6,645
Views
6
CrossRef citations to date
0
Altmetric
Invited Reviews

Airborne transmission as an integral environmental dimension of antimicrobial resistance through the “One Health” lens

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4172-4193 | Published online: 06 Dec 2021

References

  • Ahmad, I., Malak, H. A., & Abulreesh, H. H. (2021). Environmental antimicrobial resistance and its drivers: A potential threat to public health. Journal of Global Antimicrobial Resistance, 27, 101–111. https://doi.org/10.1016/j.jgar.2021.08.001
  • Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8, 251–259. https://doi.org/10.1038/nrmicro2312
  • Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/IDR.S173867
  • Baral, D., Dvorak, B. I., Admiraal, D., Jia, S. G., Zhang, C., & Li, X. (2018). Tracking the sources of antibiotic resistance genes in an urban stream during wet weather using shotgun metagenomic analyses. Environmental Science & Technology, 52, 9033–9044. https://doi.org/10.1021/acs.est.8b01219
  • Bauer, H., Fuerhacker, M., Zibuschka, F., Schmid, H., & Puxbaum, H. (2002). Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants. Water Research, 36, 3965–3970. https://doi.org/10.1016/s0043-1354(02)00121-5
  • Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: The environmental framework. Nature Reviews Microbiology, 13, 310–317. https://doi.org/10.1038/nrmicro3439
  • Berglund, B. (2015). Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infection Ecology & Epidemiology, 5, 28564. https://doi.org/10.3402/iee.v5.28564
  • Booton, R. D., Meeyai, A., Alhusein, N., Buller, H., Feil, E., Lambert, H., Mongkolsuk, S., Pitchforth, E., Reyher, K. K., Sakcamduang, W., Satayavivad, J., Singer, A. C., Sringernyuang, L., Thamlikitkul, V., Vass, L., Avison, M. B., Turner, K. M. E., & OH-DART Study Group. (2021). One Health drivers of antibacterial resistance: Quantifying the relative impacts of human, animal and environmental use and transmission. One Health, 12, 100220. https://doi.org/10.1016/j.onehlt.2021.100220
  • Borgia, S., Lastovetska, O., Richardson, D., Eshaghi, A., Xiong, J., Chung, C., Baqi, M., McGeer, A., Ricci, G., Sawicki, R., Pantelidis, R., Low, D. E., Patel, S. N., & Melano, R. G. (2012). Outbreak of carbapenem-resistant enterobacteriaceae containing blaNDM-1, Ontario, Canada. Clinical Infectious Diseases, 55, e109–e117. https://doi.org/10.1093/cid/cis737
  • Brandi, G., Sisti, M., & Amagliani, G. (2000). Evaluation of the environmental impact of microbial aerosols generated by wastewater treatment plants utilizing different aeration systems. Journal of Applied Microbiology, 88, 845–852. https://doi.org/10.1046/j.1365-2672.2000.01024.x
  • Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim, S. S., Kan, H. D., Walker, K. D., Thurston, G. D., Hayes, R. B., … Spadaro, J. V. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 115, 9592–9597. https://doi.org/10.1073/pnas.1803222115
  • Cáliz, J., Triadó-Margarit, X., Camarero, L., & Casamayor, E. O. (2018). A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proceedings of the National Academy of Sciences of the United States of America, 115, 12229–12234. https://doi.org/10.1073/pnas.1812826115
  • Cao, C., Jiang, W. J., Wang, B. Y., Fang, J. H., Lang, J. D., Tian, G., Jiang, J. K., & Zhu, T. F. (2014). Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environmental Science & Technology, 48, 1499–1507. https://doi.org/10.1021/es4048472
  • Chapin, A., Rule, A., Gibson, K., Buckley, T., & Schwab, K. (2005). Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environmental Health Perspectives, 113, 137–142. https://doi.org/10.1289/ehp.7473
  • Che, Y., Yang, Y., Xu, X., Břinda, K., Polz, M. F., Hanage, W. P., & Zhang, T. (2021). Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proceedings of the National Academy of Sciences, 118, e2008731118. https://doi.org/10.1073/pnas.2008731118
  • Chen, B. W., Yang, Y., Liang, X. M., Yu, K., Zhang, T., & Li, X. D. (2013). Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environmental Science & Technology, 47, 12753–12760. https://doi.org/10.1021/es403818e
  • Chen, B. W., Yuan, K., Chen, X., Yang, Y., Zhang, T., Wang, Y. W., Luan, T. G., Zou, S. C., & Li, X. D. (2016). Metagenomic analysis revealing antibiotic resistance genes (ARGs) and their genetic compartments in the Tibetan environment. Environmental Science & Technology, 50, 6670–6679. https://doi.org/10.1021/acs.est.6b00619
  • Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S., & Laxminarayan, R. (2018). Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. The Lancet Planetary Health, 2, e398–e405. https://doi.org/10.1016/S2542-5196(18)30186-4
