759
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Formulation and use of manufactured soils: A major use for organic and inorganic wastes

, &
Pages 4113-4133 | Published online: 18 Oct 2021

References

  • Adams, J. D. W., Zennaro, M., & Frostick, L. E. (2008). Composting of green waste-observations from windrow trials and bench-scale experiments. Environmental Technology, 29(11), 1149–1155.
  • Alberty, C. A., Pellet, H. M., & Taylor, D. H. (1984). Characterization of soil compaction at construction sites and woody plant response. Journal of Environmental Horticulture, 2(2), 48–53. https://doi.org/10.24266/0738-2898-2.2.48
  • Apitz, S. E. (2012). Conceptualizing the role of sediment in sustaining ecosystem services: Sediment-ecosystem regional assessment (SEcoRA). The Science of the Total Environment, 415, 9–30. https://doi.org/10.1016/j.scitotenv.2011.05.060
  • Babatunde, A. O., & Zhao, Y. Q. (2007). Constructive approaches towards water treatment works sludge management: And international review of beneficial re-uses. Critical Reviews in Environmental Science and Technology, 37(2), 129–164. https://doi.org/10.1080/10643380600776239
  • Baker, S. W. (2004). The effect of rootzone composition on the performance of relatively mature Agrostis capillaries, Festuca rubra and Poa annua golf green turf. Journal of Turfgrass Sports Surface Science, 80, 652–669.
  • Barrett, G. E., Alexander, P. D., Robinson, J. S., & Bragg, N. C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems - a review. Scientia Horticulturae, 212, 220–234. https://doi.org/10.1016/j.scienta.2016.09.030
  • Bartens, J., Wiseman, P. E., & Smiley, E. T. (2010). Stability of landscape trees in engineered and conventional urban soil mixes. Urban Forestry & Urban Greening, 9(4), 333–338. https://doi.org/10.1016/j.ufug.2010.06.005
  • Belda, R. M., Lidon, A., & Fornes, F. (2016). Boichars and hydrochars as substrate constituents for soiless growth of myrtle and mastic. Industrial Crops and Products, 94, 132–142. https://doi.org/10.1016/j.indcrop.2016.08.024
  • Belyaeva, O. N., & Haynes, R. J. (2009). Chemical, microbial and physical properties of manufactured soils produced by composting municipal green waste with coal fly ash. Bioresource Technology, 100(21), 5203–5209.
  • Belyaeva, O. N., & Haynes, R. J. (2010). A comparison of the properties of manufactured soils produced from composting municipal green waste alone or with poultry manure or grease trap/septage waste. Biology and Fertility of Soils, 46(3), 271–281. https://doi.org/10.1007/s00374-009-0423-6
  • Belyaeva, O. N., Haynes, R. J., & Sturm, E. C. (2012). Chemical, physical and microbial properties and microbial diversity in manufactured soils produced from co-composting green waste and biosolids. Waste Management (New York, NY), 32(12), 2248–2257. https://doi.org/10.1016/j.wasman.2012.05.034
  • BMI. (2021). PAS 100:2018. Specification for composted materials. https://shop.bsigroup.com
  • Bonaguro, J. E., Coletto, L., & Zanin, G. (2017). Environmental and agronomic performance of fresh rice hulls used as a growing medium component for Cyclamen persicum L. pot plants. Journal of Cleaner Production, 142, 2125–2132. https://doi.org/10.1016/j.jclepro.2016.11.071
  • Brinton, W. F. (2000). Compost quality standards and guidelines. Woods End Research Laboratory.
  • Brodie, H. L., Carr, L. E., Christiana, G. A., & Udinskey, J. R. (1996). Manufacture of artificial soil by composting coal fly ash and bottom ash with poultry manure. In M. de Bertoldi (Ed.), The science of composting (pp. 603–611). London.
