1,184
Views
9
CrossRef citations to date
0
Altmetric
Invited Reviews

Possible pathways for mercury methylation in oxic marine waters

, &
Pages 3997-4015 | Published online: 08 Dec 2021

References

  • Agah, H., Leermakers, M., Elskens, M., Fatemi, S. M. R., & Baeyens, W. (2007). Total mercury and methyl mercury concentrations in fish from the Persian Gulf and the Caspian Sea. Water, Air, and Soil Pollution, 181(1–4), 95–105. https://doi.org/10.1007/s11270-006-9281-0
  • Agather, A. M., Bowman, K. L., Lamborg, C. H., & Hammerschmidt, C. R. (2019). Distribution of mercury species in the western Arctic Ocean (US GEOTRACES GN01). Marine Chemistry, 216, 103686. https://doi.org/10.1016/j.marchem.2019.103686
  • Akagi, H., & Sakagami, Y. (1972). Studies on photochemical alkylation of inorganic mercury. II. Alkylation of inorganic mercury in water by irradiation with sunlight or blacklight. Eisei Kagaku (Kagaku), 18(6), 358–362. https://doi.org/10.1248/jhs1956.18.358
  • Akagi, H., Fujita, M., & Sakagami, Y. (1972). Studies on photochemical alkylation of inorganic mercury. I. Alkylation of inorganic mercurial in water by ultraviolet irradiation. Eisei Kagaku (Kagaku), 18(5), 309–314. https://doi.org/10.1248/jhs1956.18.309
  • Alldredge, A. L., & Cohen, Y. (1987). Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science (New York, N.Y.), 235(4789), 689–691. https://doi.org/10.1126/science.235.4789.689
  • Andersson, M. E., Gårdfeldt, K., Wängberg, I., & Strömberg, D. (2008). Determination of Henry's law constant for elemental mercury. Chemosphere, 73(4), 587–592. https://doi.org/10.1016/j.chemosphere.2008.05.067
  • Atwell, L., Hobson, K. A., & Welch, H. E. (1998). Biomagnification and bioaccumulation of mercury in an Arctic marine food web: Insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55(5), 1114–1121. https://doi.org/10.1139/cjfas-55-5-1114
  • Azam, F., & Long, R. A. (2001). Sea snow microcosms. Nature, 414(6863), 495–498. https://doi.org/10.1038/35107174
  • Banerjee, R., & Ragsdale, S. W. (2003). The many faces of vitamin b12: Catalysis by cobalamin-dependent enzymes1. Annual Review of Biochemistry, 72, 209–247. https://doi.org/10.1146/annurev.biochem.72.121801.161828
  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. https://doi.org/10.1080/10643389.2017.1326277
  • Beckers, F., Mothes, S., Abrigata, J., Zhao, J., Gao, Y., & Rinklebe, J. (2019). Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime. The Science of the Total Environment, 672, 604–617. https://doi.org/10.1016/j.scitotenv.2019.03.401
  • Bergquist, B. A., & Blum, J. D. (2007). Mass-dependent and-independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science (New York, N.Y.), 318(5849), 417–420. http://doi.org/10.1126/science.1148050
  • Bianchi, D., Weber, T. S., Kiko, R., & Deutsch, C. (2018). Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nature Geoscience, 11(4), 263–268. https://doi.org/10.1038/s41561-018-0081-0
  • Blum, J. D., Popp, B. N., Drazen, J. C., Choy, C. A., & Johnson, M. W. (2013). Methylmercury production below the mixed layer in the north Pacific Ocean. Nature Geoscience, 6(10), 879–884. https://doi.org/10.1038/ngeo1918