  • Dickson, R. P., & Huffnagle, G. B. (2015). The lung microbiome: New principles for respiratory bacteriology in health and disease. PLoS Pathogens, 11, e1004923. https://doi.org/10.1371/journal.ppat.1004923
  • Duan, Y. T., Gao, H. H., Zheng, L. Y., Liu, S. Q., Cao, Y., Zhu, S. Y., Wu, Z. Z., Ren, H. Q., Mao, D. Q., & Luo, Y. (2020). Antibiotic resistance and virulence of extraintestinal pathogenic Escherichia coli (ExPEC) vary according to molecular types. Frontiers in Microbiology, 11, 598305. https://doi.org/10.3389/fmicb.2020.598305
  • Ebmeyer, S., Kristiansson, E., & Larsson, D. G. J. (2021). A framework for identifying the recent origins of mobile antibiotic resistance genes. Communications Biology, 4, 8. https://doi.org/10.1038/s42003-020-01545-5
  • Eduard, W., Douwes, J., Mehl, R., Heederik, D., & Melbostad, E. (2001). Short term exposure to airborne microbial agents during farm work: Exposure-response relations with eye and respiratory symptoms. Occupational and Environmental Medicine, 58, 113–118. https://doi.org/10.1136/oem.58.2.113
  • Fathi, S., Hajizadeh, Y., Nikaeen, M., & Gorbani, M. (2017). Assessment of microbial aerosol emissions in an urban wastewater treatment plant operated with activated sludge process. Aerobiologia, 33, 507–515. https://doi.org/10.1007/s10453-017-9486-2
  • Fernandez, M. O., Thomas, R. J., Oswin, H., Haddrell, A. E., & Reid, J. P. (2020). Transformative approach to investigate the microphysical factors influencing airborne transmission of pathogens. Applied and Environmental Microbiology, 86, e01543-20. https://doi.org/10.1128/AEM.01543-20
  • Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: The agents of open source evolution. Nature Reviews Microbiology, 3, 722–732. https://doi.org/10.1038/nrmicro1235
  • Gandolfi, I., Franzetti, A., Bertolini, V., Gaspari, E., & Bestetti, G. (2011). Antibiotic resistance in bacteria associated with coarse atmospheric particulate matter in an urban area. Journal of Applied Microbiology, 110, 1612–1620. https://doi.org/10.1111/j.1365-2672.2011.05018.x
  • Gao, X. L., Shao, M. F., Luo, Y., Dong, Y. F., Ouyang, F., Dong, W. Y., & Li, J. (2016). Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. Science of the Total Environment, 572, 681–687. https://doi.org/10.1016/j.scitotenv.2016.06.208
  • Gat, D., Mazar, Y., Cytryn, E., & Rudich, Y. (2017). Origin-dependent variations in the atmospheric microbiome community in eastern mediterranean dust storms. Environmental Science & Technology, 51, 6709–6718. https://doi.org/10.1021/acs.est.7b00362
  • Gibbs, S. G., Green, C. F., Tarwater, P. M., Mota, L. C., Mena, K. D., & Scarpino, P. V. (2006). Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation. Environmental Health Perspectives, 114, 1032–1037. https://doi.org/10.1289/ehp.8910
  • Gilbert, Y., Veillette, M., & Duchaine, C. (2010). Airborne bacteria and antibiotic resistance genes in hospital rooms. Aerobiologia, 26, 185–194. https://doi.org/10.1007/s10453-010-9155-1
  • Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y. G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9, 1269–1279. https://doi.org/10.1038/ismej.2014.226
  • Gotkowska‐Płachta, A., Filipkowska, Z., Korzeniewska, E., Janczukowicz, W., Dixon, B., Gołaś, I., & Szwalgin, D. (2013). Airborne microorganisms emitted from wastewater treatment plant treating domestic wastewater and meat processing industry wastes. CLEAN - Soil, Air, Water, 41, 429–436. https://doi.org/10.1002/clen.201100466
  • Han, I., & Yoo, K. (2020). Metagenomic profiles of antibiotic resistance genes in activated sludge, dewatered sludge and bioaerosols. Water, 12, 1516. https://doi.org/10.3390/w12061516
  • Han, Y. P., Yang, K. X., Yang, T., Zhang, M. Z., & Li, L. (2019). Bioaerosols emission and exposure risk of a wastewater treatment plant with A2O treatment process. Ecotoxicology and Environmental Safety, 169, 161–168. https://doi.org/10.1016/j.ecoenv.2018.11.018
  • Han, Y. P., Yang, T., Chen, T. Z., Li, L., & Liu, J. X. (2019). Characteristics of submicron aerosols produced during aeration in wastewater treatment. Science of the Total Environment, 696, 134019. https://doi.org/10.1016/j.scitotenv.2019.134019
  • He, H., Zhou, P. R., Shimabuku, K. K., Fang, X. Z., Li, S., Lee, Y. H., & Dodd, M. C. (2019). Degradation and deactivation of bacterial antibiotic resistance genes during exposure to fee chlorine, monochloramine, chlorine dioxide, ozone, ultraviolet light, and hydroxyl radical. Environmental Science & Technology, 53, 2013–2026. https://doi.org/10.1021/acs.est.8b04393
