931
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Genotoxicity of quinone: An insight on DNA adducts and its LC-MS-based detection

, , & ORCID Icon
Pages 4217-4240 | Published online: 11 Nov 2021

References

  • Alharbi, O. M. L., Basheer, A. A., Khattab, R. A., & Ali, I. (2018). Health and environmental effects of persistent organic pollutants. Journal of Molecular Liquids, 263, 442–453. https://doi.org/10.1016/j.molliq.2018.05.029
  • Anichina, J., Zhao, Y., Hrudey, S. E., Le, X. C., & Li, X. F. (2010). Electrospray ionization mass spectrometry characterization of interactions of newly identified water disinfection byproducts halobenzoquinones with oligodeoxynucleotides. Environmental Science & Technology, 44(24), 9557–9563.
  • Anichina, J., Zhao, Y., Hrudey, S. E., Schreiber, A., & Li, X. F. (2011). Electrospray ionization tandem mass spectrometry analysis of the reactivity of structurally related bromo-methyl-benzoquinones toward oligonucleotides. Analytical Chemistry, 83(21), 8145–8151.
  • Arif, J. M., Lehmler, H. J., Robertson, L. W., & Gupta, R. C. (2003). Interaction of benzoquinone-and hydroquinone-derivatives of lower chlorinated biphenyls with DNA and nucleotides in vitro. Chemico-Biological Interactions, 142(3), 307–316.
  • Balu, N., Padgett, W. T., Lambert, G. R., Swank, A. E., Richard, A. M., & Nesnow, S. (2004). Identification and characterization of novel stable deoxyguanosine and deoxyadenosine adducts of benzo [a] pyrene-7, 8-quinone from reactions at physiological pH. Chemical Research in Toxicology, 17(6), 827–838. https://doi.org/10.1021/tx034207s
  • Barnum, K. J., & O’Connell, M. J. (2015). Molecular mechanisms involved in initiation of the DNA damage response. Molecular & Cellular Oncology, 2(1), e970065. https://doi.org/10.4161/23723548.2014.970065
  • Barnwal, P., Vafa, A., Afzal, S. M., Shahid, A., Hasan, S. K., Alpashree., & Sultana, S. (2018). Benzo(a)pyrene induces lung toxicity and inflammation in mice: Prevention by carvacrol. Human & Experimental Toxicology, 37(7), 752–761.
  • Barradas-Gimate, A., Murillo-Tovar, M., Díaz-Torres, J., Hernández-Mena, L., Saldarriaga-Noreña, H., Delgado-Saborit, J., & López-López, A. (2017). Occurrence and potential sources of quinones associated with PM2.5 in Guadalajara. Atmosphere, 8(12), 140. https://doi.org/10.3390/atmos8080140
  • Bedi, M., von Goetz, N., & Ng, C. (2020). Estimating polybrominated diphenyl ether (PBDE) exposure through seafood consumption in Switzerland using international food trade data. Environment International, 138, 105652.
  • Boguszewska, K., Szewczuk, M., Urbaniak, S., & Karwowski, B. T. (2019). Review: Immunoassays in DNA damage and instability detection. Cellular and Molecular Life Sciences: CMLS, 76(23), 4689–4704.
  • Bolton, J. L., & Dunlap, T. (2017). Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chemical Research in Toxicology, 30(1), 13–37.
  • Bolton, J. L., & Thatcher, G. R. (2008). Potential mechanisms of estrogen quinone carcinogenesis. Chemical Research in Toxicology, 21(1), 93–101.
  • Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., & Monks, T. J. (2000). Role of quinones in toxicology. Chemical Research in Toxicology, 13(3), 135–160. https://doi.org/10.1021/tx9902082
  • Bosch-Panadero, E., Mas, S., Civantos, E., Abaigar, P., Camarero, V., Ruiz-Priego, A., Ortiz, A., Egido, J., & Gonzalez-Parra, E. (2018). Bisphenol A is an exogenous toxin that promotes mitochondrial injury and death in tubular cells. Environmental Toxicology, 33(3), 325–332.
  • Bull, R. J., Reckhow, D. A., Li, X., Humpage, A. R., Joll, C., & Hrudey, S. E. (2011). Potential carcinogenic hazards of non-regulated disinfection by-products: Haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. Toxicology, 286(1–3), 1–19. https://doi.org/10.1016/j.tox.2011.05.004
  • Cai, T., Bellamri, M., Ming, X., Koh, W. P., Yu, M. C., & Turesky, R. J. (2017). Quantification of hemoglobin and white blood cell DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl formed in humans by nanoflow liquid chromatography/ion trap multistage mass spectrometry. Chemical Research in Toxicology, 30(6), 1333–1343. https://doi.org/10.1021/acs.chemrestox.7b00072
  • Carratt, S. A., Hartog, M., Buchholz, B. A., Kuhn, E. A., Collette, N. M., Ding, X., & Van Winkle, L. S. (2019). Naphthalene genotoxicity: DNA adducts in primate and mouse airway explants. Toxicology Letters, 305, 103–109.