  • Bowman, K. L., Collins, R. E., Agather, A. M., Lamborg, C. H., Hammerschmidt, C. R., Kaul, D., Dupont, C. L., Christensen, G. A., & Elias, D. A. (2020b). Distribution of mercury‐cycling genes in the arctic and equatorial Pacific Oceans and their relationship to mercury speciation. Limnology and Oceanography, 65(S1), S310–S320. https://doi.org/10.1002/lno.11310
  • Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H., & Swarr, G. (2015). Mercury in the north atlantic ocean: The US GEOTRACES zonal and meridional sections. Deep Sea Research Part II: Topical Studies in Oceanography, 116, 251–261. https://doi.org/10.1016/j.dsr2.2014.07.004
  • Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H., Swarr, G. J., & Agather, A. M. (2016). Distribution of mercury species across a zonal section of the eastern tropical south Pacific Ocean (US GEOTRACES GP16). Marine Chemistry, 186, 156–166. https://doi.org/10.1016/j.marchem.2016.09.005
  • Bowman, K. L., Lamborg, C. H., & Agather, A. M. (2020a). A global perspective on mercury cycling in the ocean. The Science of the Total Environment, 710, 136166–136166. https://doi.org/10.1016/j.scitotenv.2019.136166
  • Boynton, C. F., Jr., & Taylor, H. A. (1954). Photolysis of methyl bromide in the presence of mercury. The Journal of Chemical Physics, 22(11), 1929–1933. https://doi.org/10.1063/1.1739943
  • Braman, R. S., & Tompkins, M. A. (1979). Separation and determination of nanogram amounts of inorganic tin and methyltin compounds in the environment. Analytical Chemistry, 51(1), 12–19. https://doi.org/10.1021/ac50037a011
  • Bratkič, A., Tinta, T., Koron, N., Guevara, S. R., Begu, E., Barkay, T., Horvat, M., Falnoga, I., & Faganeli, J. (2018). Mercury transformations in a coastal water column (Gulf of Trieste, northern Adriatic Sea). Marine Chemistry, 200, 57–67. https://doi.org/10.1016/j.marchem.2018.01.001
  • Bratkič, A., Vahčič, M., Kotnik, J., Obu Vazner, K., Begu, E., Woodward, E. M. S., & Horvat, M. (2016). Mercury presence and speciation in the south Atlantic Ocean along the 40° s transect. Global Biogeochemical Cycles, 30(2), 105–119. https://doi.org/10.1002/2015GB005275
  • Bravo, A. G., & Cosio, C. (2020). Biotic formation of methylmercury: A bio-physico-chemical conundrum. Limnology and Oceanography, 65(5), 1010–1027. https://doi.org/10.1002/lno.11366
  • Byrd, J. T., & Andreae, M. O. (1982). Tin and methyltin species in seawater: Concentrations and fluxes. Science (New York, N.Y.), 218(4572), 565–569. https://doi.org/10.1126/science.218.4572.565
  • Canfield, D. E., Stewart, F. J., Thamdrup, B., De Brabandere, L., Dalsgaard, T., Delong, E. F., Revsbech, N. P., & Ulloa, O. (2010). A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean Coast. Science (New York, N.Y.), 330(6009), 1375–1378. https://doi.org/10.1126/science.1196889
  • Capo, E., Bravo, A. G., Soerensen, A. L., Bertilsson, S., Pinhassi, J., Feng, C., Andersson, A. F., Buck, M., & Björn, E. (2020). Marine snow as a habitat for microbial mercury methylators in the Baltic Sea. bioRxiv, https://doi.org/10.1101/2020.03.04.975987
  • Carolan, M. T., Smith, J. M., & Beman, J. (2015). Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Frontiers in Microbiology, 6, 334. https://doi.org/10.3389/fmicb.2015.00334
  • Celo, V., Lean, D. R., & Scott, S. L. (2006). Abiotic methylation of mercury in the aquatic environment. Science of the Total Environment, 368(1), 126–137. https://doi.org/10.1016/j.scitotenv.2005.09.043