  • He, P., Wu, Y., Huang, W., Wu, X., Lv, J., Liu, P., Bu, L., Bai, Z., Chen, S., Feng, W., & Yang, Z. (2020). Characteristics of and variation in airborne ARGs among urban hospitals and adjacent urban and suburban communities: A metagenomic approach. Environment International, 139, 105625. https://doi.org/10.1016/j.envint.2020.105625
  • He, T. T., Jin, L., & Li, X. D. (2021). On the triad of air PM pollution, pathogenic bioaerosols, and lower respiratory infection. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01025-7
  • He, T. T., Jin, L., Xie, J. W., Yue, S. Y., Fu, P. Q., & Li, X. D. (2021). Intracellular and extracellular antibiotic resistance genes in airborne PM2.5 for respiratory exposure in urban areas. Environmental Science & Technology Letters, 8, 128–134. https://doi.org/10.1021/acs.estlett.0c00974
  • Health Effects Institute. (2020). State of global air. Special report. https://www.stateofglobalair.org
  • Hernando-Amado, S., Coque, T. M., Baquero, F., & Martínez, J. L. (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 4, 1432–1442. https://doi.org/10.1038/s41564-019-0503-9
  • Hsiao, T.-C., Lin, A. Y.-C., Lien, W.-C., & Lin, Y.-C. (2020). Size distribution, biological characteristics and emerging contaminants of aerosols emitted from an urban wastewater treatment plant. Journal of Hazardous Materials, 388, 121809. https://doi.org/10.1016/j.jhazmat.2019.121809
  • Hu, J. L., Zhao, F. Z., Zhang, X. X., Li, K., Li, C. R., Ye, L., & Li, M. (2018). Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Science of the Total Environment, 615, 1332–1340. https://doi.org/10.1016/j.scitotenv.2017.09.222
  • Huijbers, P., Blaak, H., de Jong, M. C. M., Graat, E. A. M., Vandenbroucke-Grauls, C. M. J. E., & De Roda Husman, A. M. (2015). Role of the environment in the transmission of antimicrobial resistance to humans: A review. Environmental Science & Technology, 49, 11993–12004. https://doi.org/10.1021/acs.est.5b02566
  • Jin, L., Luo, X. S., Fu, P. Q., & Li, X. D. (2017). Airborne particulate matter pollution in urban China: A chemical mixture perspective from sources to impacts. National Science Review, 4, 593–610. https://doi.org/10.1093/nsr/nww079
  • Jin, L., Xie, J. W., Wong, C. K. C., Chan, S. K. Y., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., Li, J., Zhang, G., Fu, P. Q., & Li, X. D. (2019). Contributions of city-specific fine particulate matter (PM2.5) to differential in vitro oxidative stress and toxicity implications between Beijing and Guangzhou of China. Environmental Science & Technology, 53, 2881–2891. https://doi.org/10.1021/acs.est.9b00449
  • Kim, D. W., & Cha, C. J. (2021). Antibiotic resistome from the One-Health perspective: Understanding and controlling antimicrobial resistance transmission. Experimental & Molecular Medicine, 53, 301–309. https://doi.org/10.1038/s12276-021-00569-z
  • Knight, G. M., Costelloe, C., Deeny, S. R., Moore, L. S. P., Hopkins, S., Johnson, A. P., Robotham, J. V., & Holmes, A. H. (2018). Quantifying where human acquisition of antibiotic resistance occurs: A mathematical modelling study. BMC Medicine, 16, 137. https://doi.org/10.1186/s12916-018-1121-8
  • Knights, D., Kuczynski, J., Charlson, E. S., Zaneveld, J., Mozer, M. C., Collman, R. G., Bushman, F. D., Knight, R., & Kelley, S. T. (2011). Bayesian community-wide culture-independent microbial source tracking. Nature Methods, 8, 761–763. https://doi.org/10.1038/nmeth.1650
  • Kormuth, K. A., Lin, K. S., Prussin, A. J., Vejerano, E. P., Tiwari, A. J., Cox, S. S., Myerburg, M. M., Lakdawala, S. S., & Marr, L. C. (2018). Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity. The Journal of Infectious Diseases, 218, 739–747. https://doi.org/10.1093/infdis/jiy221
  • Kraupner, N., Hutinel, M., Schumacher, K., Gray, D. A., Genheden, M., Fick, J., Flach, C. F., & Larsson, D. G. J. (2021). Evidence for selection of multi-resistant E. coli by hospital effluent. Environment International, 150, 106436. https://doi.org/10.1016/j.envint.2021.106436
  • Kwon, H. S., Ryu, M. H., & Carlsten, C. (2020). Ultrafine particles: Unique physicochemical properties relevant to health and disease. Experimental & Molecular Medicine, 52, 318–328. https://doi.org/10.1038/s12276-020-0405-1
  • Larsson, D. J., Andremont, A., Bengtsson-Palme, J., Brandt, K. K., de Roda Husman, A. M., Fagerstedt, P., Fick, J., Flach, C. F., Gaze, W. H., Kuroda, M., Kvint, K., Laxminarayan, R., Manaia, C. M., Nielsen, K. M., Plant, L., Ploy, M. C., Segovia, C., Simonet, P., Smalla, K., … Wernersson, A. S. (2018). Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environment International, 117, 132–138. https://doi.org/10.1016/j.envint.2018.04.041
  • Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Røttingen, J. A., Klugman, K., & Davies, S. (2016). Access to effective antimicrobials: A worldwide challenge. The Lancet, 387, 168–175. https://doi.org/10.1016/S0140-6736(15)00474-2
  • Li, B., Yang, Y., Ma, L. P., Ju, F., Guo, F., Tiedje, J. M., & Zhang, T. (2015). Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal, 9, 2490–2502. https://doi.org/10.1038/ismej.2015.59
  • Li, J., Cao, J. J., Zhu, Y. G., Chen, Q. L., Shen, F. X., Wu, Y., Xu, S. Y., Fan, H. Q., Da, G., Huang, R. J., Wang, J., de Jesus, A. L., Morawska, L., Chan, C. K., Peccia, J., & Yao, M. S. (2018). Global survey of antibiotic resistance genes in air. Environmental Science & Technology, 52, 10975–10984. https://doi.org/10.1021/acs.est.8b02204
  • Li, J., Zhou, L. T., Zhang, X. Y., Xu, C. J., Dong, L. M., & Yao, M. S. (2016). Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmospheric Environment, 124, 404–412. https://doi.org/10.1016/j.atmosenv.2015.06.030
  • Li, J. L., Hu, Y. R., Liu, L. J., Wang, Q., Zeng, J. H., & Chen, C. S. (2020). PM2.5 exposure perturbs lung microbiome and its metabolic profile in mice. Science of the Total Environment, 721, 137432. https://doi.org/10.1016/j.scitotenv.2020.137432
  • Li, J. Y., Bi, Z. W., Ma, S. Z., Chen, B. L., Cai, C., He, J. J., Schwarz, S., Sun, C. T., Zhou, Y. Q., Yin, J., Hulth, A., Wang, Y. Q., Shen, Z. Q., Wang, S. L., Wu, C. M., Nilsson, L. E., Walsh, T. R., Börjesson, S., Shen, J. Z., Sun, Q., & Wang, Y. (2019). Inter-host transmission of carbapenemase-producing Escherichia coli among humans and backyard animals. Environmental Health Perspectives, 127, 107009. https://doi.org/10.1289/EHP5251
  • Li, L., Gao, M., & Liu, J. X. (2011). Distribution characterization of microbial aerosols emitted from a wastewater treatment plant using the Orbal oxidation ditch process. Process Biochemistry, 46, 910–915. https://doi.org/10.1016/j.procbio.2010.12.016
  • Li, L. G., Yin, X., & Zhang, T. (2018). Tracking antibiotic resistance gene pollution from different sources using machine-learning classification. Microbiome, 6, 93. https://doi.org/10.1186/s40168-018-0480-x
  • Li, L. Y., Wang, Q., Bi, W., Hou, J., Xue, Y. G., Mao, D. Q., Das, R., Luo, Y., & Li, X. D. (2020). Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes. Environmental Science & Technology, 54, 3900–3908. https://doi.org/10.1021/acs.est.9b07641
  • Li, X. D., Jin, L., & Kan, H. (2019). Air pollution: A global problem needs local fixes. Nature, 570, 437–439. https://doi.org/10.1038/d41586-019-01960-7
  • Li, Y. P., Zhang, H. F., Qiu, X. H., Zhang, Y. R., & Wang, H. R. (2013). Dispersion and risk assessment of bacterial aerosols emitted from rotating-brush aerator during summer in a wastewater treatment plant of Xi’an. Aerosol and Air Quality Research, 13, 1807–1814. https://doi.org/10.4209/aaqr.2012.09.0245
  • Liang, Z. S., Yu, Y., Ye, Z. K., Li, G. Y., Wang, W. J., & An, T. C. (2020). Pollution profiles of antibiotic resistance genes associated with airborne opportunistic pathogens from typical area, Pearl River Estuary and their exposure risk to human. Environment International, 143, 105934. https://doi.org/10.1016/j.envint.2020.105934
  • Lin, D. C., Chen, K. C., Guo, J. B., Ye, L. W., Li, R. C., Chan, E. W. C., & Chen, S. (2020). Contribution of biofilm formation genetic locus, pgaABCD, to antibiotic resistance development in gut microbiome. Gut Microbes, 12, 1–12. https://doi.org/10.1080/19490976.2020.1842992
  • Lin, H. L., Tao, J., Kan, H. D., Qian, Z. M., Chen, A. L., Du, Y. D., Liu, T., Zhang, Y. H., Qi, Y. Q., Ye, J. J., Li, S. M., Li, W. L., Xiao, J. P., Zeng, W. L., Li, X., Stamatakis, K. A., Chen, X. Y., & Ma, W. J. (2018). Ambient particulate matter air pollution associated with acute respiratory distress syndrome in Guangzhou, China. Journal of Exposure Science & Environmental Epidemiology, 28, 392–399. https://doi.org/10.1038/s41370-018-0034-0
  • Lin, K. S., & Marr, L. C. (2020). Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics. Environmental Science & Technology, 54, 1024–1032. https://doi.org/10.1021/acs.est.9b04959
  • Ling, A. L., Pace, N. R., Hernandez, M. T., & LaPara, T. M. (2013). Tetracycline resistance and Class 1 integron genes associated with indoor and outdoor aerosols. Environmental Science & Technology, 47, 4046–4052. https://doi.org/10.1021/es400238g
  • Mackenzie, J. S., & Jeggo, M. (2019). The One Health approach—Why is it so important? Tropical Medicine and Infectious Disease, 4, 88. https://doi.org/10.3390/tropicalmed4020088
  • Manaia, C. M. (2017). Assessing the risk of antibiotic resistance transmission from the environment to humans: Non-direct proportionality between abundance and risk. Trends in Microbiology, 25, 173–181. https://doi.org/10.1016/j.tim.2016.11.014