  • Cavalieri, E. L., & Rogan, E. G. (2016). Depurinating estrogen-DNA adducts, generators of cancer initiation: Their minimization leads to cancer prevention. Clinical and Translational Medicine, 5(1), 12.
  • Cavalieri, E. L., Rogan, E. G., & Zahid, M. (2017). Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson’s disease. International Journal of Cancer, 141(6), 1078–1090.
  • Chang, Y. J., Cooke, M. S., Hu, C. W., & Chao, M. R. (2018). Novel approach to integrated DNA adductomics for the assessment of in vitro and in vivo environmental exposures. Archives of Toxicology, 92(8), 2665–2680.
  • Chen, H. J., & Lee, C. R. (2014). Detection and simultaneous quantification of three smoking-related ethylthymidine adducts in human salivary DNA by liquid chromatography tandem mass spectrometry. Toxicology Letters, 224(1), 101–107. https://doi.org/10.1016/j.toxlet.2013.10.002
  • Chen, H. J., & Lin, W. P. (2011). Quantitative analysis of multiple exocyclic DNA adducts in human salivary DNA by stable isotope dilution nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry. Analytical Chemistry, 83(22), 8543–8551. https://doi.org/10.1021/ac201874d
  • Chilakala, S., Li, L., Feng, Y., & Xu, Y. (2018). Microwave-assisted enzymatic hydrolysis of DNA for mass spectrometric analysis: A new strategy for accelerated hydrolysis. Analytical Biochemistry, 546, 28–34.
  • Ciccimaro, E., & Blair, I. A. (2010). Stable-isotope dilution LC–MS for quantitative biomarker analysis. Bioanalysis, 2(2), 311–341.
  • Clarke, W. (2017). Mass spectrometry in the clinical laboratory: Determining the need and avoiding pitfalls. In Mass spectrometry for the clinical laboratory (pp. 1–15). Academic Press.
  • Cooke, M. S., Hu, C. W., Chang, Y. J., & Chao, M. R. (2018). Urinary DNA adductomics - A novel approach for exposomics. Environment International, 121(Pt 2), 1033–1038.
  • Crain, P. F. (1990). Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry. Methods in Enzymology, 193, 782–790.
  • Dai, J., Wright, M. W., & Manderville, R. A. (2003). Ochratoxin A forms a carbon-bonded C8-deoxyguanosine nucleoside adduct: Implications for C8 reactivity by a phenolic radical. Journal of the American Chemical Society, 125(13), 3716–3717.
  • Dementeva, N., Kokova, D., Ponamoreva, A., Cherdyntseva, N., & Kzhyshkowska, J. (2016, October). Application of UPLC-ESI-q-TOF analysis for screening of the carcinogen-modified DNA-adducts in the circulation DNA of patients with lung cancer. In AIP Conference Proceedings (Vol. 1772, No. 1, p. 050005). AIP Publishing LLC.
  • Dhakal, K., Gadupudi, G. S., Lehmler, H. J., Ludewig, G., Duffel, M. W., & Robertson, L. W. (2018). Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). Environmental Science and Pollution Research International, 25(17), 16277–16290.
  • Ding, S., Shapiro, R., Cai, Y., Geacintov, N. E., & Broyde, S. (2008). Conformational properties of equilenin-DNA adducts: Stereoisomer and base effects. Chemical Research in Toxicology, 21(5), 1064–1073.
  • Embrechts, J., Lemiere, F., Van Dongen, W., Esmans, E. L., Buytaert, P., Van Marck, E., Kockx, M., & Makar, A. (2003). Detection of estrogen DNA-adducts in human breast tumor tissue and healthy tissue by combined nano LC-nano ES tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 14(5), 482–491.
  • Fowler, P., Meurer, K., Honarvar, N., & Kirkland, D. (2018). A review of the genotoxic potential of 1,4-naphthoquinone. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 834, 6–17.