  • Brown, R. W., Amacher, M. C., Muegggler, W. F., & Kotuby-Amacher, J. (2003). Reestablishing natural succession on acidic mine spoils at high elevation: Long-term ecological restoration. USDA Research Paper RMRS-RP-41. https://doi.org/10.2737/RMRS-RP-41
  • Bühler, O., Balder, H., & Kristoffersen, P. (2009). Establishment of urban trees. CAB Reviews, 4(59), 1–11.
  • Bühler, O., Ingerslev, M., Skov, S., Schou, E., Thomsen, I. M., Nielsen, C. N., & Kristoffersen, P. (2017). Tree development in a structural soil – an impirical below-ground in-situ study of urban trees in Copenhagen, Denmark. Plant and Soil, 413(1–2), 29–44. https://doi.org/10.1007/s11104-016-2814-4
  • Bunt, A. C. (1988). Media and mixes for container-grown plants. Unwin Hyman.
  • Bussell, W. T., & McKennie, S. (2004). Rockwool in horticulture, and its importance and sustainable use in New Zealand. New Zealand Journal of Crop and Horticultural Science, 32(1), 29–37. https://doi.org/10.1080/01140671.2004.9514277
  • Chrysargyris, A., Stavrinides, M., Moustakas, K., & Tzortzakis, N. (2019). Utilization of paper waste as a growing media for potted ornamental plants. Clean Technologies and Environmental Policy, 21(10), 1937–1948. https://doi.org/10.1007/s10098-018-1647-7
  • CLAIRE. (2008). The use of compost in the regeneration of Brownfield land. https://www.claire.co.uk/component/phocadownload/category/15-subr-im-bulletins
  • Clark, B. O., & Smith, S. R. (2011). Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environment International, 37(1), 226–247.
  • Cole, M. (1997). Compost: Right stuff to manufacture topsoil. BioCycle, 38, 61–63.
  • Collivignarelli, M. C., Canato, M., Abba, A., & Miino, M. C. (2019). Biosolids: What are the different types of reuse? Journal of Cleaner Production, 238, 117844. https://doi.org/10.1016/j.jclepro.2019.117844
  • Connelly, S., & Carpenter, A. (2011). Combining residuals to manufacture topsoils. BioCycle, 52(4), 24–27.
  • Curtis, A., & Pulis, M. (2001). Evolution of a sand-based root zone. Golf Course Management, 69, 53–56.
  • Darmody, R. G., Marlin, J. C., Talbott, J., Green, R. A., Brewer, E. F., & Stohr, C. (2004). Dredged Illinois river sediments: Plant growth and metal uptake. Journal of Environmental Quality, 33(2), 458–464.
  • Davis, W. B., Farnham, D. S., & Gowans, K. D. (1974). The sand football field. California Turfgrass Culture, 24(3), 17–20.
  • Day, S. D., & Bassuk, N. L. (1994). A review of the effects of soil compaction and amelioration treatments on landscape trees. Journal of Arboriculture, 20, 9–17.
  • De Boodt, M., & Verdonck, O. (1972). The physical properties of the substrates in horticulture. Acta Horticulturae, 26, 37–44.
  • De Boodt, M., Verdonck, O., & Cappaert, I. (1974). Method for measuring the water release curve of organic substrates. Acta Horticulturae, 37, 2054–2062.
  • De Koff, J. P., Lee, B. D., Dungan, R. S., & Santini, J. B. (2010). Effect of compost-, sand-, or gypsum-amended waste foundry sands on turfgrass yield and nutrient content. Journal of Environmental Quality, 39(1), 375–383. https://doi.org/10.2134/jeq2008.0330
  • Dede, O. H., Dede, G., Ozdemir, S., & Abad, M. (2011). Physicochemical characterization of hazelnut husk residues with different decomposition degrees for soilless growing media preparation. Journal of Plant Nutrition, 34(13), 1973–1984. https://doi.org/10.1080/01904167.2011.610484
  • Department of Primary Industries and Regional Development. (2020). Potting Mixes. https://www.agric.wa.gov.au/nursery-cutflowers/potting-mixes
  • DePew, M., & Guise, S. (2001). Engineered soils for sports field constructions. SportsTurf, 17, 32–35.