  • Mao, Y. X., Ding, P., Wang, Y. B., Ding, C., Wu, L. P., Zheng, P., Zhang, X., Li, X., Wang, L. Y., & Sun, Z. K. (2019). Comparison of culturable antibiotic-resistant bacteria in polluted and non-polluted air in Beijing. Environment International, 131, 104936. https://doi.org/10.1016/j.envint.2019.104936
  • Martinez, J. L. (2012). Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Frontiers in Microbiology, 2, 265. https://doi.org/10.3389/fmicb.2011.00265
  • Martinez, J. L., & Baquero, F. (2000). Mutation frequencies and antibiotic resistance. Antimicrobial Agents and Chemotherapy, 44, 1771–1777. https://doi.org/10.1128/AAC.44.7.1771-1777.2000
  • Mazar, Y., Cytryn, E., Erel, Y., & Rudich, Y. (2016). Effect of dust storms on the atmospheric microbiome in the Eastern Mediterranean. Environmental Science & Technology, 50, 4194–4202. https://doi.org/10.1021/acs.est.5b06348
  • McEachran, A. D., Blackwell, B. R., Hanson, J. D., Wooten, K. J., Mayer, G. D., Cox, S. B., & Smith, P. N. (2015). Antibiotics, bacteria, and antibiotic resistance genes: Aerial transport from cattle feed yards via particulate matter. Environmental Health Perspectives, 123, 337–343. https://doi.org/10.1289/ehp.1408555
  • Melbostad, E., Eduard, W., Skogstad, A., Sandven, P., Lassen, J., Søstrand, P., & Heldal, K. (1994). Exposure to bacterial aerosols and work-related symptoms in sewage workers . American Journal of Industrial Medicine, 25, 59–63. https://doi.org/10.1002/ajim.4700250116
  • Meng, X., Ma, Y. J., Chen, R. J., Zhou, Z. J., Chen, B. H., & Kan, H. D. (2013). Size-fractionated particle number concentrations and daily mortality in a Chinese city. Environmental Health Perspectives, 121, 1174–1178. https://doi.org/10.1289/ehp.1206398
  • Merlin, C. (2020). Reducing the consumption of antibiotics: Would that be enough to slow down the dissemination of resistances in the downstream environment? Frontiers in Microbiology, 11, 33. https://doi.org/10.3389/fmicb.2020.00033
  • Mokoena, K. K., Ethan, C. J., Yu, Y., Shale, K., & Liu, F. (2019). Ambient air pollution and respiratory mortality in Xi’an, China: A time-series analysis. Respiratory Research, 20, 139. https://doi.org/10.1186/s12931-019-1117-8
  • Molton, J. S., Tambyah, P. A., Ang, B. S., Ling, M. L., & Fisher, D. A. (2013). The global spread of healthcare-associated multidrug-resistant bacteria: A perspective from Asia. Clinical Infectious Diseases, 56, 1310–1318. https://doi.org/10.1093/cid/c20
  • Murray, A. K., Stanton, I. C., Wright, J., Zhang, L. H., Snape, J., & Gaze, W. H. (2020). The ‘SELection End points in Communities of bacTeria’ (SELECT) method: A novel experimental assay to facilitate risk assessment of selection for antimicrobial resistance in the environment. Environmental Health Perspectives, 128, 107007. https://doi.org/10.1289/EHP6635
  • Murray, R., Tien, Y. C., Scott, A., & Topp, E. (2019). The impact of municipal sewage sludge stabilization processes on the abundance, field persistence, and transmission of antibiotic resistant bacteria and antibiotic resistance genes to vegetables at harvest. Science of the Total Environment, 651, 1680–1687. https://doi.org/10.1016/j.scitotenv.2018.10.030
  • Mushtaq, N., Ezzati, M., Hall, L., Dickson, I., Kirwan, M., Png, K. M. Y., Mudway, I. S., & Grigg, J. (2011). Adhesion of Streptococcus pneumoniae to human airway epithelial cells exposed to urban particulate matter. The Journal of Allergy and Clinical Immunology, 127, 1236–1242.e2. https://doi.org/10.1016/j.jaci.2010.11.039
  • Nadimpalli, M. L., Stewart, J. R., Pierce, E., Pisanic, N., Love, D. C., Hall, D., Larsen, J., Carroll, K. C., Tekle, T., Perl, T. M., & Heaney, C. D. (2018). Face mask use and persistence of livestock-associated Staphylococcus aureus nasal carriage among industrial hog operation workers and Household contacts, USA. Environmental Health Perspectives, 126, 127005. https://doi.org/10.1289/EHP3453
  • Nihemaiti, M., Yoon, Y., He, H., Dodd, M. C., Croue, J. P., & Lee, Y. (2020). Degradation and deactivation of a plasmid-encoded extracellular antibiotic resistance gene during separate and combined exposures to UV254 and radicals. Water Research, 182, 115921. https://doi.org/10.1016/j.watres.2020.115921
  • Niu, Y., Chen, R. J., Wang, C. P., Wang, W. D., Jiang, J., Wu, W. D., Cai, J., Zhao, Z. H., Xu, X. H., & Kan, H. D. (2020). Ozone exposure leads to changes in airway permeability, microbiota and metabolome: A randomised, double-blind, crossover trial. European Respiratory Journal, 2020, 56. https://doi.org/10.1183/13993003.00165-2020
  • O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance.