  • Gackowski, D., Starczak, M., Zarakowska, E., Modrzejewska, M., Szpila, A., Banaszkiewicz, Z., & Olinski, R. (2016). Accurate, direct, and high-throughput analyses of a broad spectrum of endogenously generated DNA base modifications with isotope-dilution two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry: Possible clinical implication. Analytical Chemistry, 88(24), 12128–12136. https://doi.org/10.1021/acs.analchem.6b02900
  • Gaikwad, N. W. (2013). Metabolomic profiling unravels DNA adducts in human breast that are formed from peroxidase mediated activation of estrogens to quinone methides. PLoS One, 8(6), e65826. https://doi.org/10.1371/journal.pone.0065826
  • Gonzalez-Arias, C. A., Marin, S., Rojas-Garcia, A. E., Sanchis, V., & Ramos, A. J. (2017). UPLC-MS/MS analysis of ochratoxin A metabolites produced by Caco-2 and HepG2 cells in a co-culture system. Food and Chemical Toxicology, 109(Pt 1), 333–340. https://doi.org/10.1016/j.fct.2017.09.011
  • Grimm, F. A., Klaren, W. D., Li, X., Lehmler, H. J., Karmakar, M., Robertson, L. W., Chiu, W. A., & Rusyn, I. (2020). Cardiovascular effects of polychlorinated biphenyls and their major metabolites. Environmental Health Perspectives, 128(7), 77008.
  • Guo, X., & Mayr, H. (2014). Quantification of the ambident electrophilicities of halogen-substituted quinones. Journal of the American Chemical Society, 136(32), 11499–11512.
  • Guo, J., Villalta, P. W., Weight, C. J., Bonala, R., Johnson, F., Rosenquist, T. A., & Turesky, R. J. (2018). Targeted and untargeted detection of DNA adducts of aromatic amine carcinogens in human bladder by ultra-performance liquid chromatography-high-resolution mass spectrometry. Chemical Research in Toxicology, 31(12), 1382–1397. https://doi.org/10.1021/acs.chemrestox.8b00268
  • Hu, K., Zhao, G., Liu, J., Jia, L., Xie, F., Zhang, S., Liu, H., & Liu, M. (2018). Simultaneous quantification of three alkylatedpurine adducts in human urine using sulfonic acid poly(glycidyl methacrylatedivinylbenzene)-based microspheres as sorbent combined with LC-MS/MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1081–1082, 15–24.
  • Huang, M., Blair, I. A., & Penning, T. M. (2013). Identification of stable benzo[a]pyrene-7,8-dione-DNA adducts in human lung cells. Chemical Research in Toxicology, 26(5), 685–692. https://doi.org/10.1021/tx300476m
  • Huang, L., Li, C., Lai, Y., Qiu, B., & Cai, Z. (2015). Interaction of 2-(2',4'-bromophenoxyl)-benzoquinone with deoxynucleosides and DNA in vitro. Chemosphere, 118, 29–34.
  • Jalal, N., Surendranath, A. R., Pathak, J. L., Yu, S., & Chung, C. Y. (2018). Bisphenol A (BPA) the mighty and the mutagenic. Toxicology Reports, 5, 76–84.
  • Jokipii Krueger, C. C., Madugundu, G., Degner, A., Patel, Y., Stram, D. O., Church, T. R., & Tretyakova, N. J. M. (2020). Urinary N7-(1-hydroxy-3-buten-2-yl) guanine adducts in humans: Temporal stability and association with smoking. Mutagenesis, 35(1), 19–26.
  • Klaene, J. J., Sharma, V. K., Glick, J., & Vouros, P. (2013). The analysis of DNA adducts: The transition from (32)P-postlabeling to mass spectrometry. Cancer Letters, 334(1), 10–19. https://doi.org/10.1016/j.canlet.2012.08.007
  • Kobets, T., Cartus, A. T., Fuhlbrueck, J. A., Brengel, A., Stegmuller, S., Duan, J. D., Brunnemann, K. D., & Williams, G. M. (2019). Assessment and characterization of DNA adducts produced by alkenylbenzenes in fetal turkey and chicken livers. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 129, 424–433.
  • Kolsek, K., Sollner Dolenc, M., & Mavri, J. (2013). Computational study of the reactivity of bisphenol A-3,4-quinone with deoxyadenosine and glutathione. Chemical Research in Toxicology, 26(1), 106–111.
  • Koszegi, T., & Poor, M. (2016). Ochratoxin A: Molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins (Basel), 8(4), 111.
  • Kumar, G., Tajpara, P., Bukhari, A. B., Ramchandani, A. G., De, A., & Maru, G. B. (2014). Dietary curcumin post-treatment enhances the disappearance of B(a)P-derived DNA adducts in mouse liver and lungs. Toxicology Reports, 1, 1181–1194.
  • Lai, Y., Lu, M., Gao, X., Wu, H., & Cai, Z. (2011). New evidence for toxicity of polybrominated diphenyl ethers: DNA adduct formation from quinone metabolites. Environmental Science & Technology, 45(24), 10720–10727. https://doi.org/10.1021/es203068f
  • Lai, Y., Lu, M., Lin, S., Wu, H., & Cai, Z. (2011). Electrospray ionization tandem mass spectrometric characterization of DNA adducts formed by bromobenzoquinones. Rapid Communications in Mass Spectrometry: RCM, 25(19), 2943–2950.