  • Cerrati, G., Bernhard, M., & Weber, J. H. (1992). Model reactions for abiotic mercury (II) methylation: Kinetics of methylation of mercury (II) by mono‐, di‐, and tri‐methyltin in seawater. Applied Organometallic Chemistry, 6(7), 587–595. https://doi.org/10.1002/aoc.590060705
  • Chau, Y., Wong, P., Mojesky, C., & Carty, A. J. (1987). Transmethylation of metals in aquatic systems. Applied Organometallic Chemistry, 1(3), 235–239. https://doi.org/10.1002/aoc.590010304
  • Chen, B., Wang, T., Yin, Y., He, B., & Jiang, G. (2007). Methylation of inorganic mercury by methylcobalamin in aquatic systems. Applied Organometallic Chemistry, 21(6), 462–467. https://doi.org/10.1002/aoc.1221
  • Compeau, G., & Bartha, R. (1985). Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502. http://doi.org/10.1128/aem.50.2.498-502.1985
  • Cossa, D., Averty, B., & Pirrone, N. (2009). The origin of methylmercury in open Mediterranean waters. Limnology and Oceanography, 54(3), 837–844. https://doi.org/10.4319/lo.2009.54.3.0837
  • Cossa, D., de Madron, X. D., Schäfer, J., Lanceleur, L., Guédron, S., Buscail, R., Thomas, B., Castelle, S., & Naudin, J.-J. (2017). The open sea as the main source of methylmercury in the water column of the Gulf of Lions (Northwestern Mediterranean margin). Geochimica et Cosmochimica Acta, 199, 222–237. https://doi.org/10.1016/j.gca.2016.11.037
  • Cossa, D., Heimbürger, L.-E., Lannuzel, D., Rintoul, S. R., Butler, E. C., Bowie, A. R., Averty, B., Watson, R. J., & Remenyi, T. (2011). Mercury in the Southern Ocean. Geochimica et Cosmochimica Acta, 75(14), 4037–4052. https://doi.org/10.1016/j.gca.2011.05.001
  • DeSimone, R. E., Penley, M., Charbonneau, L., Smith, S., Wood, J., Hill, H., Pratt, J., Ridsdale, S., & Williams, R. (1973). The kinetics and mechanism of cobalamin-dependent methyl and ethyl transfer to mercuric ion. Biochimica et Biophysica Acta (BBA) – General Subjects, 304(3), 851–863. https://doi.org/10.1016/0304-4165(73)90232-8
  • Falter, R. (1999). Experimental study on the unintentional abiotic methylation of inorganic mercury during analysis: Part 1: Localisation of the compounds effecting the abiotic mercury methylation. Chemosphere, 39(7), 1051–1073. https://doi.org/10.1016/S0045-6535(99)00178-2
  • Frohne, T., Rinklebe, J., Langer, U., Laing, G. D., Mothes, S., & Wennrich, R. (2012). Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences, 9(1), 493–507. https://doi.org/10.5194/bg-9-493-2012
  • Fuchs, B. M., Woebken, D., Zubkov, M. V., Burkill, P., & Amann, R. (2005). Molecular identification of picoplankton populationsin contrasting waters of the Arabian Sea. Aquatic Microbial Ecology, 39(2), 145–157. https://doi.org/10.3354/ame039145
  • Gårdfeldt, K., Munthe, J., Strömberg, D., & Lindqvist, O. (2003). A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase. Science of the Total Environment, 304(1–3), 127–136. https://doi.org/10.1016/S0048-9697(02)00562-4
  • Gascón Díez, E., Loizeau, J.-L., Cosio, C., Bouchet, S., Adatte, T., Amouroux, D., & Bravo, A. G. (2016). Role of settling particles on mercury methylation in the oxic water column of freshwater systems. Environmental Science & Technology, 50(21), 11672–11679. https://doi.org/10.1021/acs.est.6b03260
