K., & Dumat, C. (2020). A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Science of the Total Environment, 711, 134749. https://doi.org/10.1016/j.scitotenv.2019.134749
  • Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber, J., Moore, C. W., Sonke, J. E., & Helmig, D. (2017). Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature, 547(7662), 201–204. https://doi.org/10.1038/nature22997
  • Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., & Selin, N. E. (2018). A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47(2), 116–140. https://doi.org/10.1007/s13280-017-1004-9
  • Obrist, D., Roy, E. M., Harrison, J. L., Kwong, C. F., Munger, J. W., Moosmüller, H., Romero, C. D., Sun, S., Zhou, J., & Commane, R. (2021). Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest. Proceedings of the National Academy of Sciences, 118(29), e2105477118. https://doi.org/10.1073/pnas.2105477118
  • Ogata, M., & Aikoh, H. (1983). The oxidation of metallic mercury by catalase in relation to acatalasemia. Industrial Health, 21(4), 219–230. https://doi.org/10.2486/indhealth.21.219
  • Ogata, M., Kenmotsu, K., Hirota, N., & Aikoh, H. (1982). Mercury oxidation in vitro by ferric compounds. Archives of Toxicology, 50(1), 93–95. https://doi.org/10.1007/BF00569242
  • Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S., & Heimbürger-Boavida, L. E. (2018). Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 52(20), 11466–11477. https://doi.org/10.1021/acs.est.8b01246
  • Park, J., Song, W., Ko, D., Eom, Y., Hansen, T. H., Schiller, M., Lee, T. G., Martinoia, E., & Lee, Y. (2012). The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. The Plant Journal: For Cell and Molecular Biology, 69(2), 278–288. https://doi.org/10.1111/j.1365-313X.2011.04789.x
  • Patty, C., Barnett, B., Mooney, B., Kahn, A., Levy, S., Liu, Y., Pianetta, P., & Andrews, J. C. (2009). Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina cordgrass. Environmental Science & Technology, 43(19), 7397–7402. https://doi.org/10.1021/es901076q
  • Poissant, L., Pilote, M., Yumvihoze, E., & Lean, D. (2008). Mercury concentrations and foliage/atmosphere fluxes in a maple forest ecosystem in Québec, Canada. Journal of Geophysical Research, 113(D10), D10307. https://doi.org/10.1029/2007JD009510
  • Pokharel, A. K., & Obrist, D. (2011). Fate of mercury in tree litter during decomposition. Biogeosciences, 8(9), 2507–2521. https://doi.org/10.5194/bg-8-2507-2011
  • Qin, C., Du, B., Yin, R., Meng, B., Fu, X., Li, P., Zhang, L., & Feng, X. (2020). Isotopic fractionation and source appointment of methylmercury and inorganic mercury in a paddy ecosystem. Environmental Science & Technology, 54(22), 14334–14342. https://doi.org/10.1021/acs.est.0c03341
  • Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2000). Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces. Environmental Science & Technology, 34(12), 2418–2425. https://doi.org/10.1021/es991305k
  • Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2001). Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall. Atmospheric Environment, 35(20), 3453–3462. https://doi.org/10.1016/S1352-2310(01)00133-9
  • Riederer, M., & Müller, C. (2013). Biology of the plant cuticle. Blackwell Publishing Ltd.
  • Rothenberg, S. E., Feng, X., Dong, B., Shang, L., Yin, R., & Yuan, X. (2011). Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies. Environmental Pollution, 159(5), 1283–1289. https://doi.org/10.1016/j.envpol.2011.01.027
  • Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J. E., Olson, M. R., Robinson, M., Collins, R. M., Parman, A. M., Katzman, T. L., & Mallek, J. L. (2011a). Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment. Atmospheric Environment, 45(4), 848–855. https://doi.org/10.1016/j.atmosenv.2010.11.025
  • Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J., Olson, M. R., Clary, A., Robinson, M., Parman, A. M., & Katzman, T. L. (2011b). Climate sensitivity of gaseous elemental mercury dry deposition to plants: Impacts of temperature, light intensity, and plant species. Environmental Science & Technology, 45(2), 569–575. https://doi.org/10.1021/es102687b
  • Satake, K., & Miyasaka, K. (1984). Evidence of high mercury accumulation in the cell wall of the liverwort Jungermannia vulcanicola Steph. to form particles of a mercury-sulphur compound. Journal of Bryology, 13(1), 101–105. https://doi.org/10.1179/jbr.1984.13.1.101