  • Lai, W., Lyu, C., & Wang, H. (2018). Vertical ultrafiltration-facilitated DNA digestion for rapid and sensitive UHPLC-MS/MS detection of DNA modifications. Analytical Chemistry, 90(11), 6859–6866.
  • Lai, W., Mo, J., Yin, J., Lyu, C., & Wang, H. (2019). Profiling of epigenetic DNA modifications by advanced liquid chromatography-mass spectrometry technologies. Trac Trends in Analytical Chemistry, 110, 173–182. https://doi.org/10.1016/j.trac.2018.10.031
  • Lamoureux, G., Perez, A. L., Araya, M., & Agüero, C. (2008). Reactivity and structure of derivatives of 2-hydroxy-1,4-naphthoquinone (lawsone). Journal of Physical Organic Chemistry, 21(12), 1022–1028. https://doi.org/10.1002/poc.1435
  • Lee, H. K., Kang, H., Lee, S., Kim, S., Choi, K., & Moon, H. B. (2020). Human exposure to legacy and emerging flame retardants in indoor dust: A multiple-exposure assessment of PBDEs. Science of the Total Environment, 719, 137386. https://doi.org/10.1016/j.scitotenv.2020.137386
  • Leung, E. M., Deng, K., Wong, T. Y., & Chan, W. (2016). Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases. Analytical and Bioanalytical Chemistry, 408(3), 953–961.
  • Li, C., Dong, L., Kamali, A., Sugimoto, H., Abdul-Hadi, K., Chen, S., Abu-Yousif, A., & Qian, M. G. (2019). An LC/MS based method to quantify DNA adduct in tumor and organ tissues. Analytical Biochemistry, 568, 1–6. https://doi.org/10.1016/j.ab.2018.12.014
  • Li, R., Kameda, T., Toriba, A., Hayakawa, K., & Lin, J. M. (2012). Determination of benzo[a]pyrene-7,10-quinone in airborne particulates by using a chemiluminescence reaction of hydrogen peroxide and hydrosulfite. Analytical Chemistry, 84(7), 3215–3221. https://doi.org/10.1021/ac2032063
  • Li, X., Liu, L., Wang, H., Chen, J., Zhu, B., Chen, H., Hou, H., & Hu, Q. (2017). Simultaneous analysis of six aldehyde-DNA adducts in salivary DNA of nonsmokers and smokers using stable isotope dilution liquid chromatography electrospray ionization-tandem mass spectrometry. Journal of Chromatography B, 1060, 451–459. https://doi.org/10.1016/j.jchromb.2017.06.031
  • Li, W., & Sancar, A. (2020). Methodologies for detecting environmentally induced DNA damage and repair. Environmental and Molecular Mutagenesis, 61(7), 664–679.
  • Li, M., Teesch, L. M., Murry, D. J., Pope, R. M., Li, Y., Robertson, L. W., & Ludewig, G. (2016). Cytochrome c adducts with PCB quinoid metabolites. Environmental Science and Pollution Research International, 23(3), 2148–2159.
  • Liu, Y., Luo, X., Zeng, Y., Tu, W., Deng, M., Wu, Y., & Mai, B. (2020). Species-specific biomagnification and habitat-dependent trophic transfer of halogenated organic pollutants in insect-dominated food webs from an e-waste recycling site. Environment International, 138, 105674. https://doi.org/10.1016/j.envint.2020.105674
  • Liu, J., Yang, B., Wang, Y., Wu, Y., Fan, B., Zhu, S., Song, E., & Song, Y. (2020). Polychlorinated biphenyl quinone promotes macrophage polarization to CD163(+) cells through Nrf2 signaling pathway. Environmental Pollution, 257, 113587. https://doi.org/10.1016/j.envpol.2019.113587
  • Li, J., Wang, W., Moe, B., Wang, H., & Li, X. F. (2015). Chemical and toxicological characterization of halobenzoquinones, an emerging class of disinfection byproducts. Chemical Research in Toxicology, 28(3), 306–318.
  • Li, S. Y., Zhang, X. Y., Zhang, X., Lan, Y., & Hua, Z. C. (2010). A convenient fluorescent-labeled assay for in vitro measurement of DNA mismatch repair activity. Biomedical and Environmental Sciences: BES, 23(6), 496–501.
  • Lu, K., Gul, H., Upton, P. B., Moeller, B. C., & Swenberg, J. A. (2012). Formation of hydroxymethyl DNA adducts in rats orally exposed to stable isotope labeled methanol. Toxicological Sciences: An Official Journal of the Society of Toxicology, 126(1), 28–38.
  • Ludewig, G., & Robertson, L. W. (2013). Polychlorinated biphenyls (PCBs) as initiating agents in hepatocellular carcinoma. Cancer Letters, 334(1), 46–55.
