891
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Antibiotic resistance in wastewater, does the context matter? Poland and Portugal as a case study

ORCID Icon, , , , , , & show all
Pages 4194-4216 | Published online: 14 Nov 2021

References

  • Aarestrup, F. M., & Woolhouse, M. E. (2020). Using sewage for surveillance of antimicrobial resistance. Science (New York, N.Y.), 367(6478), 630–632. https://doi.org/10.1126/science.aba3432
  • ADP. (2018). Águas de Portugal: Alcântara WWTP “The Water Factory”. Retreived from http://www.danube-water-program.org/media/Events/2018/WB_REgulators_Study_Tour/201801012_-_Visita__Alcantara.pdf
  • Ahmed, W., Zhang, Q., Lobos, A., Senkbeil, J., Sadowsky, M. J., Harwood, V. J., Saeidi, N., Marinoni, O., & Ishii, S. (2018). Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Environment International, 116, 308–318. https://doi.org/10.1016/j.envint.2018.04.005
  • An, X.-L., Su, J.-Q., Li, B., Ouyang, W.-Y., Zhao, Y., Chen, Q.-L., Cui, L., Chen, H., Gillings, M. R., Zhang, T., & Zhu, Y.-G. (2018). Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environment International, 117, 146–153. https://doi.org/10.1016/j.envint.2018.05.011
  • Barbosa, A. E., Fernandes, J. N., & David, L. M. (2012). Key issues for sustainable urban stormwater management. Water Research, 46(20), 6787–6798. https://doi.org/10.1016/j.watres.2012.05.029
  • Bengtsson-Palme, J., & Larsson, D. G. (2016). Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140–149. https://doi.org/10.1016/j.envint.2015.10.015
  • Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Burgmann, H., Sorum, H., Norstrom, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: The environmental framework. Nature Reviews. Microbiology, 13(5), 310–317. https://doi.org/10.1038/nrmicro3439
  • Blanch, A. R., Caplin, J. L., Iversen, A., Kuhn, I., Manero, A., Taylor, H. D., & Vilanova, X. (2003). Comparison of enterococcal populations related to urban and hospital wastewater in various climatic and geographic European regions. Journal of Applied Microbiology, 94(6), 994–1002. https://doi.org/10.1046/j.1365-2672.2003.01919.x
  • Booth, A., Aga, D. S., & Wester, A. L. (2020). Retrospective analysis of the global antibiotic residues that exceed the predicted no effect concentration for antimicrobial resistance in various environmental matrices. Environment International, 141, 105796. https://doi.org/10.1016/j.envint.2020.105796
  • Caron, W. P., & Mousa, S. A. (2010). Prevention strategies for antimicrobial resistance: A systematic review of the literature. Infection and Drug Resistance, 3, 25–33.
  • Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., Colomb-Cotinat, M., Kretzschmar, M. E., Devleesschauwer, B., Cecchini, M., Ouakrim, D. A., Oliveira, T. C., Struelens, M. J., Suetens, C., Monnet, D. L., Strauss, R., Mertens, K., Struyf, T., Catry, B., … Hopkins, S. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. The Lancet Infectious Diseases, 19(1), 56–66. https://doi.org/10.1016/S1473-3099(18)30605-4
  • Collignon, P., & Beggs, J. J. (2019). Socioeconomic enablers for contagion: Factors impelling the antimicrobial resistance epidemic. Antibiotics, 8(3), 86. https://doi.org/10.3390/antibiotics8030086
  • Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S., & Laxminarayan, R. (2018). Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. The Lancet Planetary Health, 2(9), e398–e405. https://doi.org/10.1016/S2542-5196(18)30186-4
  • de Jesus Gaffney, V., Cardoso, V. V., Cardoso, E., Teixeira, A. P., Martins, J., Benoliel, M. J., & Almeida, C. M. M. (2017). Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant: Removal efficiency through conventional treatment processes. Environmental Science and Pollution Research, 24(17), 14717–14734. https://doi.org/10.1007/s11356-017-9012-7
  • Decision_2020/1161. (2020). Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council.
  • Di Cesare, A., Eckert, E. M., Rogora, M., & Corno, G. (2017). Rainfall increases the abundance of antibiotic resistance genes within a riverine microbial community. Environmental Pollution (Barking, Essex : 1987), 226, 473–478. https://doi.org/10.1016/j.envpol.2017.04.036
  • Dolejska, M., Frolkova, P., Florek, M., Jamborova, I., Purgertova, M., Kutilova, I., Cizek, A., Guenther, S., & Literak, I. (2011). CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. Journal of Antimicrobial Chemotherapy, 66(12), 2784–2790. https://doi.org/10.1093/jac/dkr363
  • ECDC. (2020). European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) – Annual Epidemiological Report 2019. Stockolm.