  • Gilly, W. F., Beman, J. M., Litvin, S. Y., & Robison, B. H. (2013). Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annual Review of Marine Science, 5(1), 393–420. https://doi.org/10.1146/annurev-marine-120710-100849
  • Gionfriddo, C. M., Tate, M. T., Wick, R. R., Schultz, M. B., Zemla, A., Thelen, M. P., Schofield, R., Krabbenhoft, D. P., Holt, K. E., & Moreau, J. W. (2016). Microbial mercury methylation in Antarctic Sea ice. Nature Microbiology, 1(10), 16127. https://doi.org/10.1038/nmicrobiol.2016.127
  • Gorokhova, E., Soerensen, A. L., & Motwani, N. H. (2020). Mercury-methylating bacteria are associated with copepods: A proof-of-principle survey in the Baltic Sea. PloS One, 15(3), e0230310. https://doi.org/10.1371/journal.pone.0230310
  • Grégoire, D. S., & Poulain, A. J. (2018). Shining light on recent advances in microbial mercury cycling. FACETS, 3(1), 858–879. https://doi.org/10.1139/facets-2018-0015
  • Grose, M. R., Cainey, J. M., McMinn, A., & Gibson, J. A. (2007). Coastal marine methyl iodide source and links to new particle formation at cape grim during February 2006. Environmental Chemistry, 4(3), 172–177. https://doi.org/10.1071/EN07008
  • Hammerschmidt, C. R., & Fitzgerald, W. F. (2006). Methylmercury cycling in sediments on the continental shelf of southern New England. Geochimica et Cosmochimica Acta, 70(4), 918–930. https://doi.org/10.1016/j.gca.2005.10.020
  • Hammerschmidt, C. R., Lamborg, C. H., & Fitzgerald, W. F. (2007). Aqueous phase methylation as a potential source of methylmercury in wet deposition. Atmospheric Environment, 41(8), 1663–1668. https://doi.org/10.1016/j.atmosenv.2006.10.032
  • Heimbürger, L.-E., Cossa, D., Marty, J.-C., Migon, C., Averty, B., Dufour, A., & Ras, J. (2010). Methyl mercury distributions in relation to the presence of nano-and picophytoplankton in an oceanic water column (Ligurian Sea, north-western Mediterranean). Geochimica et Cosmochimica Acta, 74(19), 5549–5559. https://doi.org/10.1016/j.gca.2010.06.036
  • Heimbürger, L.-E., Sonke, J. E., Cossa, D., Point, D., Lagane, C., Laffont, L., Galfond, B. T., Nicolaus, M., Rabe, B., & van der Loeff, M. R. (2015). Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean. Scientific Reports, 5(1), 1–6. https://doi.org/10.1038/srep10318
  • Howell, G. N., Oconnor, M. J., Bond, A. M., Hudson, H. A., Hanna, P. J., & Strother, S. (1986). Methylmercury generation in seawater by transmethylation reactions of organolead and organotin compounds with inorganic mercury as monitored by multinuclear magnetic-resonance and electrochemical techniques. Australian Journal of Chemistry, 39(8), 1167–1175. https://doi.org/10.1071/CH9861167
  • Janssen, S. E., Schaefer, J. K., Barkay, T., & Reinfelder, J. R. (2016). Fractionation of mercury stable isotopes during microbial methylmercury production by iron- and sulfate-reducing bacteria. Environmental Science & Technology, 50(15), 8077–8083. https://doi.org/10.1021/acs.est.6b00854
  • Jewett, K., Brinckman, F., & Bellama, J. (1978). Influence of environmental parameters on transmethylation between aquated metal ions. In F. E. Brinckman & J. M. Bellama (Eds.), Organometals and organometalloids (pp. 158–187). ACS Publications. http://doi.org/10.1021/bk-1978-0082.ch011
  • Jiménez-Moreno, M., Perrot, V., Epov, V. N., Monperrus, M., & Amouroux, D. (2013). Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg(II) by methylcobalamin in aqueous chloride media. Chemical Geology, 336, 26–36. http://doi.org/10.1016/j.chemgeo.2012.08.029