  • Madeo, J., Zubair, A., & Marianne, F. (2013). A review on the role of quinones in renal disorders. SpringerPlus, 2(1), 139. https://doi.org/10.1186/2193-1801-2-139
  • Malir, F., Ostry, V., Pfohl-Leszkowicz, A., Malir, J., & Toman, J. (2016). Ochratoxin A: 50 years of research. Toxins, 8(7), 191. https://doi.org/10.3390/toxins8070191
  • Manderville, R., & Pfohl-Leszkowicz, A. (2008). Bioactivation and DNA adduction as a rationale for ochratoxin A carcinogenesis. World Mycotoxin Journal, 1(3), 357–367. https://doi.org/10.3920/WMJ2008.x039
  • Manderville, R. A., & Wetmore, S. D. (2017). Mutagenicity of Ochratoxin A: Role for a carbon-linked C8-Deoxyguanosine adduct? Journal of Agricultural and Food Chemistry, 65(33), 7097–7105.
  • Mantle, P. G., Faucet-Marquis, V., Manderville, R. A., Squillaci, B., & Pfohl-Leszkowicz, A. (2010). Structures of covalent adducts between DNA and ochratoxin A: A new factor in debate about genotoxicity and human risk assessment. Chemical Research in Toxicology, 23(1), 89–98.
  • Marrubini, G., Fattorini, P., Previdere, C., Goi, S., Sorcaburu Cigliero, S., Grignani, P., Serra, M., Biesuz, R., & Massolini, G. (2012). Experimental design applied to the optimization of microwave-assisted DNA hydrolysis. Journal of Chromatography A, 1249, 8–16. https://doi.org/10.1016/j.chroma.2012.06.015
  • Matsui, T., Yamada, N., Kuno, H., & Kanaly, R. A. (2019). Formation of bulky DNA adducts by non-enzymatic production of 1,2-naphthoquinone-epoxide from 1,2-naphthoquinone under physiological conditions. Chemical Research in Toxicology, 32(9), 1760–1771.
  • McLean, M. R., Robertson, L. W., & Gupta, R. C. (1996). Detection of PCB adducts by the 32P-postlabeling technique. Chemical Research in Toxicology, 9(1), 165–171.
  • Monien, B. H., Schumacher, F., Herrmann, K., Glatt, H., Turesky, R. J., & Chesne, C. (2015). Simultaneous detection of multiple DNA adducts in human lung samples by isotope-dilution UPLC-MS/MS. Analytical Chemistry, 87(1), 641–648.
  • Motwani, H. V., Westberg, E., Lindh, C., Abramsson-Zetterberg, L., & Tornqvist, M. (2020). Serum albumin adducts, DNA adducts and micronuclei frequency measured in benzo[a]pyrene-exposed mice for estimation of genotoxic potency. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 849, 503127. https://doi.org/10.1016/j.mrgentox.2019.503127
  • Nguyen, T. N., Bertagnolli, A. D., Villalta, P. W., Bühlmann, P., & Sturla, S. J. (2005). Characterization of a deoxyguanosine adduct of tetrachlorobenzoquinone: Dichlorobenzoquinone-1, N2-etheno-2’-deoxyguanosine. Chemical Research in Toxicology, 18(11), 1770–1776.
  • Oakley, G. G., Robertson, L. W., & Gupta, R. C. (1996). Analysis of polychlorinated biphenyl-DNA adducts by 32P-postlabeling. Carcinogenesis, 17(1), 109–114.
  • Ohnishi, S., Hiraku, Y., Hasegawa, K., Hirakawa, K., Oikawa, S., Murata, M., & Kawanishi, S. (2018). Mechanism of oxidative DNA damage induced by metabolites of carcinogenic naphthalene. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 827, 42–49.
  • Oßwald, K., Mittas, A., Glei, M., & Pool-Zobel, B. L. (2003). New revival of an old biomarker: Characterisation of buccal cells and determination of genetic damage in the isolated fraction of viable leucocytes. Mutation Research/Reviews in Mutation Research, 544(2–3), 321–329. https://doi.org/10.1016/j.mrrev.2003.06.008
  • Park, J. H., Mangal, D., Tacka, K. A., Quinn, A. M., Harvey, R. G., Blair, I. A., & Penning, T. M. (2008). Evidence for the aldo-keto reductase pathway of polycyclic aromatic trans-dihydrodiol activation in human lung A549 cells. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6846–6851.
  • Penning, T. M. (2017). Genotoxicity of ortho-quinones: Reactive oxygen species versus covalent modification. Toxicology Research, 6(6), 740–754. https://doi.org/10.1039/C7TX00223H
  • Penning, T. M., Burczynski, M. E., Hung, C.-F., McCoull, K. D., Palackal, N. T., & Tsuruda, L. S. (1999). Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: Generation of reactive and redox active o-quinones. Chemical Research in Toxicology, 12(1), 1–18.