  • ECDC/EFSA/EMA. (2017). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food‐producing animals: Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. EFSA Journal, 15, e04872.
  • EEA. (2020a). Bathing water management in Europe: Successes and challenges.
  • EEA. (2020b). European bathing water quality in 2019.
  • EEA. (2021). Urban waste water treatment in Europe. Retreived from https://www.eea.europa.eu/
  • EMA. (2020). Sales of veterinary antimicrobial agents in 31 European countries in 2018. Trends from 2010 to 2018. Tenth ESVAC report.
  • Eramo, A., Delos Reyes, H., & Fahrenfeld, N. L. (2017). Partitioning of antibiotic resistance genes and fecal indicators varies intra and inter-storm during combined sewer overflows. Frontiers in Microbiology, 8, 2024. https://doi.org/10.3389/fmicb.2017.02024
  • ERSAR. (2021). Relatório Anual dos Serviços de Águas e Resíduos em Portugal (RASARP) – Caracterização do sector de águas e resíduos.
  • ESAC-Net. (2020). ESAC-Net, interactive database. Retreived from https://ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and-disease-data/database
  • EU. (2020). Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on minimum requirements for water reuse.
  • EuropeanComission. (2001). Council directive 91/271/EEC – Collective supply of water and collective waste disposal. Journal of Laws, 2001(72), 747.
  • EuropeanCommission. (2016). EU-level instruments on water reuse Final report to support the Commission’s Impact Assessment. Prepared by Amec Foster Wheeler Environment & Infrastructure UK Ltd, IEEP, ACTeon, IMDEA and NTUA.
  • EuropeanCommission. (2017). Report from the commission to the European Parliament, the council, the European Economic and Social Committee and the Committee of the regions. Brussels.
  • Eurostat. (2020). Population connected to urban wastewater collecting and treatment systems, by treatment level. Urban waste water collection and treatment in Europe, 2017.
  • Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, PMC.S14459. https://doi.org/10.4137/PMC.S14459
  • Fernandes, T., Vaz-Moreira, I., & Manaia, C. M. (2019). Neighbor urban wastewater treatment plants display distinct profiles of bacterial community and antibiotic resistance genes. Environmental Science and Pollution Research International, 26(11), 11269–11278. https://doi.org/10.1007/s11356-019-04546-y
  • Giebułtowicz, J., Nałęcz-Jawecki, G., Harnisz, M., Kucharski, D., Korzeniewska, E., & Płaza, G. (2020). Environmental risk and risk of resistance selection due to antimicrobials’ occurrence in two polish wastewater treatment plants and receiving surface water. Molecules, 25(6), 1470. https://doi.org/10.3390/molecules25061470
  • Grehs, B. W., Lopes, A. R., Moreira, N. F., Fernandes, T., Linton, M. A., Silva, A. M., Manaia, C. M., Carissimi, E., & Nunes, O. C. (2019). Removal of microorganisms and antibiotic resistance genes from treated urban wastewater: A comparison between aluminium sulphate and tannin coagulants. Water Research, 166, 115056. https://doi.org/10.1016/j.watres.2019.115056
  • Guo, M. T., Yuan, Q. B., & Yang, J. (2013). Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere, 93(11), 2864–2868. https://doi.org/10.1016/j.chemosphere.2013.08.068
  • Harnisz, M., Korzeniewska, E., & Gołaś, I. (2015). The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere, 128, 134–141. https://doi.org/10.1016/j.chemosphere.2015.01.035
  • Hendriksen, R. S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., Roder, T., Nieuwenhuijse, D., Pedersen, S. K., Kjeldgaard, J., Kaas, R. S., Clausen, P., Vogt, J. K., Leekitcharoenphon, P., van de Schans, M. G. M., Zuidema, T., de Roda Husman, A. M., Rasmussen, S., Petersen, B., … Aarestrup, F. M. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 10(1), 1124. https://doi.org/10.1038/s41467-019-08853-3
  • Hernando-Amado, S., Coque, T. M., Baquero, F., & Martinez, J. L. (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 4(9), 1432–1442. https://doi.org/10.1038/s41564-019-0503-9
