698
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Fate and sublethal effects of metals during amphibian metamorphosis: A systematic review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4266-4283 | Published online: 14 Nov 2021

References

  • Ågerstrand, M., Küster, A., Bachmann, J., Breitholtz, M., Ebert, I., Rechenberg, B., & Rudén, C. (2011). Reporting and evaluation criteria as means towards a transparent use of ecotoxicity data for environmental risk assessment of pharmaceuticals. Environmental Pollution (Barking, Essex: 1987), 159(10), 2487–2492. https://doi.org/10.1016/j.envpol.2011.06.023
  • Akter, K. F., Owens, G., Davey, D. E., & Naidu, R. (2006). Arsenic speciation and toxicity in biological systems. Reviews of Environment Contamination and Toxicology, 184, 97–149. https://doi.org/10.1007/0-387-27565-7_3
  • Alford, R. A. (2010). Declines and the global status of amphibians. In D. W. Sparling, G. Linder, C. A. Bishop, & S. Krest (Eds.), Ecotoxicology of amphibians and reptiles (pp. 13–46). CRC Press. http://doi.org/10.1201/EBK1420064162
  • Barata, C., Markich, S. J., Baird, D. J., & Soares, A. M. V. M. (2002). The relative importance of water and food as cadmium sources to Daphnia magna Straus. Aquatic Toxicology (Amsterdam, Netherlands), 61(3–4), 143–154. https://doi.org/10.1016/S0166-445X(02)00052-8
  • Bergeron, C. M., Bodinof, C. M., Unrine, J. M., & Hopkins, W. A. (2010). Mercury accumulation along a contamination gradient and nondestructive indices of bioaccumulation in amphibians. Environmental Toxicology and Chemistry, 29(4), 980–988. https://doi.org/10.1002/etc.121
  • Bervin, K. A. (1990). Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology, 71, 1599–1608.
  • Brown, D. D., & Cai, L. (2007). Amphibian metamorphosis. Developmental Biology, 306(1), 20–27. https://doi.org/10.1016/j.ydbio.2007.03.021
  • Bryszewska, M. A., Sanz, E., Sanz-Landaluze, J., Munoz-Olivas, R., Ortiz-Santaliestra, M. E., & Camara, C. (2011). Evaluation of arsenic biotransformation by Iberian green frog during metamorphosis. Journal of Analytical Atomic Spectrometry, 26(1), 178–186. https://doi.org/10.1039/C0JA00084A
  • Buchman, M. F. (2008). NOAA screening quick reference tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration.  
  • Burger, J., & Snodgrass, J. (1998). Heavy metals in bullfrog (Rana catesbeiana) tadpoles: Effects of depuration before analysis. Environmental Toxicology and Chemistry, 17(11), 2203–2209. https://doi.org/10.1002/etc.5620171110
  • Cabrera-Guzmán, E., Crossland, M. R., Brown, G. P., & Shine, R. (2013). Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS One, 8(7), e70121. https://doi.org/10.1371/journal.pone.0070121
  • Chelgren, N. D., Rosenberg, D. K., Heppell, S. S., & Gitelman, A. I. (2006). Carryover aquatic effects on survival of metamorphic frogs during pond emigration. Ecological Applications: A Publication of the Ecological Society of America, 16(1), 250–261. https://doi.org/10.1890/04-0329
  • Collins, J. P. (2010). Amphibian decline and extinction: What we know and what we need to learn. Diseases of Aquatic Organisms, 92(2–3), 93–99. https://doi.org/10.3354/dao02307
  • Conley, J. M., Funk, D. H., Hesterberg, D. H., Hsu, L.-C., Kan, J., Liu, Y.-T., & Buchwalter, D. B. (2013). Bioconcentration and biotransformation of selenite versus selenate exposed periphyton and subsequent toxicity to the mayfly Centroptilum triangulifer. Environmental Science & Technology, 47(14), 7965–7973. https://doi.org/10.1021/es400643x
  • Deforest, D. K., & Meyer, J. S. (2015). Critical review: Toxicity of dietborne metals to aquatic organisms. Critical Reviews in Environmental Science and Technology, 45(11), 1176–1241. https://doi.org/10.1080/10643389.2014.955626
  • Dovick, M. A., Kulp, T. R., Arkle, R. S., & Pilliod, D. S. (2016). Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage. Environmental Chemistry, 13(1), 149–159. https://doi.org/10.1071/EN15046
  • Egea-Serrano, A., Relyea, R. A., Tejedo, M., & Torralva, M. (2012). Understanding of the impact of chemicals on amphibians: A meta-analytic review. Ecology and Evolution, 2(7), 1382–1397. https://doi.org/10.1002/ece3.249
  • Franz, E. D., Wiramanaden, C. I. E., Janz, D. M., Pickering, I. J., & Liber, K. (2011). Selenium bioaccumulation and speciation in Chironomus dilutus exposed to water-borne selenate, selenite, or seleno-dl-methionine. Environmental Toxicology and Chemistry, 30(10), 2292–2299. https://doi.org/10.1002/etc.624
  • Fritz, K. A., & Whiles, M. R. (2018). Amphibian-mediated nutrient fluxes across aquatic–terrestrial boundaries of temporary wetlands. Freshwater Biology, 63(10), 1250–1259. https://doi.org/10.1111/fwb.13130
  • Gammons, C. H., Mulholland, T. P., & Frandsen, A. K. (2000). A comparison of filtered vs. unfiltered metal concentrations in treatment wetlands. Mine Water and the Environment., 19(2), 111–123. https://doi.org/10.1007/BF02687259
  • Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183–190.