  • Pereg, D., Robertson, L. W., & Gupta, R. C. (2002). DNA adduction by polychlorinated biphenyls: Adducts derived from hepatic microsomal activation and from synthetic metabolites. Chemico-Biological Interactions, 139(2), 129–144.
  • Pfohl-Leszkowicz, A., & Manderville, R. A. (2007). Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Molecular Nutrition & Food Research, 51(1), 61–99. https://doi.org/10.1002/mnfr.200600137
  • Pruthi, S., Yang, L., Sandhu, N. P., Ingle, J. N., Beseler, C. L., Suman, V. J., Cavalieri, E. L., & Rogan, E. G. (2012). Evaluation of serum estrogen-DNA adducts as potential biomarkers for breast cancer risk. The Journal of Steroid Biochemistry and Molecular Biology, 132(1–2), 73–79. https://doi.org/10.1016/j.jsbmb.2012.02.002
  • Quinlivan, E. P., & Gregory, J. F. (2008). DNA digestion to deoxyribonucleoside: A simplified one-step procedure. Analytical Biochemistry, 373(2), 383–385.
  • Rajendran, M. (2016). Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagnosis and Photodynamic Therapy, 13, 175–187. https://doi.org/10.1016/j.pdpdt.2015.07.177
  • Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & Demarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 636(1–3), 178–242.
  • Saeed, M., Higginbotham, S., Rogan, E., & Cavalieri, E. (2007). Formation of depurinating N3adenine and N7guanine adducts after reaction of 1,2-naphthoquinone or enzyme-activated 1,2-dihydroxynaphthalene with DNA. Implications for the mechanism of tumor initiation by naphthalene. Chemico-Biological Interactions, 165(3), 175–188. https://doi.org/10.1016/j.cbi.2006.12.007
  • Sangaraju, D., Boldry, E. J., Patel, Y. M., Walker, V., Stepanov, I., Stram, D., Hatsukami, D., & Tretyakova, N. (2017). Isotope dilution nanoLC/ESI+-HRMS3 quantitation of urinary N7-(1-hydroxy-3-buten-2-yl) guanine adducts in humans and their use as biomarkers of exposure to 1, 3-butadiene. Chemical Research in Toxicology, 30(2), 678–688. https://doi.org/10.1021/acs.chemrestox.6b00407
  • Schmied-Tobies, M. I., Paschke, H., & Reemtsma, T. (2016). Combined chemoassay and mass spectrometric approach to study the reactive potential of electrophiles towards deoxynucleosides as model for DNA. Chemosphere, 151, 263–270. https://doi.org/10.1016/j.chemosphere.2016.02.052
  • Sharma, P., Manderville, R. A., & Wetmore, S. D. (2013). Modeling the conformational preference of the carbon-bonded covalent adduct formed upon exposure of 2'-deoxyguanosine to ochratoxin A. Chemical Research in Toxicology, 26(5), 803–816. https://doi.org/10.1021/tx4000864
  • Shi, Q., Wang, Y., Dong, W., Song, E., & Song, Y. (2019). Polychlorinated biphenyl quinone-induced signaling transition from autophagy to apoptosis is regulated by HMGB1 and p53 in human hepatoma HepG2 cells. Toxicology Letters, 306, 25–34. https://doi.org/10.1016/j.toxlet.2019.02.002
  • Song, Y., Wagner, B. A., Lehmler, H.-J., & Buettner, G. R. (2008). Semiquinone radicals from oxygenated polychlorinated biphenyls: Electron paramagnetic resonance studies. Chemical Research in Toxicology, 21(7), 1359–1367.
  • Song, Y., Wagner, B. A., Witmer, J. R., Lehmler, H.-J., & Buettner, G. R. (2009). Nonenzymatic displacement of chlorine and formation of free radicals upon the reaction of glutathione with PCB quinones. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9725–9730.
  • Stack, D. E. (2015). Identifying the tautomeric form of a deoxyguanosine-estrogen quinone intermediate. Metabolites, 5(3), 475–488. https://doi.org/10.3390/metabo5030475
  • Stack, D. E., & Mahmud, B. (2018). Efficient access to bisphenol A metabolites: Synthesis of monocatechol, mono-o-quinone, dicatechol, and di-o-quinone of bisphenol A. Synthetic Communications, 48(2), 161–167. https://doi.org/10.1080/00397911.2017.1390586
  • Tang, Y., Wang, Z., Li, M., Zhang, R., & Zhang, J. (2019). Simultaneous quantitation of 14 DNA alkylation adducts in human liver and kidney cells by UHPLC-MS/MS: Application to profiling DNA adducts of genotoxic reagents. Journal of Pharmaceutical and Biomedical Analysis, 166, 387–397.