  • Di Carlo, E., Chen, C. R., Haynes, R. J., Phillips, I. R., & Courtney, R. (2019). Soil quality and vegetation performance indicators for sustainable rehabilitation of bauxite residue disposal areas: A review. Soil Research, 57(5), 419–446. https://doi.org/10.1071/SR18348
  • Edwards, J., Petavratzi, E., Robinson, L., & Toplis, C. (2020). Good Practice Guide: Using PAS 100 Compost in Landscape and Regeneration Projects. https://www.wrap.org.uk/sites/files/wrap/WRAP%20GPG%20compost%20DIGITAL%20final%20whole.pdf
  • Fair, B. A., Metzger, J. D., & Vent, J. (2012). Response of eight maple cultivars (Acer spp.) to soil compaction and effects of two rates of pre-plant nitrogen on tree establishment and above-ground growth. Aboriculture and Urban Forestry, 378, 64–74.
  • FAO. (2020). Good Greenhouse Practice for greenhouse crops – Principles for Mediterranean climate areas. http://www.fao.org/3/a-i3284e.pdf
  • Garg, A., & Tothill, I. E. (2009). A review of solid waste composting process – the UK perspective. Dynamic Soil, Dynamic Plant, 3(Special Issue 1), 57–63.
  • Geisler, J. (1996). Use of steelworks slag in Europe. Waste Management, 16, 59–63.
  • Grabosky, J., Bassuk, N., & Trowbridge, P. (1999). Structural soils: A new medium to allow urban trees to grow in pavement. Landscape architecture technical information series. American Socirty of Landscape Architects.
  • Grabosky, J., Bassuk, N., Irwin, L., & van Es, H. (2001). Shoot and root growth of three tree species in sidewalk profiles. Journal of Environmental Horticulture, 19(4), 206–211. https://doi.org/10.24266/0738-2898-19.4.206
  • Grafe, M., Power, G., & Klauber, C. (2011). Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy, 108(1–2), 60–79. https://doi.org/10.1016/j.hydromet.2011.02.004
  • Gruda, N. S. (2019). Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy, 9(6), 298. https://doi.org/10.3390/agronomy9060298
  • Guo, X.-X., Liu, H.-T., & Wu, S.-B. (2019). Humic substances developed during organic waste composting: Formation mechanisms, structural properties and agronomic functions. The Science of the Total Environment, 662, 501–510.
  • Güzel, B., Başar, H. M., Güneş, K., Yenisoy-Karakaş, S., & Tolun, L. (2019). Investigation of topsoil production from marine dredged materials (DMs) in Turkey for urban landscaping works. Heliyon, 5(7), e02138. https://doi.org/10.1016/j.heliyon.2019.e02138
  • Habeck, J., & Christians, N. (2000). Time alters greens’ key characteristics. Golf Course Management, 68, 1–4.
  • Haigh, M., Desai, M., Cullis, M., D’Aucourt, M., Sansom, B., Wilding, G., Alun, E., Garate, S., Hatton, L., Kilmartin, M., Panhuis, W., & Jenkins, R. (2019). Composted municipal green waste enhances tree success in opencast coal land reclamation in Wales. Air, Soil and Water Research, 12, 117862211987783. https://doi.org/10.1177/1178622119877837
  • Handreck, K. A. (1983). Particle size and the physical properties of growing media for containers. Communications in Soil Science and Plant Analysis, 14(3), 209–222. https://doi.org/10.1080/00103628309367357
  • Handreck, K. A. (2011). Container media: The Australian experience. Acta Horticulturae, 891(891), 287–295. https://doi.org/10.17660/ActaHortic.2011.891.35
  • Haraldsen, T. K., Brod, E., & Krogstad, T. (2014). Optimising the organic components of topsoil mixtures for urban grassland. Urban Forestry & Urban Greening, 13(4), 821–830. https://doi.org/10.1016/j.ufug.2014.05.004
  • Hartz, T. K., Costa, F. J., & Schrader, W. L. (1996). Suitability of composted green waste for horticultural uses. HortScience, 31(6), 961–964. https://doi.org/10.21273/HORTSCI.31.6.961
  • Hayes, M. H. B., & Swift, R. S. (2020). Vindication of humic substances as a key component of organic matter in soil and water. Advances in Agronomy, 163, 1–37.