  • Grillitsch, B., & Chovanec, A. (1995). Heavy metals and pesticides in anuran spawn and tadpoles, water, and sediment. Toxicological and Environmental Chemistry., 50(1–4), 131–155. https://doi.org/10.1080/02772249509358210
  • Haddaway, N., Macura, B., Whaley, P., & Pullin, A. (2017). ROSES for systematic review protocols. Version 1.0. https://doi.org/10.6084/m9.figshare.5897269.v4
  • Hallman, T. A., & Brooks, M. L. (2016). Metal-mediated climate susceptibility in a warming world: Larval and latent effects on a model amphibian. Environmental Toxicology and Chemistry, 35(7), 1872–1882. https://doi.org/10.1002/etc.3337
  • Harris, C. A., Scott, A. P., Johnson, A. C., Panter, G. H., Sheahan, D., Roberts, M., & Sumpter, J. P. (2014). Principles of sound ecotoxicology. Environmental Science & Technology, 48(6), 3100–3111. https://doi.org/10.1021/es4047507
  • He, Y. T., & Ziemkiewicz, P. F. (2016). Bias in determining aluminum concentrations: Comparison of digestion methods and implications on Al management. Chemosphere, 159, 570–576. https://doi.org/10.1016/j.chemosphere.2016.06.052
  • Heyes, A., Rowe, C. L., & Conrad, P. (2014). Differential patterns of accumulation and retention of dietary trace elements associated with coal ash during larval development and metamorphosis of an amphibian. Archives of Environmental Contamination and Toxicology, 66(1), 78–85. https://doi.org/10.1007/s00244-013-9957-6
  • Hopkins, W. A., & Rowe, C. L. (2010). Interdisciplinary hierarchical approaches for studying the effects of metals and metalloids on amphibians. In D. W. Sparling, G. Linder, C.A. Bishop, & S. Krest (Eds.), Ecotoxicology of amphibians and reptiles (pp. 325–336). CRC Press. https://doi.org/10.1201/EBK1420064162
  • Horne, M. T., & Dunson, W. A. (1995). Effects of low pH, metals, and water hardness on larval amphibians. Archives of Environmental Contamination and Toxicology, 29(4), 500–505. https://doi.org/10.1007/BF00208380
  • Hyne, R. V., Pablo, F., Julli, M., & Markich, S. J. (2005). Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubia. Environmental Toxicology and Chemistry, 24(7), 1667–1675. https://doi.org/10.1897/04-497r.1
  • ICRP. (2008). Environmental protection - The concept and use of reference animals and plants. ICRP Publication 108. ANn. ICRP 38(4–6).
  • Irving, E. C., Lowell, R. B., Culp, J. M., Liber, K., Xie, Q., & Kerrich, R. (2008). Effects of arsenic speciation and low dissolved oxygen condition on the toxicity of arsenic to a lotic mayfly. Environmental Toxicology and Chemistry, 27(3), 583–590. https://doi.org/10.1897/06-617.1
  • James, S. M., & Little, E. E. (2003). The effects of chronic cadmium exposure on American toad (Bufo americanus) tadpoles. Environmental Toxicology and Chemistry, 22(2), 377–380. https://doi.org/10.1002/etc.5620220219
  • Joshi, S. N., & Patil, H. S. (1992). Effect of water temperature, pH and hardness on the toxicity of chromium trioxide to female frog, Rana cyanophlyctis. In Proceedings of Indian National Science Academy (pp. 347–350). Indian National Science Academy.