  • Tang, Y., & Zhang, J. L. (2020). Recent developments in DNA adduct analysis using liquid chromatography coupled with mass spectrometry. Journal of Separation Science, 43(1), 31–55.
  • Topinka, J., Rossner, P., Jr., Milcova, A., Schmuczerova, J., Svecova, V., & Sram, R. J. (2011). DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay. Toxicology Letters, 202(3), 186–192. https://doi.org/10.1016/j.toxlet.2011.02.005
  • Tozlovanu, M., Faucet-Marquis, V., Pfohl-Leszkowicz, A., & Manderville, R. A. (2006). Genotoxicity of the hydroquinone metabolite of ochratoxin A: Structure-activity relationships for covalent DNA adduction. Chemical Research in Toxicology, 19(9), 1241–1247. https://doi.org/10.1021/tx060138g
  • Tretyakova, N., Goggin, M., Sangaraju, D., & Janis, G. (2012). Quantitation of DNA adducts by stable isotope dilution mass spectrometry. Chemical Research in Toxicology, 25(10), 2007–2035. https://doi.org/10.1021/tx3002548
  • Vaidyanathan, V. G., Villalta, P. W., & Sturla, S. J. (2007). Nucleobase-dependent reactivity of a quinone metabolite of pentachlorophenol. Chemical Research in Toxicology, 20(6), 913–919.
  • Villalta, P. W., Hochalter, J. B., & Hecht, S. S. (2017). Ultrasensitive high-resolution mass spectrometric analysis of a DNA adduct of the carcinogen benzo[a]pyrene in human lung. Analytical Chemistry, 89(23), 12735–12742. https://doi.org/10.1021/acs.analchem.7b02856
  • Wang, W., Moe, B., Li, J., Qian, Y., Zheng, Q., & Li, X. F. (2016). Analytical characterization, occurrence, transformation, and removal of the emerging disinfection byproducts halobenzoquinones in water. TrAC Trends in Analytical Chemistry, 85, 97–110.
  • Wang, W., Qian, Y., Boyd, J. M., Wu, M., Hrudey, S. E., & Li, X. F. (2013). Halobenzoquinones in swimming pool waters and their formation from personal care products. Environmental Science & Technology, 47(7), 3275–3282. https://doi.org/10.1021/es304938x
  • Wang, Y., Wang, Y., Liu, Z., Dong, W., Yang, B., Xia, X., Song, E., & Song, Y. (2018). Polychlorinated biphenyl quinones promotes breast cancer metastasis through reactive oxygen species-mediated nuclear factor kappaB-matrix metalloproteinase signaling. Chemical Research in Toxicology, 31(9), 954–963.
  • Wang, P., Zhang, Y., Chen, J., Guo, L., Xu, B., Wang, L., Xu, H., & Xie, J. (2015). Analysis of different fates of DNA adducts in adipocytes post-sulfur mustard exposure in vitro and in vivo using a simultaneous UPLC-MS/MS quantification method. Chemical Research in Toxicology, 28(6), 1224–1233.
  • Wellington, K. W. (2015). Understanding cancer and the anticancer activities of naphthoquinones- A review. RSC Advances, 5(26), 20309–20338. https://doi.org/10.1039/C4RA13547D
  • Wu, Q., Fang, J., Li, S., Wei, J., Yang, Z., Zhao, H., Zhao, C., & Cai, Z. (2017). Interaction of bisphenol A 3,4-quinone metabolite with glutathione and ribonucleosides/deoxyribonucleosides in vitro. Journal of Hazardous Materials, 323(Pt A), 195–202.
  • Wu, Q., Zhao, H., Chen, X., & Cai, Z. (2019). Interaction of bisphenol A 3, 4-quinone metabolite with human hemoglobin, human serum albumin and cytochrome c in vitro. Chemosphere, 220, 930–936.
  • Xiao, S., Guo, J., Yun, B. H., Villalta, P. W., Krishna, S., Tejpaul, R., Murugan, P., Weight, C. J., & Turesky, R. J. (2016). Biomonitoring DNA adducts of cooked meat carcinogens in human prostate by nano liquid chromatography-high resolution tandem mass spectrometry: Identification of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine DNA adduct. Analytical Chemistry, 88(24), 12508–12515. https://doi.org/10.1021/acs.analchem.6b04157
  • Xu, D., Penning, T. M., Blair, I. A., & Harvey, R. G. (2009). Synthesis of phenol and quinone metabolites of benzo[a]pyrene, a carcinogenic component of tobacco smoke implicated in lung cancer. The Journal of Organic Chemistry, 74(2), 597–604. https://doi.org/10.1021/jo801864m
  • Yang, B., Wang, Y., Qin, Q., Xia, X., Liu, Z., Song, E., & Song, Y. (2019). Polychlorinated biphenyl quinone promotes macrophage-derived foam cell formation. Chemical Research in Toxicology, 32(12), 2422–2432.
