2,115
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Interaction of micro(nano)plastics with extracellular and intracellular biomolecules in the freshwater environment

ORCID Icon & ORCID Icon
Pages 4241-4265 | Published online: 11 Nov 2021

References

  • Amaral-Zettler, L. A., Zettler, E. R., & Mincer, T. J. (2020). Ecology of the plastisphere. Nature Reviews Microbiology, 18(3), 139–151. https://doi.org/10.1038/s41579-019-0308-0
  • Anderson, P. J., Warrack, S., Langen, V., Challis, J. K., Hanson, M. L., & Rennie, M. D. (2017). Microplastic contamination in Lake Winnipeg, Canada. Environmental Pollution (Barking, Essex: 1987), 225, 223–231. https://doi.org/10.1016/j.envpol.2017.02.072
  • Arias-Andres, M., Klümper, U., Rojas-Jimenez, K., & Grossart, H. P. (2018). Microplastic pollution increases gene exchange in aquatic ecosystems. Environmental Pollution (Barking, Essex: 1987), 237, 253–261. https://doi.org/10.1016/j.envpol.2018.02.058
  • Astner, A. F., Hayes, D. G., O'Neill, H., Evans, B. R., Pingali, S. V., Urban, V. S., & Young, T. M. (2019). Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems. The Science of the Total Environment, 685, 1097–1106. https://doi.org/10.1016/j.scitotenv.2019.06.241
  • Bakir, A., Rowland, S. J., & Thompson, R. C. (2014). Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environmental Pollution (Barking, Essex: 1987), 185, 16–23. https://doi.org/10.1016/j.envpol.2013.10.007
  • Baldwin, A. K., Corsi, S. R., & Mason, S. A. (2016). Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology. Environmental Science & Technology, 50(19), 10377–10385. https://doi.org/10.1021/acs.est.6b02917
  • Bertoldi, C., Lara, L. Z., Mizushima, FAdL., Martins, F. C. G., Battisti, M. A., Hinrichs, R., & Fernandes, A. N. (2021). First evidence of microplastic contamination in the freshwater of Lake Guaíba, Porto Alegre, Brazil. The Science of the Total Environment, 759, 143503. https://doi.org/10.1016/j.scitotenv.2020.143503
  • Besseling, E., Redondo-Hasselerharm, P., Foekema, E. M., & Koelmans, A. A. (2019). Quantifying ecological risks of aquatic micro- and nanoplastic. Critical Reviews in Environmental Science and Technology, 49(1), 32–80. https://doi.org/10.1080/10643389.2018.1531688
  • Bryant, J. A., Clemente, T. M., Viviani, D. A., Fong, A. A., Thomas, K. A., Kemp, P., Karl, D. M., White, A. E., & DeLong, E. F. (2016). Diversity and activity of communities inhabiting plastic debris in the north pacific gyre. mSystems, 1(3), e00024-16. https://doi.org/10.1128/mSystems.00024-16
  • Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K. A., & Linse, S. (2007). Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2050–2055. https://doi.org/10.1073/pnas.0608582104
  • Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635
  • Chen, C. S., Anaya, J. M., Zhang, S., Spurgin, J., Chuang, C. Y., Xu, C., Miao, A. J., Chen, E. Y., Schwehr, K. A., Jiang, Y., Quigg, A., Santschi, P. H., & Chin, W. C. (2011). Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton. PLoS One, 6(7), e21865. https://doi.org/10.1371/journal.pone.0021865
  • Chen, Q., Gundlach, M., Yang, S., Jiang, J., Velki, M., Yin, D., & Hollert, H. (2017). Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. The Science of the Total Environment, 584–585, 1022–1031. https://doi.org/10.1016/j.scitotenv.2017.01.156
  • Chowdhury, I., Duch, M. C., Mansukhani, N. D., Hersam, M. C., & Bouchard, D. (2013). Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environmental Science & Technology, 47(12), 6288–6296. https://doi.org/10.1021/es400483k