  • Koch, I., Zhang, J., Button, M., Gibson, L. A., Caumette, G., Langlois, V. S., Reimer, K. J., & Cullen, W. R. (2015). Arsenic(+3) and DNA methyltransferases, and arsenic speciation in tadpole and frog life stages of western clawed frogs (Silurana tropicalis) exposed to arsenate. Metallomics: Integrated Biometal Science, 7(8), 1274–1284. https://doi.org/10.1039/c5mt00078e
  • Konovalenko, L., Bradshaw, C., Andersson, E., Lindqvist, D., & Kautsky, U. (2016). Evaluation of factors influencing accumulation of stable Sr and Cs in lake and coastal fish. Journal of Environmental Radioactivity, 160, 64–79. https://doi.org/10.1016/j.jenvrad.2016.04.022
  • Kraus, J. M., Walters, D. M., Wesner, J. S., Stricker, C. A., Schmidt, T. S., & Zuellig, R. E. (2014). Metamorphosis alters contaminants and chemical tracers in insects: Implications for food webs. Environmental Science & Technology, 48(18), 10957–10965. https://doi.org/10.1021/es502970b
  • Lanctôt, C. M., Cresswell, T., & Melvin, S. D. (2017). Uptake and tissue distributions of cadmium, selenium and zinc in striped marsh frog tadpoles exposed during early post-embryonic development. Ecotoxicology and Environmental Safety, 144, 291–299. https://doi.org/10.1016/j.ecoenv.2017.06.047
  • Lanctôt, C. M., Cresswell, T., Callaghan, P. D., & Melvin, S. D. (2017). Bioaccumulation and biodistribution of selenium in metamorphosing tadpoles. Environmental Science & Technology, 51(10), 5764–5773. https://doi.org/10.1021/acs.est.7b00300
  • Lanctôt, C. M., Melvin, S. D., & Cresswell, T. (2017). Selenium speciation influences bioaccumulation in Limnodynastes peronii tadpoles. Aquatic Toxicology (Amsterdam, Netherlands), 187, 1–8. https://doi.org/10.1016/j.aquatox.2017.03.009
  • Leaphart, J. C., Korotasz, A. M., Bryan, A. L., & Beasley, J. C. (2020). Environmental fate of radiocesium in biota inhabiting a contaminated ecosystem on the U.S. Department of Energy's Savannah River Site. Journal of Environmental Radioactivity, 222, 106321. https://doi.org/10.1016/j.jenvrad.2020.106321
  • Leaphart, J. C., Wilms, K. C., Bryan, A. L., & Beasley, J. C. (2019). Bioaccumulation of 137Cs in anuran larvae utilizing a contaminated effluent canal on the U.S. Department of Energy's Savannah River Site. Journal of Environmental Radioactivity, 203, 25–29. https://doi.org/10.1016/j.jenvrad.2019.02.012
  • Lefcort, H., Meguire, R. A., Wilson, L. H., & Ettinger, W. F. (1998). Heavy metals alter the survival, growth, metamorphosis, and antipredatory behavior of columbia spotted frog (Rana luteiventris) tadpoles. Archives of Environmental Contamination and Toxicology, 35(3), 447–456. https://doi.org/10.1007/s002449900401
  • Lockard, L., Rowe, C. L., & Heyes, A. (2013). Dietary selenomethionine exposure induces physical malformations and decreases growth and survival to metamorphosis in an amphibian (Hyla chrysoscelis). Archives of Environmental Contamination and Toxicology, 64(3), 504–513. https://doi.org/10.1007/s00244-012-9850-8
  • Madenjian, C. P., David, S. R., & Krabbenhoft, D. P. (2012). Trophic transfer efficiency of methylmercury and inorganic mercury to lake trout Salvelinus namaycush from its prey. Archives of Environmental Contamination and Toxicology, 63(2), 262–269. https://doi.org/10.1007/s00244-012-9767-2
  • Massé, A. J., Muscatello, J. R., & Janz, D. M. (2016). Effects of elevated in ovo selenium exposure on late stage development of Xenopus laevis tadpoles. Bulletin of Environmental Contamination and Toxicology, 97(4), 463–468. https://doi.org/10.1007/s00128-016-1884-6