  • Pal, C., Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2016). The structure and diversity of human, animal and environmental resistomes. Microbiome, 4, 54. https://doi.org/10.1186/s40168-016-0199-5
  • Pruden, A., Pei, R., Storteboom, H., & Carlson, K. H. (2006). Antibiotic resistance genes as emerging contaminants: Studies in Northern Colorado. Environmental Science & Technology, 40, 7445–7450. https://doi.org/10.1021/es060413l
  • Psoter, K. J., De Roos, A. J., Wakefield, J., Mayer, J. D., & Rosenfeld, M. (2017). Air pollution exposure is associated with MRSA acquisition in young U.S. children with cystic fibrosis. BMC Pulmonary Medicine, 17, 106. https://doi.org/10.1186/s12890-017-0449-8
  • Rodo, X., Curcoll, R., Robinson, M., Ballester, J., Burns, J. C., Cayan, D. R., Lipkin, W. I., Williams, B. L., Couto-Rodriguez, M., Nakamura, Y., Uehara, R., Tanimoto, H., & Morgui, J.-A. (2014). Tropospheric winds from northeastern China carry the etiologic agent of Kawasaki disease from its source to Japan. Proceedings of the National Academy of Sciences of the United States of America, 111, 7952–7957. https://doi.org/10.1073/pnas.1400380111
  • Scott, D. M., & Lesher, E. (1963). Effect of ozone on survival and permeability of Escherichia coli. Journal of Bacteriology, 85, 567–576. https://doi.org/10.1128/jb.85.3.567-576.1963
  • Seurat, E., Verdin, A., Cazier, F., Courcot, D., Fitoussi, R., Vié, K., Desauziers, V., Momas, I., Seta, N., & Achard, S. (2021). Influence of the environmental relative humidity on the inflammatory response of skin model after exposure to various environmental pollutants. Environmental Research, 196, 110350. https://doi.org/10.1016/j.envres.2020.110350
  • Shen, Y. B., Zhou, H. W., Xu, J., Wang, Y. Q., Zhang, Q. J., Walsh, T. R., Shao, B., Wu, C. M., Hu, Y. Y., Yang, L., Shen, Z. Q., Wu, Z. W., Sun, Q. L., Ou, Y. N., Wang, Y. L., Wang, S. L., Wu, Y. N., Cai, C., Li, J., Shen, J. Z., … Wang, Y. (2018). Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nature Microbiology, 3, 1054–1062. https://doi.org/10.1038/s41564-018-0205-8
  • Shuyler, L. R. (1973). National animal feedlot waste research program. E.P.A.-R2-73-157 Environmental Protection Agency.
  • Smalla, K., Cook, K., Djordjevic, S. P., Klümper, U., & Gillings, M. (2018). Environmental dimensions of antibiotic resistance: Assessment of basic science gaps. FEMS Microbiology Ecology, 94, fiy195. https://doi.org/10.1093/femsec/fiy195
  • Smets, W., Moretti, S., Denys, S., & Lebeer, S. (2016). Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139, 214–221. https://doi.org/10.1016/j.atmosenv.2016.05.038
  • Smith, D. J., Jaffe, D. A., Birmele, M. N., Griffin, D. W., Schuerger, A. C., Hee, J., & Roberts, M. S. (2012). Free tropospheric transport of microorganisms from Asia to North America. Microbial Ecology, 64, 973–985. https://doi.org/10.1007/s00248-012-0088-9
  • Song, T. L., Wang, S., Zhang, Y. Y., Song, J. W., Liu, F. B., Fu, P. Q., Shiraiwa, M., Xie, Z. Y., Yue, D. L., Zhong, L. J., Zheng, J. Y., & Lai, S. C. (2017). Proteins and amino acids in fine particulate matter in rural Guangzhou, southern China: Seasonal cycles, sources, and atmospheric processes. Environmental Science & Technology, 51, 6773–6781. https://doi.org/10.1021/acs.est.7b00987
  • Surette, M. D., & Wright, G. D. (2017). Lessons from the environmental antibiotic resistome. Annual Review of Microbiology, 71, 309–329. https://doi.org/10.1146/annurev-micro-090816-093420
  • Sun, X. Z., Li, D. M., Li, B., Sun, S. J., Yabo, S. D., Geng, J. L., Ma, L. X., & Qi, H. (2020). Exploring the disparity of inhalable bacterial communities and antibiotic resistance genes between hazy days and non-hazy days in a cold megacity in Northeast China. Journal of Hazardous Materials, 398, 122984. https://doi.org/10.1016/j.jhazmat.2020.122984
  • Thanomsub, B., Anupunpisit, V., Chanphetch, S., Watcharachaipong, T., Poonkhum, R., & Srisukonth, C. (2002). Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. The Journal of General and Applied Microbiology, 48, 193–199. https://doi.org/10.2323/jgam.48.193
  • Tiwari, A. J., Fields, C. G., & Marr, L. C. (2013). A cost-effective method of aerosolizing dry powdered nanoparticles. Aerosol Science and Technology, 47, 1267–1275. https://doi.org/10.1080/02786826.2013.834292
  • Udikovic-Kolic, N., Wichmann, F., Broderick, N. A., & Handelsman, J. (2014). Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proceedings of the National Academy of Sciences of the United States of America, 111, 15202–15207. https://doi.org/10.1073/pnas.1409836111
  • UNEP (2017). Frontiers 2017 Emerging Issues of Environmental Concern. United Nations Environment Programme, Nairobi.