  • Haynes, R. J. (2009). Reclamation and revegetation of fly ash disposal sites - Challenges and research needs. Journal of Environmental Management, 90(1), 43–53. https://doi.org/10.1016/j.jenvman.2008.07.003
  • Haynes, R. J. (2015). Use of industrial wastes as media in constructed wetlands and filter beds – prospects for removal of phosphate and metals from wastewater streams. Critical Reviews in Environmental Science and Technology, 45(10), 1041–1103. https://doi.org/10.1080/10643389.2014.924183
  • Haynes, R. J., Belyaeva, O. N., & Zhou, Y.-F. (2015). Particle size fractionation as a method for characterizing the nutrient content of municipal green waste for composting. Waste Management, 35, 48–54. https://doi.org/10.1016/j.wasman.2014.10.002
  • Haynes, R. J., Murtaza, G., & Naidu, R. (2009). Inorganic and organic constituents and contaminants of biosolids: Implications for land application. Advances in Agronomy, 104, 165–267.
  • Hoitink, H. A. J. (1980). Composted bark, a light weight growth medium with fungicidal properties. Plant Disease, 64, 142–147.
  • Huang, L., & Gu, M. (2019). Effects of biochar on container substrate properties and growth of plants – a review. Horticulturae, 5(1), 14. https://doi.org/10.3390/horticulturae5010014
  • Huang, L., Baumgartl, T., & Mulligan, D. (2012). Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Annals of Botany, 110(2), 223–238.
  • Huang, Z. T., & Petrovic, A. M. (1995). Physical properties of sand as affected by clinoptilonite zeolite particle size and quality. Journal of Turfgrass Management, 1, 1–15.
  • Jarrett, A. R., Hamlett, J. M., & Grosh, J. L. (1994). Infiltration and erodability of a fly ash/sludge manufactured soil. Transactions of the American Society of Agricultural Engineers, 37, 1457–1462.
  • Jones, D. L., Chesworth, S., Khalid, M., & Iqbal, Z. (2009). Assessing the addition of mineral processing waste to green waste-derived compost: An agronomic environmental and economic appraisal. Bioresource Technology, 100(2), 770–777.
  • Kowalewski, A., Stahnke, G., Cook, T., & Goss, R. (2015a). Best management practices for construction of sand-based natural grass athletic fields for football and soccer. University of Idaho Extension Publication PNW 675. https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw675.pdf
  • Kowalewski, A., Stahnke, T., Cook, T., & Goss, R. (2015b). Best management practices for m aintaining sand-based natural grass athletic fields. University of Idaho Extension Publication PNW 676. https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw676.pdf
  • Kristoffersen, P. (1999). Growing trees in road foundation materials. Arboricultural Journal, 23(1), 57–76. https://doi.org/10.1080/03071375.1999.9747228
  • Kumar, K., & Hundal, L. S. (2016). Soil in the city: Sustainably improving urban soils. Journal of Environmental Quality, 45(1), 2–8.