  • Cox, K., Brocious, E., Courtenay, S. C., Vinson, M. R., & Mason, S. A. (2021). Distribution, abundance and spatial variability of microplastic pollution on the surface of Lake Superior. Journal of Great Lakes Research, 47(5), 1358–1364. https://doi.org/10.1016/j.jglr.2021.08.005
  • Dadgostar, P. (2019). Antimicrobial resistance: Implications and costs. Infection and Drug Resistance, 12, 3903–3910. https://doi.org/10.2147/IDR.S234610
  • Delattre, C., Pierre, G., Laroche, C., & Michaud, P. (2016). Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances, 34(7), 1159–1179. https://doi.org/10.1016/j.biotechadv.2016.08.001
  • Di Silvio, D., Maccarini, M., Parker, R., Mackie, A., Fragneto, G., & Baldelli Bombelli, F. (2017). The effect of the protein corona on the interaction between nanoparticles and lipid bilayers. Journal of Colloid and Interface Science, 504, 741–750. https://doi.org/10.1016/j.jcis.2017.05.086
  • Di, M., & Wang, J. (2018). Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. The Science of the Total Environment, 616–617, 1620–1627. https://doi.org/10.1016/j.scitotenv.2017.10.150
  • Ding, L., Mao, R. F., Guo, X., Yang, X., Zhang, Q., & Yang, C. (2019). Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Science of the Total Environment, 667, 427–434. https://doi.org/10.1016/j.scitotenv.2019.02.332
  • Dong, H., Chen, Y., Wang, J., Zhang, Y., Zhang, P., Li, X., Zou, J., & Zhou, A. (2021). Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. Journal of Hazardous Materials, 403, 123961. https://doi.org/10.1016/j.jhazmat.2020.123961
  • Dong, Z., Hou, Y., Han, W., Liu, M., Wang, J., & Qiu, Y. (2020). Protein corona-mediated transport of nanoplastics in seawater-saturated porous media. Water Research, 182, 115978. https://doi.org/10.1016/j.watres.2020.115978
  • Driedger, A. G., Dürr, H. H., Mitchell, K., & Van Cappellen, P. (2015). Plastic debris in the Laurentian Great Lakes: A review. Journal of Great Lakes Research, 41(1), 9–19. https://doi.org/10.1016/j.jglr.2014.12.020
  • Dris, R., Imhof, H., Sanchez, W., Gasperi, J., Galgani, F., Tassin, B., & Laforsch, C. (2015). Beyond the ocean: Contamination of freshwater ecosystems with (micro-) plastic particles. Environmental Chemistry, 12(5), 539–550. https://doi.org/10.1071/EN14172
  • Dussud, C., Meistertzheim, A. L., Conan, P., Pujo-Pay, M., George, M., Fabre, P., Coudane, J., Higgs, P., Elineau, A., Pedrotti, M. L., Gorsky, G., & Ghiglione, J. F. (2018). Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environmental Pollution (Barking, Essex: 1987), 236, 807–816. https://doi.org/10.1016/j.envpol.2017.12.027
  • Eckert, E. M., Di Cesare, A., Kettner, M. T., Arias-Andres, M., Fontaneto, D., Grossart, H. P., & Corno, G. (2018). Microplastics increase impact of treated wastewater on freshwater microbial community. Environmental Pollution (Barking, Essex: 1987), 234, 495–502. https://doi.org/10.1016/j.envpol.2017.11.070
  • Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63–82. https://doi.org/10.1016/j.watres.2015.02.012
  • Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., & Amato, S. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 77(1–2), 177–182. https://doi.org/10.1016/j.marpolbul.2013.10.007
  • Estahbanati, S., & Fahrenfeld, N. L. (2016). Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere, 162, 277–284. https://doi.org/10.1016/j.chemosphere.2016.07.083
  • Fadare, O. O., Wan, B., Guo, L.-H., Xin, Y., Qin, W., & Yang, Y. (2019). Humic acid alleviates the toxicity of polystyrene nanoplastic particles to Daphnia magna. Environmental Science: Nano, 6(5), 1466–1477. https://doi.org/10.1039/C8EN01457D