  • Honda, R., Tachi, C., Yasuda, K., Hirata, T., Noguchi, M., Hara-Yamamura, H., Yamamoto-Ikemoto, R., & Watanabe, T. (2020). Estimated discharge of antibiotic-resistant bacteria from combined sewer overflows of urban sewage system. Npj Clean Water, 3(1), 15. https://doi.org/10.1038/s41545-020-0059-5
  • Hong, P.-Y., Julian, T. R., Pype, M.-L., Jiang, S. C., Nelson, K. L., Graham, D., Pruden, A., & Manaia, C. M. (2018). Reusing treated wastewater: Consideration of the safety aspects associated with antibiotic-resistant bacteria and antibiotic resistance genes. Water, 10(3), 244. https://doi.org/10.3390/w10030244
  • Hubeny, J., Harnisz, M., Korzeniewska, E., Buta, M., Zieliński, W., Rolbiecki, D., Giebułtowicz, J., Nałęcz-Jawecki, G., & Płaza, G. (2021). Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water. PLoS One, 16(6), e0252691. https://doi.org/10.1371/journal.pone.0252691
  • Keller, V. D., Williams, R. J., Lofthouse, C., & Johnson, A. C. (2014). Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environmental Toxicology and Chemistry, 33(2), 447–452. https://doi.org/10.1002/etc.2441
  • Klein, E. Y., Van Boeckel, T. P., Martinez, E. M., Pant, S., Gandra, S., Levin, S. A., Goossens, H., & Laxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences of the United States of America, 115(15), E3463–E3470. https://doi.org/10.1073/pnas.1717295115
  • Krzeminski, P., Tomei, M. C., Karaolia, P., Langenhoff, A., Almeida, C. M. R., Felis, E., Gritten, F., Andersen, H. R., Fernandes, T., Manaia, C. M., Rizzo, L., & Fatta-Kassinos, D. (2019). Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. The Science of the Total Environment, 648, 1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130
  • Langas, V., Garnaga-Budrė, G., Björklund, E., Svahn, O., Tränckner, J., Kaiser, A., & Luczkiewicz, A. (2019). Determination of the Regional Pharmaceutical Burden in 15 Selected WWTPs and Associated Water Bodies using Chemical Analysis, Status in four coastal regions of the South Baltic Sea; Germany, Sweden, Poland and Lithuania. Retreived from http://www.morpheus-project.eu/downloads/
  • Lange, J., Kozielski, J., Bartolik, K., Kabicz, P., & Targowski, T. (2020). Analysis of the incidence of acute respiratory diseases in the paediatric population in Poland in the light of the “Health Needs Map”. Advances in Respiratory Medicine, 88(3), 204–214. https://doi.org/10.5603/ARM.2020.0106
  • Lemitor. (2019). Ocena projektu rozporządzenia Parlamentu Europejskiego i Rady w sprawie minimalnych wymogów dotyczących ponownego wykorzystania wody. Wrocław.
  • Limayem, A., Wasson, S., Mehta, M., Pokhrel, A. R., Patil, S., Nguyen, M., Chen, J., & Nayak, B. (2019). High-throughput detection of bacterial community and its drug-resistance profiling from local reclaimed wastewater plants. Frontiers in Cellular and Infection Microbiology, 9, 303. https://doi.org/10.3389/fcimb.2019.00303
  • Lira, F., Vaz-Moreira, I., Tamames, J., Manaia, C. M., & Martínez, J. L. (2020). Metagenomic analysis of an urban resistome before and after wastewater treatment. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-65031-y
  • Llor, C., & Bjerrum, L. (2014). Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic Advances in Drug Safety, 5(6), 229–241. https://doi.org/10.1177/2042098614554919
  • Luczkiewicz, A., Felis, E., Ziembinska, A., Gnida, A., Kotlarska, E., Olanczuk-Neyman, K., & Surmacz-Gorska, J. (2013). Resistance of Escherichia coli and Enterococcus spp. to selected antimicrobial agents present in municipal wastewater. Journal of Water and Health, 11(4), 600–612. https://doi.org/10.2166/wh.2013.130
  • MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M., & Brownstein, J. S. (2018). Antibiotic resistance increases with local temperature. Nature Climate Change, 8(6), 510–514. https://doi.org/10.1038/s41558-018-0161-6
  • Makowska, N. (2019). Geny integraz i oporności na antybiotyki β-laktamowe i glikopeptydowe rezystomu ścieków miejskich Faculty of Biology: Adam Mickiewicz University in Pozna.