  • Lewis, J. D., Gaussoin, R. E., Shearman, R. C., Mamo, M., & Wortmann, C. S. (2010). Soil physical properties of aging golf putting greens. Crop Science, 50(5), 2084–2091. https://doi.org/10.2135/cropsci2009.11.0665
  • Li, D., Joo, Y. K., Christians, N. E., & Minner, D. D. (2000). Inorganic soil amendment effects on sand-based sports turf media. Crop Science, 40(4), 1121–1125. https://doi.org/10.2135/cropsci2000.4041121x
  • Logan, T. J., & Harrison, B. J. (1995). Physical characteristics of alkaline stabilized sewage sludge (N-viro) and their effects on soil physical properties. Journal of Environmental Quality, 24(1), 153–1643. https://doi.org/10.2134/jeq1995.00472425002400010022x
  • Lützow, M. v., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions - a review. European Journal of Soil Science, 57(4), 426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x
  • Magni, S., Volterrani, M., & Miele, S. (2004). Soccer pitches performances as affected by construction method, sand type and turfgrass mixture. Acta Horticulturae, 661, 281–285. https://doi.org/10.17660/ActaHortic.2004.661.35
  • Maher, M., Presad, M., & Raviv, M. (2007). Organic soilless media components. In M. Raviv & J. H. Lieth (Eds.), Soilless culture. Theory and practice (pp. 459–504). Elsevier.
  • Masaka, J., Chimwanda, N., Chagonda, I., & Chandiposha, M. (2016). A comparative evaluation of the physical and chemical characteristics of composted tea tree (Melaleuca alternifolia L.) with pine bark growing media in tobacco (Nicotiana tabacum L.) seedling production. Advances in Agriculture, 2016, 1–11. https://doi.org/10.1155/2016/5650290
  • Mattei, P., Pastorelli, R., Rami, G., Mocali, S., Giagnoni, L., Gonnelli, C., & Renella, G. (2017). Evaluation of dredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests, plant growth and microbial community structure. Journal of Hazardous Materials, 333, 144–153. https://doi.org/10.1016/j.jhazmat.2017.03.026
  • Mikutta, R. T., Kleber, M., Torn, M. S., & Jahn, R. (2006). Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry, 77(1), 25–56. https://doi.org/10.1007/s10533-005-0712-6
  • Mineral Solutions. (2021). Combination of basaltic quarry fines with organic process residues for development of novel growing media, Report No 086/MIST/GG/01 MIST. http://www.mineralsolutions.co.uk/casestud.php
  • Nason, M., Williamson, J., Tandy, S., Christou, M., Jones, D. M., & Healey, J. (2007). Using organic composts to remediate and restore land: Best practice manual. School of Environment and Natural Resources, Bangor University.
  • Noren, A., Fedje, K. K., Stromvall, A.-M., Rauch, S., & Andersson-Skold, Y. (2020). Integrated assessment of management strategies for metal-contaminated dredged sediments – what are the best approaches for ports, marinas and waterways? Science of the Total Environment, 716, 135510. https://doi.org/10.1016/j.scitotenv.2019.135510
  • O’Shea, T. (2020). Soils ain’t soils. https://centenarylandscaping.com.au/soils-4/soils-aint-soils/
  • Ok, C., Anderson, S. H., & Ervin, E. H. (2003). Amendments and construction systems for improving performance of sand-based putting greens. Agronomy Journal, 95(6), 1583–1590. https://doi.org/10.2134/agronj2003.1583
  • Olle, M., Ngouajio, M., & Siomos, A. (2012). Vegetable quality and productivity as influenced by growing medium: A review. Zemdirbyste-Agriculture, 99, 399–408.
  • Ow, L. F., & Ghosh, S. (2017). Growth of street trees in urban ecosystems: Structural cells and structural soil. Journal of Urban Ecology, 3(1), 1–7. https://doi.org/10.1093/jue/jux017
  • Ozcelik, E., & Peksen, A. (2007). Hazelnut husk as a substrate for the cultivation of shiitake mushroom (Lentinula edodes). Bioresource Technology, 98(14), 2652–2658. https://doi.org/10.1016/j.biortech.2006.09.020
  • Papadopoulos, A. P., Bar-Tal, A., Silber, A., Saha, U. K., & Raviv, M. (2008). Inorganic and synthetic organic components of soilless culture and potting mixes. In M. Raviv & J. H. Lieth (Eds.), Soillesss culture. Theory and practice (pp. 505–543). Elsevier.