  • Kaise, M., Nagai, H., Tokuhashi, K., Kondo, S., Nimura, S., & Kikuchi, O. (1994). Electron spin resonance studies of photocatalytic interface reactions of suspended M/TiO2 (M = Pt, Pd, Ir, Rh, Os, or Ru) with alcohol and acetic acid in aqueous media. Langmuir, 10(5), 1345–1347. https://doi.org/10.1021/la00017a005
  • Kerin, E. J., Gilmour, C., Roden, E., Suzuki, M., Coates, J., & Mason, R. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology, 72(12), 7919–7921. https://doi.org/10.1128/AEM.01602-06
  • Kim, H., Soerensen, A. L., Hur, J., Heimbürger, L.-E., Hahm, D., Rhee, T. S., Noh, S., & Han, S. (2017). Methylmercury mass budgets and distribution characteristics in the western Pacific Ocean. Environmental Science & Technology, 51(3), 1186–1194. https://doi.org/10.1021/acs.est.6b04238
  • King, J. K., Saunders, F. M., Lee, R. F., & Jahnke, R. A. (1999). Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environmental Toxicology and Chemistry, 18(7), 1362–1369. https://doi.org/10.1002/etc.5620180704
  • Kirk, J. L., St. Louis, V. L., Hintelmann, H., Lehnherr, I., Else, B., & Poissant, L. (2008). Methylated mercury species in marine waters of the Canadian High and Sub Arctic. Environmental Science & Technology, 42(22), 8367–8373. https://doi.org/10.1021/es801635m
  • Kraepiel, A. M., Keller, K., Chin, H. B., Malcolm, E. G., & Morel, F. M. (2003). Sources and variations of mercury in tuna. Environmental Science & Technology, 37(24), 5551–5558. https://doi.org/10.1021/es0340679
  • Krishnamurthy, S. (1992). Biomethylation and environmental transport of metals. Journal of Chemical Education, 69(5), 347. https://doi.org/10.1021/ed069p347
  • Kritee, K., Blum, J. D., Reinfelder, J. R., & Barkay, T. (2013). Microbial stable isotope fractionation of mercury: A synthesis of present understanding and future directions. Chemical Geology, 336, 13–25. https://doi.org/10.1016/j.chemgeo.2012.08.017
  • Kuss, J., Cordes, F., Mohrholz, V., Nausch, G., Naumann, M., Krüger, S., & Schulz-Bull, D. E. (2017). The impact of the major Baltic inflow of December 2014 on the mercury species distribution in the Baltic Sea. Environmental Science & Technology, 51(20), 11692–11700. https://doi.org/10.1021/acs.est.7b03011
  • Lamborg, C. H., Fitzgerald, W. F., Skoog, A., & Visscher, P. T. (2004). The abundance and source of mercury-binding organic ligands in long island sound. Marine Chemistry, 90(1–4), 151–163. https://doi.org/10.1016/j.marchem.2004.03.014
  • Lamborg, C. H., Yiğiterhan, O., Fitzgerald, W. F., Balcom, P. H., Hammerschmidt, C. R., & Murray, J. (2008). Vertical distribution of mercury species at two sites in the western Black Sea. Marine Chemistry, 111(1–2), 77–89. https://doi.org/10.1016/j.marchem.2007.01.011
  • Lavoie, R. A., Bouffard, A., Maranger, R., & Amyot, M. (2018). Mercury transport and human exposure from global marine fisheries. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-24938-3
  • Lehnherr, I. (2014). Methylmercury biogeochemistry: A review with special reference to arctic aquatic ecosystems. Environmental Reviews, 22(3), 229–243. https://doi.org/10.1139/er-2013-0059
  • Lehnherr, I., Louis, V. L. S., Hintelmann, H., & Kirk, J. L. (2011). Methylation of inorganic mercury in polar marine waters. Nature Geoscience, 4(5), 298–302. https://doi.org/10.1038/ngeo1134