  • Yao, C., Foster, W. G., Sadeu, J. C., Siddique, S., Zhu, J., & Feng, Y. L. (2017). Screening for DNA adducts in ovarian follicles exposed to benzo[a]pyrene and cigarette smoke condensate using liquid chromatography-tandem mass spectrometry. Science of the Total Environment, 575, 742–749. https://doi.org/10.1016/j.scitotenv.2016.09.122
  • Yin, J., Chen, S., Zhang, N., & Wang, H. (2018). Multienzyme cascade bioreactor for a 10 min digestion of genomic DNA into single nucleosides and quantitative detection of structural DNA modifications in cellular genomic DNA. ACS Applied Materials & Interfaces, 10(26), 21883–21890.
  • Yin, R., Mao, S. Q., Zhao, B., Chong, Z., Yang, Y., Zhao, C., Zhang, D., Huang, H., Gao, J., Li, Z., Jiao, Y., Li, C., Liu, S., Wu, D., Gu, W., Yang, Y. G., Xu, G. L., & Wang, H. (2013). Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. Journal of the American Chemical Society, 135(28), 10396–10403.
  • Yin, J., Wang, Z., Song, M., Zhao, C., & Wang, H. (2013). Plastic antibody for DNA damage: Fluorescent imaging of BPDE–dG adducts in genomic DNA. The Analyst, 138(17), 4958–4966.
  • Yin, J., Zhang, N., & Wang, H. (2019). Liquid chromatography-mass spectrometry for analysis of DNA damages induced by environmental exposure. Trac Trends in Analytical Chemistry, 120, 115645. https://doi.org/10.1016/j.trac.2019.115645
  • Yun, B. H., Rosenquist, T. A., Nikolic, J., Dragicevic, D., Tomic, K., Jelakovic, B., Dickman, K. G., Grollman, A. P., & Turesky, R. J. (2013). Human formalin-fixed paraffin-embedded tissues: An untapped specimen for biomonitoring of carcinogen DNA adducts by mass spectrometry. Analytical Chemistry, 85(9), 4251–4258.
  • Yun, B. H., Sidorenko, V. S., Rosenquist, T. A., Dickman, K. G., Grollman, A. P., & Turesky, R. J. (2015). New approaches for biomonitoring exposure to the human carcinogen aristolochic acid. Toxicology Research, 4(4), 763–776.
  • Yun, B. H., Xiao, S., Yao, L., Krishnamachari, S., Rosenquist, T. A., Dickman, K. G., Grollman, A. P., Murugan, P., Weight, C. J., & Turesky, R. J. (2017). A rapid throughput method to extract DNA from formalin-fixed paraffin-embedded tissues for biomonitoring carcinogenic DNA adducts. Chemical Research in Toxicology, 30(12), 2130–2139.
  • Zahid, M., Kohli, E., Saeed, M., Rogan, E., & Cavalieri, E. (2006). The greater reactivity of estradiol-3,4-quinone vs estradiol-2,3-quinone with DNA in the formation of depurinating adducts: Implications for tumor-initiating activity. Chemical Research in Toxicology, 19(1), 164–172. https://doi.org/10.1021/tx050229y
  • Zhang, F., Bartels, M. J., LeBaron, M. J., Schisler, M. R., Jeong, Y. C., Gollapudi, B. B., & Moore, N. P. (2015). LC-MS/MS simultaneous quantitation of 2-hydroxyethylated, oxidative, and unmodified DNA nucleosides in DNA isolated from tissues of mice after exposure to ethylene oxide. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 976–977, 33–48. https://doi.org/10.1016/j.jchromb.2014.10.042
  • Zhang, S. M., Chen, K. M., Sun, Y. W., Aliaga, C., Lin, J. M., Sharma, A. K., Amin, S., & El-Bayoumy, K. (2014). Simultaneous detection of deoxyadenosine and deoxyguanosine adducts in the tongue and other oral tissues of mice treated with Dibenzo[a,l]pyrene. Chemical Research in Toxicology, 27(7), 1199–1206. https://doi.org/10.1021/tx5001078
  • Zhao, S., Narang, A., Ding, X., & Eadon, G. (2004). Characterization and quantitative analysis of DNA adducts formed from lower chlorinated PCB-derived quinones. Chemical Research in Toxicology, 17(4), 502–511.
  • Zhao, H., Wei, J., Xiang, L., & Cai, Z. (2018). Mass spectrometry investigation of DNA adduct formation from bisphenol A quinone metabolite and MCF-7 cell DNA. Talanta, 182, 583–589.
  • Zhou, H., Yuen, P. S., Pisitkun, T., Gonzales, P. A., Yasuda, H., Dear, J. W., Gross, P., Knepper, M. A., & Star, R. A. (2006). Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney International, 69(8), 1471–1476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.