  • Makowska, N., Koczura, R., & Mokracka, J. (2016). Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Chemosphere, 144, 1665–1673. https://doi.org/10.1016/j.chemosphere.2015.10.044
  • Manaia, C. M., Macedo, G., Fatta-Kassinos, D., & Nunes, O. C. (2016). Antibiotic resistance in urban aquatic environments: Can it be controlled? Applied Microbiology and Biotechnology, 100(4), 1543–1557. https://doi.org/10.1007/s00253-015-7202-0
  • Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., Cerqueira, F., Fortunato, G., Iakovides, I. C., Zammit, I., Kampouris, I., Vaz-Moreira, I., & Nunes, O. C. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment International, 115, 312–324. https://doi.org/10.1016/j.envint.2018.03.044
  • Marano, R. B. M., Fernandes, T., Manaia, C. M., Nunes, O., Morrison, D., Berendonk, T. U., Kreuzinger, N., Tenson, T., Corno, G., Fatta-Kassinos, D., Merlin, C., Topp, E., Jurkevitch, E., Henn, L., Scott, A., Heß, S., Slipko, K., Laht, M., Kisand, V., … Cytryn, E. (2020). A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants. Environment International, 144, 106035. https://doi.org/10.1016/j.envint.2020.106035
  • Marcelino, R., Queiroz, M., Amorim, C., Leão, M., & Brites-Nóbrega, F. (2015). Solar energy for wastewater treatment: Review of international technologies and their applicability in Brazil. Environmental Science and Pollution Research International, 22(2), 762–773. https://doi.org/10.1007/s11356-014-3033-2
  • Marín, I., Goñi, P., Lasheras, A., & Ormad, M. (2015). Efficiency of a Spanish wastewater treatment plant for removal potentially pathogens: Characterization of bacteria and protozoa along water and sludge treatment lines. Ecological Engineering, 74, 28–32. https://doi.org/10.1016/j.ecoleng.2014.09.027
  • McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial resistance: A one health perspective. Microbiology Spectrum, 6(2). https://doi.org/10.1128/microbiolspec.ARBA-0009-2017
  • McGough, S. F., MacFadden, D. R., Hattab, M. W., Molbak, K., & Santillana, M. (2020). Rates of increase of antibiotic resistance and ambient temperature in Europe: A cross-national analysis of 28 countries between 2000 and 2016. Eurosurveillance, 25, 1900414.
  • Meng, L., Wang, J., Li, X., & Cui, F. (2020). Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. Ecotoxicology and Environmental Safety, 201, 110739. https://doi.org/10.1016/j.ecoenv.2020.110739
  • Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., Dagot, C., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995. https://doi.org/10.1016/j.watres.2012.11.027
  • Michałkiewicz, M., Jeż-Walkowiak, J., Dymaczewski, Z., & Sozański, M. M. (2011). Wastewater disinfection. Inżynieria Ekologiczna, 24, 38–51.
  • Mishra, S., Kneis, D., Berendonk, T. U., & Aubeneau, A. (2019). Optimum positioning of wastewater treatment plants in a river network: A model-based approach to minimize microbial pollution. The Science of the Total Environment, 691, 1310–1319. https://doi.org/10.1016/j.scitotenv.2019.07.035
  • MPWIK. (2021). Oczyszczalnia Ścieków „Czajka”. W: Miejskie Przedsiębiorstwo Wodociągów i Kanalizacji w m.st. Warszawie.
  • Narciso-da-Rocha, C., Rocha, J., Vaz-Moreira, I., Lira, F., Tamames, J., Henriques, I., Martinez, J. L., & Manaia, C. M. (2018). Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Environment International, 118, 179–188. https://doi.org/10.1016/j.envint.2018.05.040
  • Narciso-da-Rocha, C., Varela, A. R., Schwartz, T., Nunes, O. C., & Manaia, C. M. (2014). blaTEM and vanA as indicator genes of antibiotic resistance contamination in a hospital-urban wastewater treatment plant system. Journal of Global Antimicrobial Resistance, 2(4), 309–315. https://doi.org/10.1016/j.jgar.2014.10.001
  • Oakley, S. (2018). Preliminary treatment and primary settling. In J. B. R. a. B. Jiménez-Cisneros (Ed.), Global water pathogen project. UNESCO.