  • van Hoek, A. H. A. M., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. M. (2011). Acquired antibiotic resistance genes: An overview. Frontiers in Microbiology, 2, 203. https://doi.org/10.3389/fmicb.2011.00203
  • Vikesland, P. J., Pruden, A., Alvarez, P. J. J., Aga, D., Bürgmann, H., Li, X. D., Manaia, C. M., Nambi, I., Wigginton, K., Zhang, T., & Zhu, Y. G. (2017). Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. Environmental Science & Technology, 51, 13061–13069. https://doi.org/10.1021/acs.est.7b03623
  • Wang, R. N., Li, X., & Yan, C. (2021). Seasonal fluctuation of aerosolization ratio of bioaerosols and quantitative microbial risk assessment in a wastewater treatment plant. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15462-5
  • Wang, S., Song, T., Shiraiwa, M., Song, J., Ren, H., Ren, L., Wei, L., Sun, Y., Zhang, Y., Fu, P., & Lai, S. (2019). Occurrence of aerosol proteinaceous matter in urban Beijing: An investigation on composition, sources, and atmospheric processes during the “APEC Blue” period. Environmental Science & Technology, 53, 7380–7390. https://doi.org/10.1021/acs.est.9b00726
  • Wang, Y., Lu, J., Engelstädter, J., Zhang, S., Ding, P. B., Mao, L. K., Yuan, Z. G., Bond, P. L., & Guo, J. H. (2020). Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. The ISME Journal, 14, 2179–2196. https://doi.org/10.1038/s41396-020-0679-2
  • Wang, Y. Z., Wang, C., & Song, L. (2019). Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: Exposure risk to human. Science of the Total Environment, 694, 133750. https://doi.org/10.1016/j.scitotenv.2019.133750
  • Wardyn, S. E., Stegger, M., Price, L. B., & Smith, T. C. (2018). Whole-genome analysis of recurrent Staphylococcus aureus t571/ST398 infection in farmer, Iowa, USA. Emerging Infectious Diseases, 24, 153–154. https://doi.org/10.3201/eid2401.161184
  • Wei, K., Zou, Z. L., Zheng, Y. H., Li, J., Shen, F. X., Wu, C. Y., Wu, Y. S., Hu, M., & Yao, M. (2016). Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Science of the Total Environment, 550, 751–759. https://doi.org/10.1016/j.scitotenv.2016.01.137
  • Wengenroth, L., Berglund, F., Blaak, H., Chifiriuc, M. C., Flach, C. F., Pircalabioru, G. G., Larsson, D. G. J., Marutescu, L., Passel, M. W. J., van Passel, M. W. J., Popa, M., Radon, K., de Roda Husman, A. M., Rodríguez-Molina, D., Weinmann, T., Wieser, A., & Schmitt, H. (2021). Antibiotic resistance in wastewater treatment plants and transmission risks for employees and residents: The concept of the AWARE study. Antibiotics, 10, 478. https://doi.org/10.3390/antibiotics10050478
  • Winglee, K., Howard, A. G., Sha, W., Gharaibeh, R. Z., Liu, J. W., Jin, D. H., Fodor, A. A., & Gordon-Larsen, P. (2017). Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 5, 121. https://doi.org/10.1186/s40168-017-0338-7
  • Wu, B. G., Kapoor, B., Cummings, K. J., Stanton, M. L., Nett, R. J., Kreiss, K., Abraham, J. L., Colby, T. V., Franko, A. D., Green, F. H. Y., Sanyal, S., Clemente, J. C., Gao, Z., Coffre, M., Meyn, P., Heguy, A., Li, Y., Sulaiman, I., Borbet, T. C., … Segal, L. N. (2020). Evidence for environmental-human microbiota transfer at a manufacturing facility with novel work-related respiratory disease. American Journal of Respiratory and Critical Care Medicine, 202, 1678–1688. https://doi.org/10.1164/rccm.202001-0197OC
  • Wu, D., Huang, X. H., Sun, J. Z., Graham, D. W., & Xie, B. (2017). Antibiotic resistance genes and associated microbial community conditions in aging landfill systems. Environmental Science & Technology, 51, 12859–12867. https://doi.org/10.1021/acs.est.7b03797
  • Xie, J. W., Jin, L., He, T. T., Chen, B. W., Luo, X. S., Feng, B., Huang, W., Li, J., Fu, P. Q., & Li, X. D. (2019). Bacteria and antibiotic resistance genes (ARGs) in PM2.5 from China: Implications for human exposure. Environmental Science & Technology, 53, 963–972. https://doi.org/10.1021/acs.est.8b04630
  • Xie, J. W., Jin, L., Luo, X. S., Zhao, Z., & Li, X. D. (2018). Seasonal disparities in airborne bacteria and associated antibiotic resistance genes in PM2.5 between urban and rural sites. Environmental Science & Technology Letters, 5, 74–79. https://doi.org/10.1021/acs.estlett.7b00561