  • Fadare, O. O., Wan, B., Liu, K., Yang, Y., Zhao, L., & Guo, L. H. (2020). Eco-corona vs protein corona: Effects of humic substances on corona formation and nanoplastic particle toxicity in Daphnia magna. Environmental Science & Technology, 54(13), 8001–8009. https://doi.org/10.1021/acs.est.0c00615
  • Fischer, E. K., Paglialonga, L., Czech, E., & Tamminga, M. (2016). Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy). Environmental Pollution (Barking, Essex : 1987), 213, 648–657. https://doi.org/10.1016/j.envpol.2016.03.012
  • Flach, C. F., Pal, C., Svensson, C. J., Kristiansson, E., Östman, M., Bengtsson-Palme, J., Tysklind, M., & Larsson, D. G. J. (2017). Does antifouling paint select for antibiotic resistance? The Science of the Total Environment, 590–591, 461–468. https://doi.org/10.1016/j.scitotenv.2017.01.213
  • Fournier, E., Etienne-Mesmin, L., Grootaert, C., Jelsbak, L., Syberg, K., Blanquet-Diot, S., & Mercier-Bonin, M. (2021). Microplastics in the human digestive environment: A focus on the potential and challenges facing in vitro gut model development. Journal of Hazardous Materials, 415, 125632. https://doi.org/10.1016/j.jhazmat.2021.125632
  • Gangadoo, S., Owen, S., Rajapaksha, P., Plaisted, K., Cheeseman, S., Haddara, H., Truong, V. K., Ngo, S. T., Vu, V. V., Cozzolino, D., Elbourne, A., Crawford, R., Latham, K., & Chapman, J. (2020). Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea. The Science of the Total Environment, 732, 138792. https://doi.org/10.1016/j.scitotenv.2020.138792
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
  • Gigault, J., Halle, A. T., Baudrimont, M., Pascal, P. Y., Gauffre, F., Phi, T. L., El Hadri, H., Grassl, B., & Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution (Barking, Essex: 1987), 235, 1030–1034. https://doi.org/10.1016/j.envpol.2018.01.024
  • González-Fernández, C., Tallec, K., Le Goïc, N., Lambert, C., Soudant, P., Huvet, A., Suquet, M., Berchel, M., & Paul-Pont, I. (2018). Cellular responses of Pacific oyster (Crassostrea gigas) gametes exposed in vitro to polystyrene nanoparticles. Chemosphere, 208, 764–772. https://doi.org/10.1016/j.chemosphere.2018.06.039
  • Grassi, G., Gabellieri, E., Cioni, P., Paccagnini, E., Faleri, C., Lupetti, P., Corsi, I., & Morelli, E. (2020). Interplay between extracellular polymeric substances (EPS) from a marine diatom and model nanoplastic through eco-corona formation. The Science of the Total Environment, 725, 138457. https://doi.org/10.1016/j.scitotenv.2020.138457
  • Grunér, M. S., Kauscher, U., Linder, M. B., & Monopoli, M. P. (2016). An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma. Journal of Proteomics, 137, 52–58. https://doi.org/10.1016/j.jprot.2015.10.028
  • Guo, X., Liu, Y., & Wang, J. (2019). Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study. Marine Pollution Bulletin, 145, 547–554. https://doi.org/10.1016/j.marpolbul.2019.06.063
  • Guo, X. P., Sun, X. L., Chen, Y. R., Hou, L., Liu, M., & Yang, Y. (2020). Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment. The Science of the Total Environment, 745, 140916. https://doi.org/10.1016/j.scitotenv.2020.140916
  • Gutierrez, T., Berry, D., Yang, T., Mishamandani, S., McKay, L., Teske, A., & Aitken, M. D. (2013). Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the deepwater horizon oil spill. PLoS One, 8(6), e67717. https://doi.org/10.1371/journal.pone.0067717
  • Gutierrez, T., Teske, A., Ziervogel, K., Passow, U., & Quigg, A. (2018). Editorial: Microbial exopolymers: sources, chemico-physiological properties, and ecosystem effects in the marine environment. Frontiers in Microbiology, 9, 1822.