  • Paz-Ferreiro, J., Nieto, A., Mendez, A., Askeland, M. P. J., & Gasco, G. (2018). Biochar from biosolids pyrolysis: A review. International Journal of Environmental Research and Public Health, 15(5), 956–972. https://doi.org/10.3390/ijerph15050956
  • Rakshith, S., & Singh, D. N. (2017). Utilization of dredged sediments: Contemporary issues. Journal of Waterway, Port, Coastal and Ocean Engineering, 143, 040160. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000376
  • Renforth, P., Manning, D. A. C., & Lopez-Capel, E. (2009). Carbonate precipitation in artificial soil as a sink for atmospheric carbon dioxide. Applied Geochemistry, 24(9), 1757–1764. https://doi.org/10.1016/j.apgeochem.2009.05.005
  • Reyes-Torres, M., Oviedo-Ocaña, E. R., Dominguez, I., Komilis, D., & Sánchez, A. (2018). A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management (New York, NY), 77, 486–499.
  • Shaheen, S. M., Hooda, P. S., & Tsadilas, C. D. (2014). Opportunities and challenges in the use of coal fly ash for soil improvements – a review. Journal of Environmental Management, 145, 249–267.
  • Sharma, B., Sarkar, A., Singh, P., & Singh, R. P. (2017). Agricultural utilization of biosolids: A review on potential effects on soil and plant growth. Waste Management (New York, NY), 64, 117–132.
  • Silveira, M. L. A., Alleoni, L. R. F., & Guilherme, L. R. G. (2003). Biosolids and heavy metals in soils. Scientia Agricola, 60(4), 793–806. https://doi.org/10.1590/S0103-90162003000400029
  • Slater, R. A., & Frederickson, J. (2001). Composting municipal waste in UK: Some lessons from Europe. Resources, Conservation and Recycling, 32(3–4), 359–374. https://doi.org/10.1016/S0921-3449(01)00071-4
  • Sloan, J. J., Ampim, P. A. Y., Basta, N. T., & Scott, R. (2012). Addressing the need for soil blends and amendments for highly modified urban environments. Soil Science Society of America Journal, 76(4), 1133–1141. https://doi.org/10.2136/sssaj2011.0224
  • Smith-Sebasto, N. J., Olsen, K., & Woubneh, W. (2012). Creating a manufactured topsoil from food-based compost and decontaminated river sediment. Bulletin of the New Jersey Academy of Science, 57, 13–21.
  • Sonneveld, C. (1991). Rockwool as a sustainable substrate for greenhouse crops. In Y. P. S. Bajaj, (Ed.), Biotechnology in agriculture and forestry 17. High-Tech and micropropagation I (pp. 285–312). Springer-Verlag.
  • Spargo, A., & Doley, D. J. (2016). Selective coal mine overburden treatment with topsoil and compost to optimise pasture and native vegetation establishment. Journal of Environmental Management, 182, 342–350.
  • Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions. John Wiley.
  • Stewart, B. R., Vanderford, J., Wells, D. W., & Philley, H. W. (2017). Growing sand-based sod using transported sand over native soil. ITSRJ, 13(1), 383–388. https://doi.org/10.2134/itsrj2016.10.0847
  • Takakaldimi, M. (2006). Kenaf (Hibiscus cannabinus L.) core and rice hulls as components of container media for growing Pinus Halepenis M. seedlings. Bioresource Technology, 97, 1631–1639.