  • Li, M., Schartup, A. T., Valberg, A. P., Ewald, J. D., Krabbenhoft, D. P., Yin, R., Balcom, P. H., & Sunderland, E. M. (2016). Environmental origins of methylmercury accumulated in subarctic estuarine fish indicated by mercury stable isotopes. Environmental Science & Technology, 50(21), 11559–11568. https://doi.org/10.1021/acs.est.6b03206
  • Li, Y., & Cai, Y. (2013). Progress in the study of mercury methylation and demethylation in aquatic environments. Chinese Science Bulletin, 58(2), 177–185. https://doi.org/10.1007/s11434-012-5416-4
  • Lin, H., Ascher, D. B., Myung, Y., Lamborg, C. H., Hallam, S. J., Gionfriddo, C. M., Holt, K. E., & Moreau, J. W. (2021). Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. The ISME Journal, 15(6), 1810–1825. https://doi.org/10.1038/s41396-020-00889-4
  • Liu, M., Zhang, Q., Maavara, T., Liu, S., Wang, X., & Raymond, P. A. (2021). Rivers as the largest source of mercury to coastal oceans worldwide. Nature Geoscience, 14(9), 672–677. https://doi.org/10.1038/s41561-021-00793-2
  • Lovelock, J. (1975). Natural halocarbons in the air and in the sea. Nature, 256(5514), 193–194. https://doi.org/10.1038/256193a0
  • Ma, M., Du, H., & Wang, D. (2019). Mercury methylation by anaerobic microorganisms: A review. Critical Reviews in Environmental Science and Technology, 49(20), 1893–1936. https://doi.org/10.1080/10643389.2019.1594517
  • Malcolm, E. G., Schaefer, J. K., Ekstrom, E. B., Tuit, C. B., Jayakumar, A., Park, H., Ward, B. B., & Morel, F. M. (2010). Mercury methylation in oxygen deficient zones of the oceans: No evidence for the predominance of anaerobes. Marine Chemistry, 122(1–4), 11–19. https://doi.org/10.1016/j.marchem.2010.08.004
  • Malinovsky, D., & Vanhaecke, F. (2011). Mercury isotope fractionation during abiotic transmethylation reactions. International Journal of Mass Spectrometry, 307(1–3), 214–224. https://doi.org/10.1016/j.ijms.2011.01.020
  • Mason, R. P., & Fitzgerald, W. F. (1993). The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 40(9), 1897–1924. https://doi.org/10.1016/0967-0637(93)90037-4
  • Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H., Soerensen, A. L., & Sunderland, E. M. (2012). Mercury biogeochemical cycling in the ocean and policy implications. Environmental Research, 119, 101–117. https://doi.org/10.1016/j.envres.2012.03.013
  • Mason, R. P., Morel, F. M. M., & Hemond, H. F. (1995). Methylated and elemental mercury cycling in surface and deep ocean waters of the north Atlantic. Water, Air, & Soil Pollution, 80(1–4), 775–787. https://doi.org/10.1007/BF01189719
  • Mason, R. y., & Fitzgerald, W. (1990). Alkylmercury species in the equatorial Pacific. Nature, 347(6292), 457–459. https://doi.org/10.1038/347457a0
  • Merritt, K. A., & Amirbahman, A. (2009). Mercury methylation dynamics in estuarine and coastal marine environments—A critical review. Earth-Science Reviews, 96(1–2), 54–66. https://doi.org/10.1016/j.earscirev.2009.06.002
  • Monperrus, M., Tessier, E., Amouroux, D., Leynaert, A., Huonnic, P., & Donard, O. (2007). Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Marine Chemistry, 107(1), 49–63. https://doi.org/10.1016/j.marchem.2007.01.018