  • Hadri, H. E., Gigault, J., Maxit, B., Grassl, B., & Reynaud, S. (2020). Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments. NanoImpact, 17, 100206. https://doi.org/10.1016/j.impact.2019.100206
  • Hoellein, T., Rojas, M., Pink, A., Gasior, J., & Kelly, J. (2014). Anthropogenic litter in urban freshwater ecosystems: Distribution and microbial interactions. PLoS One, 9(6), e98485. https://doi.org/10.1371/journal.pone.0098485
  • Hoffman, M. J., & Hittinger, E. (2017). Inventory and transport of plastic debris in the Laurentian Great Lakes. Marine Pollution Bulletin, 115(1–2), 273–281. https://doi.org/10.1016/j.marpolbul.2016.11.061
  • Hollóczki, O., & Gehrke, S. (2019). Nanoplastics can change the secondary structure of proteins. Scientific Reports, 9(1), 16013. https://doi.org/10.1038/s41598-019-52495-w
  • Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. The Science of the Total Environment, 586, 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190
  • Huang, W., Song, B., Liang, J., Niu, Q., Zeng, G., Shen, M., Deng, J., Luo, Y., Wen, X., & Zhang, Y. (2021). Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials, 405, 124187.
  • Imran, M., Das, K. R., & Naik, M. M. (2019). Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere, 215, 846–857. https://doi.org/10.1016/j.chemosphere.2018.10.114
  • Junaid, M., & Wang, J. (2021). Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts. Water Research, 201, 117319. https://doi.org/10.1016/j.watres.2021.117319
  • Kapp, K. J., & Yeatman, E. (2018). Microplastic hotspots in the Snake and Lower Columbia rivers: A journey from the Greater Yellowstone Ecosystem to the Pacific Ocean. Environmental Pollution (Barking, Essex: 1987), 241, 1082–1090. https://doi.org/10.1016/j.envpol.2018.06.033
  • Kihara, S., Ashenden, A., Kaur, M., Glasson, J., Ghosh, S., van der Heijden, N., Brooks, A. E. S., Mata, J. P., Holt, S., Domigan, L. J., Köper, I., & McGillivray, D. J. (2021). Cellular interactions with polystyrene nanoplastics-The role of particle size and protein corona. Biointerphases, 16(4), 041001. https://doi.org/10.1116/6.0001124
  • Kihara, S., Köper, I., Mata, J. P., & McGillivray, D. J. (2021). Reviewing nanoplastic toxicology: It's an interface problem. Advances in Colloid and Interface Science, 288, 102337.
  • Kihara, S., van der Heijden, N. J., Seal, C. K., Mata, J. P., Whitten, A. E., Köper, I., & McGillivray, D. J. (2019). Soft and hard interactions between polystyrene nanoplastics and human serum albumin protein corona. Bioconjugate Chemistry, 30(4), 1067–1076. https://doi.org/10.1021/acs.bioconjchem.9b00015
  • Koelmans, A. A., Bakir, A., Burton, G. A., & Janssen, C. R. (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology, 50(7), 3315–3326. https://doi.org/10.1021/acs.est.5b06069
  • Koelmans, A. A., Besseling, E., Foekema, E., Kooi, M., Mintenig, S., Ossendorp, B. C., Redondo-Hasselerharm, P. E., Verschoor, A., Van Wezel, A. P., & Scheffer, M. (2017). Risks of plastic debris: Unravelling fact, opinion, perception, and belief. Environmental Science & Technology, 51(20), 11513–11519. https://doi.org/10.1021/acs.est.7b02219
  • Kosuth, M., Mason, S. A., & Wattenberg, E. V. (2018). Anthropogenic contamination of tap water, beer, and sea salt. PLoS One, 13(4), e0194970. https://doi.org/10.1371/journal.pone.0194970
  • Laganà, P., Caruso, G., Corsi, I., Bergami, E., Venuti, V., Majolino, D., La Ferla, R., Azzaro, M., & Cappello, S. (2019). Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). International Journal of Hygiene and Environmental Health, 222(1), 89–100. https://doi.org/10.1016/j.ijheh.2018.08.009