  • Xie, S. S., Gu, A. Z., Cen, T. Y., Li, D., & Chen, J. M. (2019). The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes. Science of the Total Environment, 683, 116–123. https://doi.org/10.1016/j.scitotenv.2019.05.115
  • Xu, H., Chen, Z. Y., Huang, R. Y., Cui, Y. X., Li, Q., Zhao, Y. H., Wang, X. L., Mao, D. Q., Luo, Y., & Ren, H. Q. (2021). Antibiotic resistance gene-carrying plasmid spreads into the plant endophytic bacteria using soil bacteria as carriers. Environmental Science & Technology, 55, 10462–10470. https://doi.org/10.1021/acs.est.1c01615
  • Xu, Y., Xiao, H., Wu, D., & Long, C. (2020). Abiotic and biological degradation of atmospheric proteinaceous matter can contribute significantly to dissolved amino acids in wet deposition. Environmental Science & Technology, 54, 6551–6561. https://doi.org/10.1021/acs.est.0c00421
  • Yang, K., Li, L., Wang, Y., Xue, S., Han, Y., & Liu, J. (2019). Airborne bacteria in a wastewater treatment plant: Emission characterization, source analysis and health risk assessment. Water Research, 149, 596–606. https://doi.org/10.1016/j.watres.2018.11.027
  • Yang, Y., Zhou, R. J., Chen, B. W., Zhang, T., Hu, L. G., & Zou, S. C. (2018). Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach. Chemosphere, 213, 463–471. https://doi.org/10.1016/j.chemosphere.2018.09.066
  • Zhang, L. D., Forst, C. V., Gordon, A., Gussin, G., Geber, A. B., Fernandez, P. J., Ding, T., Lashua, L., Wang, M. H., Balmaseda, A., Bonneau, R., Zhang, B., & Ghedin, E. (2020). Characterization of antibiotic resistance and host-microbiome interactions in the human upper respiratory tract during influenza infection. Microbiome, 8, 39. https://doi.org/10.1186/s40168-020-00803-2
  • Zhang, M. Y., Zuo, J. N., Yu, X., Shi, X. C., Chen, L., & Li, Z. X. (2018). Quantification of multi-antibiotic resistant opportunistic pathogenic bacteria in bioaerosols in and around a pharmaceutical wastewater treatment plant. Journal of Environmental Sciences, 72, 53–63. https://doi.org/10.1016/j.jes.2017.12.011
  • Zhang, T., Li, X. Y., Wang, M. F., Chen, H. X., Yang, Y., Chen, Q. L., & Yao, M. S. (2019). Time-resolved spread of antibiotic resistance genes in highly polluted air. Environment International, 127, 333–339. https://doi.org/10.1016/j.envint.2019.03.006
  • Zhang, Y., Gu, A. Z., Cen, T. Y., Li, X. Y., Li, D., & Chen, J. M. (2018). Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes. Environment International, 114, 280–287. https://doi.org/10.1016/j.envint.2018.02.038
  • Zhao, Y. H., Chen, Z. Y., Hou, J., Mao, D. Q., Lin, H., Xue, Y. G., & Luo, Y. (2020). Monitoring antibiotic resistomes and bacterial microbiomes in the aerosols from fine, hazy, and dusty weather in Tianjin, China using a developed high-volume tandem liquid impinging sampler. Science of the Total Environment, 731, 139242. https://doi.org/10.1016/j.scitotenv.2020.139242
  • Zhen, Q., Deng, Y., Wang, Y. Q., Wang, X. K., Zhang, H. X., Sun, X., & Ouyang, Z. Y. (2017). Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601, 703–712. https://doi.org/10.1016/j.scitotenv.2017.05.049
  • Zhou, Z. C., Shuai, X. Y., Lin, Z. J., Liu, Y., Zhu, L., & Chen, H. (2021). Prevalence of multi-resistant plasmids in hospital inhalable particulate matter (PM) and its impact on horizontal gene transfer. Environmental Pollution, 270, 116296. https://doi.org/10.1016/j.envpol.2020.116296
  • Zhu, G. B., Wang, X. M., Yang, T., Su, J. Q., Qin, Y., Wang, S. Y., Gillings, M., Wang, C., Ju, F., Lan, B. R., Liu, C. L., Li, H., Long, X. E., Wang, X. M., Jetten, M. S. M., Wang, Z. F., & Zhu, Y. G. (2021). Air pollution could drive global dissemination of antibiotic resistance genes. The ISME Journal, 15, 270–281. https://doi.org/10.1038/s41396-020-00780-2
  • Zhu, Y. G., Johnson, T. A., Su, J. Q., Qiao, M., Guo, G. X., Stedtfeld, R. D., Hashsham, S. A., & Tiedje, J. M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 110, 3435–3440. https://doi.org/10.1073/pnas.1222743110