  • Osińska, A., Korzeniewska, E., Harnisz, M., Felis, E., Bajkacz, S., Jachimowicz, P., Niestępski, S., & Konopka, I. (2020). Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Journal of Hazardous Materials, 381, 121221. https://doi.org/10.1016/j.jhazmat.2019.121221
  • Pärnänen, K. M. M., Narciso-da-Rocha, C., Kneis, D., Berendonk, T. U., Cacace, D., Do, T. T., Elpers, C., Fatta-Kassinos, D., Henriques, I., Jaeger, T., Karkman, A., Martinez, J. L., Michael, S. G., Michael-Kordatou, I., O'Sullivan, K., Rodriguez-Mozaz, S., Schwartz, T., Sheng, H., Sorum, H., … Manaia, C. M. (2019). Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances, 5(3), eaau9124. https://doi.org/10.1126/sciadv.aau9124
  • Pena, A., Albert-Garcia, J. R., Silva, L. J., Lino, C. M., & Calatayud, J. M. (2010). Photo-induced fluorescence of magnesium derivatives of tetracycline antibiotics in wastewater samples. Journal of Hazardous Materials, 179(1-3), 409–414. https://doi.org/10.1016/j.jhazmat.2010.03.019
  • Pereira, A. M., Silva, L. J., Lino, C. M., Meisel, L. M., & Pena, A. (2016). Assessing environmental risk of pharmaceuticals in Portugal: An approach for the selection of the Portuguese monitoring stations in line with Directive 2013/39/EU. Chemosphere, 144, 2507–2515. https://doi.org/10.1016/j.chemosphere.2015.10.100
  • PolishLaw. (2005). On the amendment to the Act on collective water supply and collective sewage disposal and certain other acts. Journal of Laws, 85, 728–729 of 16 May 2005.
  • PolishLaw. (2017). Water Law. Art. 84. [Agricultural use of wastewater].
  • Quach-Cu, J., Herrera-Lynch, B., Marciniak, C., Adams, S., Simmerman, A., & Reinke, R. A. (2018). The effect of primary, secondary, and tertiary wastewater treatment processes on antibiotic resistance gene (ARG) concentrations in solid and dissolved wastewater fractions. Water, 10(1), 37. https://doi.org/10.3390/w10010037
  • Rebelo, A., Quadrado, M., Franco, A., Lacasta, N., & Machado, P. (2020). Water reuse in Portugal: New legislation trends to support the definition of water quality standards based on risk characterization. Water Cycle, 1, 41–53. https://doi.org/10.1016/j.watcyc.2020.05.006
  • Rizzo, L., Fiorentino, A., & Anselmo, A. (2012). Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream. Science of the Total Environment, 427-428, 263–268. https://doi.org/10.1016/j.scitotenv.2012.03.062
  • Rizzo, L., Gernjak, W., Krzeminski, P., Malato, S., McArdell, C. S., Perez, J. A. S., Schaar, H., & Fatta-Kassinos, D. (2020). Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. The Science of the Total Environment, 710, 136312. https://doi.org/10.1016/j.scitotenv.2019.136312
  • Rocha, J., Fernandes, T., Riquelme, M. V., Zhu, N., Pruden, A., & Manaia, C. M. (2019). Comparison of culture- and quantitative PCR-based indicators of antibiotic resistance in wastewater, recycled water, and tap water. International Journal of Environmental Research and Public Health, 16(21), 4217.
  • Rodriguez-Mozaz, S., Vaz-Moreira, I., Varela Della Giustina, S., Llorca, M., Barceló, D., Schubert, S., Berendonk, T. U., Michael-Kordatou, I., Fatta-Kassinos, D., Martinez, J. L., Elpers, C., Henriques, I., Jaeger, T., Schwartz, T., Paulshus, E., O'Sullivan, K., Pärnänen, K. M. M., Virta, M., Do, T. T., Walsh, F., & Manaia, C. M. (2020). Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environment International, 140, 105733. https://doi.org/10.1016/j.envint.2020.105733
  • Sadowy, E., & Luczkiewicz, A. (2014). Drug-resistant and hospital-associated Enterococcus faecium from wastewater, riverine estuary and anthropogenically impacted marine catchment basin. BMC Microbiology, 14, 66–15. https://doi.org/10.1186/1471-2180-14-66
  • Salgado, R., Noronha, J., Oehmen, A., Carvalho, G., & Reis, M. (2010). Analysis of 65 pharmaceuticals and personal care products in 5 wastewater treatment plants in Portugal using a simplified analytical methodology. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 62(12), 2862–2871. https://doi.org/10.2166/wst.2010.985
  • Savoldi, A., Carrara, E., & Tacconelli, E. (2020). Gross national income and antibiotic resistance in invasive isolates: Analysis of the top-ranked antibiotic-resistant bacteria on the 2017 WHO priority list-authors' response. The Journal of Antimicrobial Chemotherapy, 75(7), 2018–2018. https://doi.org/10.1093/jac/dkaa203
  • Sorinolu, A. J., Tyagi, N., Kumar, A., & Munir, M. (2020). Antibiotic resistance development and human health risks during wastewater reuse and biosolids application in agriculture. Chemosphere, 265, 129032.