  • Lahens, L., Strady, E., Kieu-Le, T. C., Dris, R., Boukerma, K., Rinnert, E., Gasperi, J., & Tassin, B. (2018). Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environmental Pollution (Barking, Essex: 1987), 236, 661–671. https://doi.org/10.1016/j.envpol.2018.02.005
  • Lechner, A., Keckeis, H., Lumesberger-Loisl, F., Zens, B., Krusch, R., Tritthart, M., Glas, M., & Schludermann, E. (2014). The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe's second largest river. Environmental Pollution (Barking, Essex: 1987), 188, 177–181. https://doi.org/10.1016/j.envpol.2014.02.006
  • Li, C., Busquets, R., & Campos, L. C. (2020). Assessment of microplastics in freshwater systems: A review. Science of the Total Environment., 707, 135578. https://doi.org/10.1016/j.scitotenv.2019.135578
  • Li, X., He, E., Jiang, K., Peijnenburg, W., & Qiu, H. (2021). The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics. Water Research, 190, 116742. https://doi.org/10.1016/j.watres.2020.116742
  • Li, X., He, E., Xia, B., Liu, Y., Zhang, P., Cao, X., Zhao, L., Xu, X., & Qiu, H. (2021). Protein corona-induced aggregation of differently sized nanoplastics: Impacts of protein type and concentration. Environmental Science: Nano, 8(6), 1560–1570. https://doi.org/10.1039/D1EN00115A
  • Liu, Y., Liu, W., Yang, X., Wang, J., Lin, H., & Yang, Y. (2021). Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Science of the Total Environment, 773, 145643. https://doi.org/10.1016/j.scitotenv.2021.145643
  • Lu, L., Luo, T., Zhao, Y., Cai, C., Fu, Z., & Jin, Y. (2019). Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health. The Science of the Total Environment, 667, 94–100. https://doi.org/10.1016/j.scitotenv.2019.02.380
  • Lusher, A., Welden, N., Sobral, P., & Cole, M. (2020). Sampling, isolating and identifying microplastics ingested by fish and invertebrates. In L. M. L. Nollet & K. S. Siddiqi (Eds.), Analysis of nanoplastics and microplastics in food (pp. 119–148). CRC Press.
  • Lu, J., Zhang, Y., Wu, J., & Luo, Y. (2019). Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system. Ecotoxicology and Environmental Safety, 184, 109631. https://doi.org/10.1016/j.ecoenv.2019.109631
  • Lynch, I., Dawson, K. A., & Lead, J. R., and §, E. V.-J. (2014). Macromolecular Coronas and their importance in nanotoxicology and nanoecotoxicology. Frontiers of Nanoscience, 7, 127–156.
  • Ma, C. J. (2017). Distribution and transmission mechanisms of antimicrobial-resistance genes in Aeromonas spp. Isolated from aquaculture. Ji Mei University. (in Chinese).
  • Mason, S. A., Kammin, L., Eriksen, M., Aleid, G., Wilson, S., Box, C., Williamson, N., & Riley, A. (2016). Pelagic plastic pollution within the surface waters of Lake Michigan, USA. Journal of Great Lakes Research, 42(4), 753–759. https://doi.org/10.1016/j.jglr.2016.05.009
  • Moore, C. J., Lattin, G. L., & Zellers, A. F. (2011). Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Revista de Gestão Costeira Integrada, 11(1), 65–73. https://doi.org/10.5894/rgci194
  • Mughini-Gras, L., van der Plaats, R. Q., van der Wielen, P. W., Bauerlein, P. S., & de Roda Husman, A. M. (2021). Riverine microplastic and microbial community compositions: A field study in the netherlands. Water Research, 192, 116852. https://doi.org/10.1016/j.watres.2021.116852
  • Murdoch, D. R., & French, N. P. (2020). COVID-19: Another infectious disease emerging at the animal-human interface. The New Zealand Medical Journal, 133, 12–15.