  • Siciliano, S. D., O'Driscoll, N. J., & Lean, D. R. S. (2002). Microbial reduction and oxidation of mercury in freshwater lakes. Environmental Science & Technology, 36(14), 3064–3068. https://doi.org/10.1021/es010774v
  • Siwik, E. I. H., Campbell, L. M., & Mierle, G. (2009). Fine-scale mercury trends in temperate deciduous tree leaves from Ontario, Canada. Science of the Total Environment, 407(24), 6275–6279. https://doi.org/10.1016/j.scitotenv.2009.08.044
  • Sizmur, T., McArthur, G., Risk, D., Tordon, R., & O'Driscoll, N. J. (2017). Gaseous mercury flux from salt marshes is mediated by solar radiation and temperature. Atmospheric Environment, 153, 117–125. https://doi.org/10.1016/j.atmosenv.2017.01.024
  • Smith, T., Pitts, K., McGarvey, J. A., & Summers, A. O. (1998). Bacterial oxidation of mercury metal vapor, Hg(0). Applied and Environmental Microbiology, 64(4), 1328–1332. https://doi.org/10.1128/AEM.64.4.1328-1332.1998
  • Sommar, J., Osterwalder, S., & Zhu, W. (2020). Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg0). The Science of the Total Environment, 721, 137648. https://doi.org/10.1016/j.scitotenv.2020.137648
  • St. Louis, V. L., Graydon, J. A., Lehnherr, I., Amos, H. M., Sunderland, E. M., St Pierre, K. A., Emmerton, C. A., Sandilands, K., Tate, M., Steffen, A., & Humphreys, E. R. (2019). Atmospheric concentrations and wet/dry loadings of mercury at the remote experimental lakes area, Northwestern Ontario, Canada. Environmental Science & Technology, 53(14), 8017–8026. https://doi.org/10.1021/acs.est.9b01338
  • St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Hall, B. D., Rolfhus, K. R., Scott, K. J., Lindberg, S. E., & Dong, W. (2001). Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environmental Science & Technology, 35(15), 3089–3098. https://doi.org/10.1021/es001924p
  • Stamenkovic, J., & Gustin, M. S. (2009). Nonstomatal versus stomatal uptake of atmospheric mercury. Environmental Science & Technology, 43(5), 1367–1372. https://doi.org/10.1021/es801583a
  • Strickman, R. J., & Mitchell, C. P. J. (2017). Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: An enriched isotope tracer study. The Science of the Total Environment, 574, 1415–1423. https://doi.org/10.1016/j.scitotenv.2016.08.068
  • Su, Y., & Liang, Y. (2015). Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum). Journal of Hazardous Materials, 291, 120–128. https://doi.org/10.1016/j.jhazmat.2015.03.001
  • Sun, G., Feng, X., Yin, R., Zhao, H., Zhang, L., Sommar, J., Li, Z., & Zhang, H. (2019a). Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment. Environment International, 131, 104971. https://doi.org/10.1016/j.envint.2019.104971
  • Sun, L., Ma, Y., Wang, H., Huang, W., Wang, X., Han, L., Sun, W., Han, E., & Wang, B. (2018). Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar. Biochemical and Biophysical Research Communications, 497(4), 997–1002. https://doi.org/10.1016/j.bbrc.2018.02.133
  • Sun, T., Ma, M., Wang, X., Wang, Y., Du, H., Xiang, Y., Xu, Q., Xie, Q., & Wang, D. (2019b). Mercury transport, transformation and mass balance on a perspective of hydrological processes in a subtropical forest of China. Environmental Pollution (Barking, Essex: 1987), 254(Pt B), 113065. https://doi.org/10.1016/j.envpol.2019.113065
  • Tabatchnick, M. D., Nogaro, G., & Hammerschmidt, C. R. (2012). Potential sources of methylmercury in tree foliage. Environmental Pollution (Barking, Essex: 1987), 160(1), 82–87. https://doi.org/10.1016/j.envpol.2011.09.013
  • Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed). Sunderland: Sinauer Associates Inc.
  • Tehrani, H. S., & Moosavi-Movahedi, A. A. (2018). Catalase and its mysteries. Progress in Biophysics and Molecular Biology, 140, 5–12. https://doi.org/10.1016/j.pbiomolbio.2018.03.001
  • Teixeira, D. C., Lacerda, L. D., & Silva-Filho, E. V. (2017). Mercury sequestration by rainforests: The influence of microclimate and different successional stages. Chemosphere, 168, 1186–1193. https://doi.org/10.1016/j.chemosphere.2016.10.081
  • Teixeira, D. C., Lacerda, L. D., & Silva-Filho, E. V. (2018). Foliar mercury content from tropical trees and its correlation with physiological parameters in situ. Environmental Pollution (Barking, Essex: 1987), 242(Pt B), 1050–1057. https://doi.org/10.1016/j.envpol.2018.07.120
  • UNEP. (2019). Global mercury assessment 2018 (P8). UNEP.
  • Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A., & Grebenko, A. I. (1981). Three-dimensional structure of the enzyme catalase. Nature, 293(5831), 411–412. https://doi.org/10.1038/293411a0
  • Vlasits, J., Jakopitsch, C., Bernroitner, M., Zamocky, M., Furtmüller, P. G., & Obinger, C. (2010). Mechanisms of catalase activity of heme peroxidases. Archives of Biochemistry and Biophysics, 500(1), 74–81. https://doi.org/10.1016/j.abb.2010.04.018
  • Wang, J., Feng, X., Anderson, C. W. N., Wang, H., Zheng, L., & Hu, T. (2012). Implications of mercury speciation in thiosulfate treated plants. Environmental Science & Technology, 46(10), 5361–5368. https://doi.org/10.1021/es204331a
  • Wang, X., Bao, Z., Lin, C.-J., Yuan, W., & Feng, X. (2016). Assessment of global mercury deposition through litterfall. Environmental Science & Technology, 50(16), 8548–8557. https://doi.org/10.1021/acs.est.5b06351
  • Wang, X., Luo, J., Yuan, W., Lin, C.-J., Wang, F., Liu, C., Wang, G., & Feng, X. (2020a). Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat. Proceedings of the National Academy of Sciences of the United States of America, 117(4), 2049–2055. https://doi.org/10.1073/pnas.1906930117
  • Wang, X., Yuan, W., Lin, C.-J., Luo, J., Wang, F., Feng, X., Fu, X., & Liu, C. (2020b). Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence. Environmental Science & Technology, 54(13), 8083–8093. https://doi.org/10.1021/acs.est.0c01667
  • Wang, Z., Sun, T., Driscoll, C. T., Yin, Y., & Zhang, X. (2018). Mechanism of accumulation of methylmercury in rice (Oryza sativa L.) in a mercury mining area. Environmental Science & Technology, 52(17), 9749–9757. https://doi.org/10.1021/acs.est.8b01783
  • Wigfield, D. C., & Tse, S. (1985). Kinetics and mechanism of the oxidation of mercury by peroxidase. Canadian Journal of Chemistry, 63(11), 2940–2944. https://doi.org/10.1139/v85-487
  • World Health Organization. (2010). Ten chemicals of major public health concern. International Programme on Chemical Safety. https://www.who.int/ipcs/assessment/public_health/chemicals_phc/en/.
  • Wright, L. P., Zhang, L., & Marsik, F. J. (2016). Overview of mercury dry deposition, litterfall, and throughfall studies. Atmospheric Chemistry and Physics, 16(21), 13399–13416. https://doi.org/10.5194/acp-16-13399-2016
  • Wu, Y., & Wang, W.-X. (2014). Intracellular speciation and transformation of inorganic mercury in marine phytoplankton. Aquatic Toxicology, 148, 122–129. https://doi.org/10.1016/j.aquatox.2014.01.005
  • Yin, R., Feng, X., & Meng, B. (2013). Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China. Environmental Science & Technology, 47(5), 2238–2245. https://doi.org/10.1021/es304302a
  • Yu, Q., Luo, Y., Xu, G., Wu, Q., Wang, S., Hao, J., & Duan, L. (2020). Subtropical forests act as mercury sinks but as net sources of gaseous elemental mercury in south China. Environmental Science & Technology, 54(5), 2772–2779. https://doi.org/10.1021/acs.est.9b06715
  • Yuan, W., Sommar, J., Lin, C.-J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu, Z., Wu, C., & Feng, X. (2019). Stable isotope evidence shows re-emission of elemental mercury vapor occurring after reductive loss from foliage. Environmental Science & Technology, 53(2), 651–660. https://doi.org/10.1021/acs.est.8b04865
  • Yuan, W., Wang, X., Lin, C. J., Wu, C., Zhang, L., Wang, B., Sommar, J., Lu, Z., & Feng, X. (2020). Stable mercury isotope transition during postdepositional decomposition of biomass in a forest ecosystem over five centuries. Environmental Science & Technology, 54(14), 8739–8749. https://doi.org/10.1021/acs.est.0c00950
  • Zhang, H., Holmes, C. D., & Wu, S. (2016). Impacts of changes in climate, land use and land cover on atmospheric mercury. Atmospheric Environment, 141, 230–244. https://doi.org/10.1016/j.atmosenv.2016.06.056
  • Zhang, L., Wright, L. P., & Blanchard, P. (2009). A review of current knowledge concerning dry deposition of atmospheric mercury. Atmospheric Environment, 43(37), 5853–5864. https://doi.org/10.1016/j.atmosenv.2009.08.019
  • Zhao, J., Li, Y., Li, Y., Gao, Y., Li, B., Hu, Y., Zhao, Y., & Chai, Z. (2014). Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics: Integrated Biometal Science, 6(10), 1951–1957. https://doi.org/10.1039/c4mt00170b
  • Zheng, W., & Hintelmann, H. (2010). Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds. The Journal of Physical Chemistry A, 114(12), 4246–4253. https://doi.org/10.1021/jp9111348
  • Zhou, J., Du, B., Shang, L., Wang, Z., Cui, H., Fan, X., & Zhou, J. (2020). Mercury fluxes, budgets, and pools in forest ecosystems of China: A review. Critical Reviews in Environmental Science and Technology, 50(14), 1411–1450. https://doi.org/10.1080/10643389.2019.1661176
  • Zhou, J., Obrist, D., Dastoor, A., Jiskra, M., & Ryjkov, A. (2021). Vegetation uptake of mercury and impacts on global cycling. Nature Reviews Earth & Environment, 2(4), 269–284. https://doi.org/10.1038/s43017-021-00146-y
  • Zhou, J., Wang, Z., & Zhang, X. (2018). Deposition and fate of mercury in litterfall, litter and soil in coniferous and broad-leaved forests. Journal of Geophysical Research: Biogeosciences, 123(8), 2590–2603. https://doi.org/10.1029/2018JG004415

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.