  • Matsushima, N., Ihara, S., Takase, M., & Horiguchi, T. (2015). Assessment of radiocesium contamination in frogs 18 months after the Fukushima Daiichi nuclear disaster. Scientific Reports, 5, 9712. https://doi.org/10.1038/srep09712
  • Mebane, C. A., Chowdhury, M. J., De Schamphelaere, K. A. C., Lofts, S., Paquin, P. R., Santore, R. C., & Wood, C. M. (2020). Metal bioavailability modeling: Critical review metal bioavailability models: Current status, lessons learned, considerations for regulatory use, and the path forward. Environmental Toxicology and Chemistry, 39(1), 60–84. https://doi.org/10.1002/etc.4560
  • Mebane, C. A., Sumpter, J. P., Fairbrother, A., Augspurger, T. P., Canfield, T. J., Goodfellow, W. L., Guiney, P. D., LeHuray, A., Maltby, L., Mayfield, D. B., McLaughlin, M. J., Ortego, L. S., Schlekat, T., Scroggins, R. P., & Verslycke, T. A. (2019). Scientific integrity issues in environmental toxicology and chemistry: Improving research reproducibility, credibility, and transparency. Integrated Environmental Assessment and Management, 15(3), 320–344. https://doi.org/10.1002/ieam.4119
  • Monastersky, R. (2014). Biodiversity: Life-a status report. Nature, 516(7530), 158–161. https://doi.org/10.1038/516158a
  • Paiva Magalhaes, D. d., Costa Marques, M. R d., Baptista, D. F., & Buss, D. F. (2015). Metal bioavailability and toxicity in freshwaters. Environmental Chemistry Letters, 13(1), 69–87. https://doi.org/10.1007/s10311-015-0491-9
  • Pandian, A. T. J., & Marian, M. P. (1985). Time and energy costs of metamorphosis in the indian bullfrog Rana tigrina. Copeia, 1985(3), 653–662. https://doi.org/10.2307/1444758
  • Quaranta, A., Bellantuono, V., Cassano, G., & Lippe, C. (2009). Why amphibians are more sensitive than mammals to xenobiotics. PLoS One, 4(11), e7699-5. https://doi.org/10.1371/journal.pone.0007699
  • Rahman, M. M., Rahman, F., Sansom, L., Naidu, R., & Schmidt, O. (2009). Arsenic interactions with lipid particles containing iron. Environmental Geochemistry and Health, 31(S1), 201–206. https://doi.org/10.1007/s10653-008-9236-z
  • Rice, T. M., Oris, J. T., & Taylor, D. H. (2002). Effects on growth and changes in organ distribution of bullfrog larvae exposed to lead throughout metamorphosis. Bulletin of Environmental Contamination and Toxicology, 68(1), 8–17. https://doi.org/10.1007/s00128-001-0212-x
  • Roe, J. H., Hopkins, W. A., & Jackson, B. P. (2005). Species- and stage-specific differences in trace element tissue concentrations in amphibians: Implications for the disposal of coal-combustion wastes. Environmental Pollution (Barking, Essex: 1987), 136(2), 353–363. https://doi.org/10.1016/j.envpol.2004.11.019
  • Rowe, C. L., Heyes, A., & Hopkins, W. (2009). Effects of dietary vanadium on growth and lipid storage in a larval anuran: Results from studies employing ad libitum and rationed feeding. Aquatic Toxicology (Amsterdam, Netherlands), 91(2), 179–186. https://doi.org/10.1016/j.aquatox.2008.06.002
  • Ryan, A. C., Santore, R. C., Tobiason, S., Woldegabriel, G., & Groffman, A. R. (2019). Total recoverable aluminum: Not totally relevant for water quality standards. Integrated Environmental Assessment and Management, 15(6), 974–987. https://doi.org/10.1002/ieam.4177
  • Smalling, K. L., Oja, E. B., Cleveland, D. M., Davenport, J. M., Eagles-Smith, C., Campbell Grant, E. H., Kleeman, P. M., Halstead, B. J., Stemp, K. M., Tornabene, B. J., Bunnell, Z. J., & Hossack, B. R. (2021). Metal accumulation varies with life history, size, and development of larval amphibians. Environmental Pollution (Barking, Essex: 1987), 287, 117638.