  • Napper, I. E., & Thompson, R. C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin, 112(1–2), 39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025
  • Nasser, F., Constantinou, J., & Lynch, I. (2020). Nanomaterials in the environment acquire an "eco-corona" impacting their toxicity to daphnia magna-A call for updating toxicity testing policies. Proteomics, 20(9), e1800412. https://doi.org/10.1002/pmic.201800412
  • Nasser, F., & Lynch, I. (2016). Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. Journal of Proteomics, 137, 45–51. https://doi.org/10.1016/j.jprot.2015.09.005
  • Natarajan, L., Omer, S., Jetly, N., Jenifer, M. A., Chandrasekaran, N., Suraishkumar, G. K., & Mukherjee, A. (2020). Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp. Environmental Research, 188, 109842. https://doi.org/10.1016/j.envres.2020.109842
  • Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., & Pivokonsky, M. (2019). Microplastics in drinking water treatment - Current knowledge and research needs. The Science of the Total Environment, 667, 730–740. https://doi.org/10.1016/j.scitotenv.2019.02.431
  • Pandey, G., & Jain, R. K. (2002). Bacterial chemotaxis toward environmental pollutants: Role in bioremediation. Applied and Environmental Microbiology, 68(12), 5789–5795. https://doi.org/10.1128/AEM.68.12.5789-5795.2002
  • Parrish, K., & Fahrenfeld, N. (2019). Microplastic biofilm in fresh-and wastewater as a function of microparticle type and size class. Environmental Science: Water Research & Technology, 5, 495–505.
  • Peng, L., Fu, D., Qi, H., Lan, C. Q., Yu, H., & Ge, C. (2020). Micro- and nano-plastics in marine environment: Source, distribution and threats - A review. The Science of the Total Environment, 698, 134254–134212. https://doi.org/10.1016/j.scitotenv.2019.134254
  • Pimol, P., Khanidtha, M., & Prasert, P. (2008). Influence of particle size and salinity on adsorption of basic dyes by agricultural waste: Dried Seagrape (Caulerpa lentillifera). Journal of Environmental Sciences, 20(6), 760–768. https://doi.org/10.1016/S1001-0742(08)62124-5
  • Pino, P., Pelaz, B., Zhang, Q., Maffre, P., Nienhaus, G. U., & Parak, W. (2014). Protein corona formation around nanoparticles – from the past to the future. Materials Horizons, 1(3), 301–313. https://doi.org/10.1039/C3MH00106G
  • Rodrigues, M. O., Abrantes, N., Gonçalves, F. J. M., Nogueira, H., Marques, J. C., & Gonçalves, A. M. M. (2018). Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Science of the Total Environment., 633, 1549–1559. https://doi.org/10.1016/j.scitotenv.2018.03.233
  • Romero-Cano, M. S., Martín-Rodríguez, A., & De, lN., F. J. (2001). Electrosteric stabilization of polymer colloids with different functionality. Langmuir, 17(11), 3505–3511. https://doi.org/10.1021/la001659l
  • Rong, D., Wu, Q., Xu, M., Zhang, J., & Yu, S. (2017). Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of Staphylococcus aureus from retail aquatic products in China. Frontiers in Microbiology, 8, 714. https://doi.org/10.3389/fmicb.2017.00714
  • Rubio, L., Marcos, R., & Hernández, A. (2020). Potential adverse health effects of ingested micro-and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. Journal of Toxicology and Environmental Health, Part B, 23(2), 51–68. https://doi.org/10.1080/10937404.2019.1700598
  • Saavedra, J., Stoll, S., & Slaveykova, V. I. (2019). Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environmental Pollution (Barking, Essex: 1987), 252(Pt A), 715–722. https://doi.org/10.1016/j.envpol.2019.05.135
  • Shala-Lawrence, A., Bragagnolo, N., Nowroozi-Dayeni, R., Kheyson, S., & Audette, G. F. (2018). The interaction of TraW and TrbC is required to facilitate conjugation in F-like plasmids. Biochemical and Biophysical Research Communications, 503(4), 2386–2392. https://doi.org/10.1016/j.bbrc.2018.06.166
  • Shams, M., Alam, I., & Chowdhury, I. (2020). Aggregation and stability of nanoscale plastics in aquatic environment. Water Research, 171, 115401. https://doi.org/10.1016/j.watres.2019.115401
  • Sharma, V. K., Ma, X., Guo, B., & Zhang, K. (2021). Environmental factors-mediated behavior of microplastics and nanoplastics in water: A review. Chemosphere, 271, 129597. https://doi.org/10.1016/j.chemosphere.2021.129597
  • Shi, J., Wu, D., Su, Y., & Xie, B. (2021). Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate. The Science of the Total Environment, 765, 142775.