  • Sterenczak, K. A., Barrantes, I., Stahnke, T., Stachs, O., Fuellen, G., & Undre, N. (2020). Co-infections: Testing macrolides for added benefit in patients with COVID-19. The Lancet, 1(8), e313. https://doi.org/10.1016/S2666-5247(20)30170-1
  • Szostkova, M., Vitez, T., Marecek, J., & Losak, T. (2012). Microbial contamination of screenings from wastewater treatment plants. Polish Journal of Environmental Studies, 21(6), 1943–1947.
  • Tavares, R. D., Tacão, M., Figueiredo, A. S., Duarte, A. S., Esposito, F., Lincopan, N., Manaia, C. M., & Henriques, I. (2020). Genotypic and phenotypic traits of blaCTX-M-carrying Escherichia coli strains from an UV-C-treated wastewater effluent. Water Research, 184, 116079. https://doi.org/10.1016/j.watres.2020.116079
  • Tran, D. H., Sugamata, R., Hirose, T., Suzuki, S., Noguchi, Y., Sugawara, A., Ito, F., Yamamoto, T., Kawachi, S., Akagawa, K. S., Ōmura, S., Sunazuka, T., Ito, N., Mimaki, M., & Suzuki, K. (2019). Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process. The Journal of Antibiotics, 72(10), 759–768. https://doi.org/10.1038/s41429-019-0204-x
  • UWWTD. (2016). Urban Wastewater Treatment Directive Structured Implementation and Information Framework 2016. Retreived from https://uwwtd.eu/Poland/stats
  • Varela, A. R., Andre, S., Nunes, O. C., & Manaia, C. M. (2014). Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system . Water Research, 54, 327–336. https://doi.org/10.1016/j.watres.2014.02.003
  • Varela, A. R., Macedo, G. N., Nunes, O. C., & Manaia, C. M. (2015). Genetic characterization of fluoroquinolone resistant Escherichia coli from urban streams and municipal and hospital effluents. FEMS Microbiology Ecology, 91(5), fiv015. https://doi.org/10.1093/femsec/fiv015
  • Varela, A. R., Nunes, O. C., & Manaia, C. M. (2016). Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater. The Science of the Total Environment, 542(Pt A), 665–671. https://doi.org/10.1016/j.scitotenv.2015.10.124
  • Vaz‐Moreira, I., Ferreira, C., Nunes, O. C., & Manaia, C. M. (2019). Sources of antibiotic resistance: Zoonotic, human, environment. Antibiotic Drug Resistance, 211–238.
  • Wang, J., Chu, L., Wojnárovits, L., & Takács, E. (2020). Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Science of the Total Environment, 744, 140997. https://doi.org/10.1016/j.scitotenv.2020.140997
  • Yuan, Q.-B., Guo, M.-T., Wei, W.-J., & Yang, J. (2016). Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. Environmental Science and Pollution Research International, 23(19), 19495–19503. https://doi.org/10.1007/s11356-016-7048-8
  • Zammit, I., Marano, R. B., Vaiano, V., Cytryn, E., & Rizzo, L. (2020). Changes in antibiotic resistance gene levels in soil after irrigation with treated wastewater: a comparison between heterogeneous photocatalysis and chlorination. Environmental Science & Technology, 54(12), 7677–7686. https://doi.org/10.1021/acs.est.0c01565
  • Zhang, T., & Li, B. (2011). Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Critical Reviews in Environmental Science and Technology, 41(11), 951–998. https://doi.org/10.1080/10643380903392692
  • Zieliński, W., Korzeniewska, E., Harnisz, M., Hubeny, J., Buta, M., & Rolbiecki, D. (2020). The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environment International, 143, 105914. https://doi.org/10.1016/j.envint.2020.105914
  • Zouboulis, A., & Tolkou, A. (2015). Effect of climate change in wastewater treatment plants: Reviewing the problems and solutions. In Managing water resources under climate uncertainty (pp. 197–220). Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.