  • Snodgrass, J. W., Hopkins, W. A., & Roe, J. H. (2003). Relationships among developmental stage, metamorphic timing, and concentrations of elements in bullfrogs (Rana catesbeiana). Environmental Toxicology and Chemistry, 22(7), 1597–1604. https://doi.org/10.1002/etc.5620220724
  • Snodgrass, J. W., Hopkins, W. A., Broughton, J., Gwinn, D., Baionno, J. A., & Burger, J. (2004). Species-specific responses of developing anurans to coal combustion wastes. Aquatic Toxicology., 66(2), 171–182. https://doi.org/10.1016/j.aquatox.2003.09.002
  • Sparling, D. W., & Lowe, T. P. (1996). Metal concentrations of tadpoles in experimental ponds. Environmental Pollution (Barking, Essex: 1987), 91(2), 149–159. https://doi.org/10.1016/0269-7491(95)00057-7
  • Spehar, R. L., Fiandt, J. T., Anderson, R. L., & DeFoe, D. L. (1980). Comparative toxicity of arsenic compounds and their accumulation in invertebrates and fish. Archives of Environmental Contamination and Toxicology, 9(1), 53–63. https://doi.org/10.1007/BF01055499
  • Tagami, K., Uchida, S., Wood, M. D., & Beresford, N. A. (2018). Radiocaesium transfer and radiation exposure of frogs in Fukushima Prefecture. Scientific Reports., 8, 1–12. https://doi.org/10.1038/s41598-018-28866-0
  • USEPA. (1996). Method 1669: Sampling ambient water for trace metals at EPA water quality criteria levels. https://www.epa.gov/sites/default/files/2015-10/documents/method_1669_1996.pdf
  • USEPA. (2009). National recommended water quality criteria. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table
  • Valencia-Aguilar, A., Cortés-Gómez, A. M., & Ruiz-Agudelo, C. A. (2013). Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. International Journal of Biodiversity Science, Ecosystem Services & Management, 9(3), 257–272. https://doi.org/10.1080/21513732.2013.821168
  • Veltman, K., Huijbregts, M. A. J., Kolck, M., Van, Wang, W. X., & Hendriks, A. J. (2008). Metal bioaccumulation in aquatic species: Quantification of uptake and elimination rate constants using physicochemical properties of metals and physiological characteristics of species. Environmental Science & Technology, 42(3), 852–858. https://doi.org/10.1021/es071331f
  • Wada, H., Bergeron, C. M., McNabb, F. M. A., Todd, B. D., & Hopkins, W. A. (2011). Dietary mercury has no observable effects on thyroid-mediated processes and fitness-related traits in wood frogs. Environmental Science & Technology, 45(18), 7915–7922. https://doi.org/10.1021/es201084q
  • Wesner, J., Kraus, J. M., Henry, B., & Kerby, J. (2020). Metamorphosis and the impact of contaminants on ecological subsidies. In J. M. Kraus, D. M. Walters, & M. A. Mills (Eds.), Contaminants and ecological subsidies (pp. 111–125). Springer International Publishing. https://doi.org/10.1007/978-3-030-49480-3_6
  • Wilbur, H. M., & Alford, R. A. (1985). Priority effects in experimental pond communities: Responses of Hyla to Bufo and Rana. Ecology, 66(4), 1106–1114. https://doi.org/10.2307/1939162
  • Wright, M. L., Richardson, S. E., & Bigos, J. M. (2011). The fat body of bullfrog (Lithobates catesbeianus) tadpoles during metamorphosis: Changes in mass, histology, and melatonin content and effect of food deprivation. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 160(4), 498–503. https://doi.org/10.1016/j.cbpa.2011.08.010
  • Wu, F., Mu, Y., Chang, H., Zhao, X., Giesy, J. P., & Wu, K. B. (2013). Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids. Environmental Science & Technology, 47(1), 446–453. https://doi.org/10.1021/es303309h
  • Xu, X., Bryan, A. L., Mills, G. L., & Korotasz, A. M. (2019). Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA). The Science of the Total Environment, 668, 261–270. https://doi.org/10.1016/j.scitotenv.2019.02.301
  • Zhang, J., Jiang, D., Dong, X., Meng, Z., & Yan, S. (2020). Accumulation of Cd and Pb in various body parts, organs and tissues of Lymantria dispar asiatica (Lepidoptera: Erebidae). Journal of Asia-Pacific Entomology, 23(4), 963–969. https://doi.org/10.1016/j.aspen.2020.07.019
  • Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H., & Yao, X. (2020). Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22, e00925. https://doi.org/10.1016/j.gecco.2020.e00925

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.