  • Shiu, R.-F., Vazquez, C. I., Chiang, C.-Y., Chiu, M.-H., Chen, C.-S., Ni, C.-W., Gong, G.-C., Quigg, A., Santschi, P. H., & Chin, W.-C. (2020). Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. The Science of the Total Environment, 748, 141469. https://doi.org/10.1016/j.scitotenv.2020.141469
  • Shiu, R. F., Vazquez, C. I., Tsai, Y. Y., Torres, G. V., Chen, C. S., Santschi, P. H., Quigg, A., & Chin, W. C. (2020). Nano-plastics induce aquatic particulate organic matter (microgels) formation. The Science of the Total Environment, 706, 135681. https://doi.org/10.1016/j.scitotenv.2019.135681
  • Sonkol, R. A., Torky, H. A., & Khalil, S. A. (2020). Molecular characterization of some virulence genes and antibiotic susceptibility of Aeromonas hydrophila isolated from fish and water. Alexandria Journal for Veterinary Sciences, 64(2), 34–42.
  • Strungaru, S.-A., Jijie, R., Nicoara, M., Plavan, G., & Faggio, C. (2019). Micro- (nano) plastics in freshwater ecosystems: Abundance, toxicological impact and quantification methodology. TrAC Trends in Analytical Chemistry, 110, 116–128. https://doi.org/10.1016/j.trac.2018.10.025
  • Su, L., Xue, Y., Li, L., Yang, D., Kolandhasamy, P., Li, D., & Shi, H. (2016). Microplastics in Taihu Lake, China. Environmental Pollution (Barking, Essex: 1987), 216, 711–719. https://doi.org/10.1016/j.envpol.2016.06.036
  • Summers, S., Henry, T., & Gutierrez, T. (2018). Agglomeration of nano- and microplastic particles in seawater by autochthonous and de novo-produced sources of exopolymeric substances. Marine Pollution Bulletin, 130, 258–267. https://doi.org/10.1016/j.marpolbul.2018.03.039
  • Sun, Y., Cao, N., Duan, C., Wang, Q., Ding, C., & Wang, J. (2021). Selection of antibiotic resistance genes on biodegradable and non-biodegradable microplastics. Journal of Hazardous Materials, 409, 124979.
  • Thomas, S. G., Glover, M. A., Parthasarathy, A., Wong, N. H., Shipman, P. A., & Hudson, A. O. (2020). Expression of a shiga-like toxin during plastic colonization by two multidrug-resistant bacteria, Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669, isolated from endangered turtles (Clemmys guttata). Microorganisms, 8(8), 1172. https://doi.org/10.3390/microorganisms8081172
  • Van Cauwenberghe, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environmental Pollution, 193, 65–70. https://doi.org/10.1016/j.envpol.2014.06.010
  • Vermaire, J. C., Pomeroy, C., Herczegh, S. M., Haggart, O., & Murphy, M. (2017). Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets, 2(1), 301–314. https://doi.org/10.1139/facets-2016-0070
  • Wagner, S., & Reemtsma, T. (2019). Things we know and don't know about nanoplastic in the environment. Nature Nanotechnology, 14(4), 300–301. https://doi.org/10.1038/s41565-019-0424-z
  • Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A. D., Winther-Nielsen, M., & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: What we know and what we need to know. Environmental Sciences Europe, 26(1), 12. https://doi.org/10.1186/s12302-014-0012-7
  • Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature, 406(6797), 775–781. https://doi.org/10.1038/35021219
  • Wang, Z., Gao, J., Dai, H., Zhao, Y., Li, D., Duan, W., & Guo, Y. (2021). Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Journal of Hazardous Materials, 409, 124981.