  • Thoms, A. W., Brosnan, J. T., & Sorochan, J. C. (2016). Root zone construction affects hybrid bermudagrass (C. dactylon x C. transvaalensis) responses to simulated traffic. Procedia Engineering, 147, 824–829. https://doi.org/10.1016/j.proeng.2016.06.302
  • Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33(2), 141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
  • Transparency Market Research. (2020). Manufactured soil market-forecasts from 2018 to 2026. https://www.transparencymarketresearch.com/manufactured-soils-market.html
  • UMassAmherst. (2020). Effects of growing media on water and nutrient management. https://ag.umass.edu/greenhouse-floriculture/greenhouse-best-management-practices-bmp-manual/effects-of-growing-media-on
  • University of Arkansas. (2020). Growing media for container production in a greenhouse or nursery. Part 1 - Components and mixes. https://www.uaex.edu/publications/PDF/FSA-6097.pdf
  • Urrestarazu, M., Martinez, G. A., & del Carmen Salas, M. (2005). Almond shell waste. Possible local rockwool substitute in soilless crop culture. Scientia Horticulturae, 103(4), 453–460. https://doi.org/10.1016/j.scienta.2004.06.011
  • USDA. (2020). The soil foodweb. https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/biology/?cid=nrcs142p2_053868
  • USGA. (2004). USGA recommendations for a method of putting green construction. United States Golf Association, Far Hills.
  • Valverde, M., Madrid, R., García, A. L., Del Amor, F. M., & Rincón, L. F. (2013). Use of almond shell and almond hull as substrates for sweet pepper cultivation. Effects of fruit yield and mineral content. Spanish Journal of Agricultural Research, 11(1), 164–172. https://doi.org/10.5424/sjar/2013111-3566
  • Vaughn, S. F., Kenar, J. A., Thompson, A. R., & Peterson, S. C. (2013). Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Industrial Crops and Products, 51, 437–443. https://doi.org/10.1016/j.indcrop.2013.10.010
  • Vermeulen, J., Grotenhuis, T., Joziasse, J., & Rulkens, W. (2003). Ripening of clayey dredged sediments during temporary upland disposal. A bioremediation technique. Journal of Soils and Sediments, 3(1), 49–59. https://doi.org/10.1007/BF02989469
  • Weil, R. R., & Brady, N. C. (2017). Nature and properties of soils (15th ed.). Pearson Education.
  • White, R. A. J. (2020). Greenhouse vegetable information. Commercial use of soilless culture for tomatoes in New Zealand. http://www.ghvi.co.nz/soilless/media/mediaintro.html
  • WRAP. (2006). Uses of compost in regeneration and remediation of brownfield sites in UK. https://www.wrap.org.uk/sites/files/wrap/Brownfield_market_potential_summary090506.pdf
  • WRAP. (2020a). Soil manufacture and habitat creation. http://www.wrap.org.uk/sites/files/wrap/WRAP%20GPG%202%20Soil%20manufacture%20and%20habitat%20creation.pdf
  • WRAP. (2020b). Guidance on the use of BSI PAS 100 compost in topsoil manufacturing. http://www.wrap.org.uk/sites/files/wrap/TD%20soil%20manufacture%20Final.pdf
  • Zhang, L., & Sun, X. (2017). Using cow dung and spent coffee grounds to enhance the two-stage composting of green waste. Bioresource Technology, 233, 116–126. https://doi.org/10.1016/j.biortech.2017.02.073
  • Zhang, L., Sun, X., Tian, Y., & Gong, X. (2013). Composted green waste as a substitute for peat in growth media: Effects on growth and nutrition of Calathea insignis. PLOS One, 8(10), e78121. https://doi.org/10.1371/journal.pone.0078121
  • Zhou, Y.-F., & Haynes, R. J. (2010). Sorption of heavy metals by inorganic and organic components of solid wastes: Significance to use of wastes as low-cost adsorbents and immobilizing agents. Critical Reviews in Environmental Science and Technology, 40(11), 909–977. https://doi.org/10.1080/10643380802586857
  • Zulfiqar, F., Younis, A., & Chen, J. (2019). Biochar or biochar-compost amendment to a peat-based substrate improves growth of Syngonium podophyllum. Agronomy, 9(8), 460. https://doi.org/10.3390/agronomy908

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.