  • Wang, R. Q., Gutierrez, L., Choon, N. S., & Croué, J. P. (2015). Hydrophilic interaction liquid chromatography method for measuring the composition of aquatic humic substances. Analytica Chimica Acta, 853, 608–616. https://doi.org/10.1016/j.aca.2014.09.026
  • Wang, W., Ndungu, A. W., Li, Z., & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of the Total Environment., 575, 1369–1374. https://doi.org/10.1016/j.scitotenv.2016.09.213
  • Wang, J., Qin, X., Guo, J., Jia, W., Wang, Q., Zhang, M., & Huang, Y. (2020). Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers. Water Research, 183, 116113. https://doi.org/10.1016/j.watres.2020.116113
  • Wang, S., Xue, N., Li, W., Zhang, D., Pan, X., & Luo, Y. (2020). Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. The Science of the Total Environment, 708, 134594. https://doi.org/10.1016/j.scitotenv.2019.134594
  • Wang, C., Zhao, J., & Xing, B. (2020). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407, 124357. https://doi.org/10.1016/j.jhazmat.2020.124357
  • Westmeier, D., Stauber, R. H., & Docter, D. (2016). The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM). Toxicology and Applied Pharmacology, 299, 53–57. https://doi.org/10.1016/j.taap.2015.11.008
  • Wheeler, K. E., Chetwynd, A. J., Fahy, K. M., Hong, B. S., Tochihuitl, J. A., Foster, L. A., & Lynch, I. (2021). Environmental dimensions of the protein corona. Nature Nanotechnology, 16(6), 617–629. https://doi.org/10.1038/s41565-021-00924-1
  • White, A., & Hughes, J. M. (2019). Critical importance of a one health approach to antimicrobial resistance. Ecohealth, 16(3), 404–409. https://doi.org/10.1007/s10393-019-01415-5
  • Wu, X., Pan, J., Li, M., Li, Y., Bartlam, M., & Wang, Y. (2019). Selective enrichment of bacterial pathogens by microplastic biofilm. Water Research, 165, 114979. https://doi.org/10.1016/j.watres.2019.114979
  • Xiong, X., Zhang, K., Chen, X., Shi, H., Luo, Z., & Wu, C. (2018). Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake. Environmental Pollution (Barking, Essex: 1987), 235, 899–906. https://doi.org/10.1016/j.envpol.2017.12.081
  • Zainab, S. M., Junaid, M., Xu, N., & Malik, R. N. (2020). Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Research, 187, 116455. https://doi.org/10.1016/j.watres.2020.116455
  • Zhang, Y., Gao, T., Kang, S., & Sillanpää, M. (2019). Importance of atmospheric transport for microplastics deposited in remote areas. Environmental Pollution (Barking, Essex: 1987), 254(Pt A), 112953. https://doi.org/10.1016/j.envpol.2019.07.121
  • Zhang, Y., Lu, J., Wu, J., Wang, J., & Luo, Y. (2020). Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicology and Environmental Safety, 187, 109852. https://doi.org/10.1016/j.ecoenv.2019.109852
  • Zhang, M., & Xu, L. (2020). Transport of micro-and nanoplastics in the environment: Trojan-Horse effect for organic contaminants. Critical Reviews in Environmental Science and Technology, 1–37. https://doi.org/10.1080/10643389.2020.1845531
  • Zhou, W., Han, Y., Tang, Y., Shi, W., Du, X., Sun, S., & Liu, G. (2020). Microplastics aggravate the bioaccumulation of two waterborne veterinary antibiotics in an edible bivalve species: Potential mechanisms and implications for human health. Environmental Science & Technology, 54(13), 8115–8122. https://doi.org/10.1021/acs.est.0c01575
  • Zhu, G., Wang, X., Yang, T., Su, J., Qin, Y., Wang, S., Gillings, M., Wang, C., Ju, F., Lan, B., Liu, C., Li, H., Long, X. E., Wang, X., Jetten, M. S. M., Wang, Z., & Zhu, Y. G. (2021). Air pollution could drive global dissemination of antibiotic resistance genes. The ISME Journal, 15(1), 270–281. https://doi.org/10.1038/s41396-020-00780-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.