  • Moore, R. M., & Groszko, W. (1999). Methyl iodide distribution in the ocean and fluxes to the atmosphere. Journal of Geophysical Research: Oceans, 104(C5), 11163–11171. https://doi.org/10.1029/1998JC900073
  • Munson, K. M. (2014). Transformations of mercury in the marine water column [Doctoral dissertation, Massachusetts Institute of Technology]. Massachusetts Institute of Technology Theses. http://hdl.handle.net/1721.1/87513
  • Munson, K. M., Lamborg, C. H., Boiteau, R. M., & Saito, M. A. (2018). Dynamic mercury methylation and demethylation in oligotrophic marine water. Biogeosciences, 15(21), 6451–6460. https://doi.org/10.5194/bg-15-6451-2018
  • Munson, K. M., Lamborg, C. H., Swarr, G. J., & Saito, M. A. (2015). Mercury species concentrations and fluxes in the central tropical Pacific Ocean. Global Biogeochemical Cycles, 29(5), 656–676. https://doi.org/10.1002/2015GB005120
  • Nagase, H., Ose, Y., & Sato, T. (1988). Possible methylation of inorganic mercury by silicones in the environment. Science of the Total Environment, 73(1–2), 29–38. https://doi.org/10.1016/0048-9697(88)90184-2
  • Nagase, H., Ose, Y., Sato, T., & Ishikawa, T. (1982). Methylation of mercury by humic substances in an aquatic environment. Science of the Total Environment, 25(2), 133–142. https://doi.org/10.1016/0048-9697(82)90082-1
  • Nagase, H., Ose, Y., Sato, T., & Ishikawa, T. (1984). Mercury methylation by compounds in humic material. Science of the Total Environment, 32(2), 147–156. https://doi.org/10.1016/0048-9697(84)90127-X
  • Neujahr, H. Y., & Bertilsson, L. (1971). Methylation of mercury compounds by methylcobalamin. Biochemistry, 10(14), 2805–2808. https://doi.org/10.1021/bi00790a024
  • Ortiz, V. L., Mason, R. P., & Ward, J. E. (2015). An examination of the factors influencing mercury and methylmercury particulate distributions, methylation and demethylation rates in laboratory-generated marine snow. Marine Chemistry, 177(Pt 5), 753–762. https://doi.org/10.1016/j.marchem.2015.07.006
  • Pakhomova, S., Braaten, H. F. V., Yakushev, E., & Skei, J. (2014). Biogeochemical consequences of an oxygenated intrusion into an anoxic fjord. Geochemical Transactions, 15(1), 5. http://doi.org/10.1186/1467-4866-15-5
  • Park, J.-S., Jung, S.-Y., Son, Y.-J., Choi, S.-J., Kim, M.-S., Kim, J.-G., Park, S.-H., Lee, S.-M., Chae, Y.-Z., & Kim, M.-Y. (2011). Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea. Food Additives & Contaminants. Part B, Surveillance, 4(4), 268–274. https://doi.org/10.1080/19393210.2011.638087
  • Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Smith, S. D., Tomanicek, S. J., Qian, Y., Brown, S. D., Brandt, C. C., Palumbo, A. V., Smith, J. C., Wall, J. D., Elias, D. A., & Liang, L. (2013). The genetic basis for bacterial mercury methylation. Science (New York, N.Y.), 339(6125), 1332–1335. https://doi.org/10.1126/science.1230667
  • Ploug, H., Kühl, M., Buchholz, B., & Jørgensen, B. (1997). Anoxic aggregates an ephemeral phenomenon in the ocean. Aquatic Microbial Ecology, 13, 285–294. https://doi.org/10.3354/ame013285
  • Podar, M., Gilmour, C. C., Brandt, C. C., Soren, A., Brown, S. D., Crable, B. R., Palumbo, A. V., Somenahally, A. C., & Elias, D. A. (2015). Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Science Advances, 1(9), e1500675. https://doi.org/10.1126/sciadv.1500675
  • Pućko, M., Burt, A., Walkusz, W., Wang, F., Macdonald, R. W., Rysgaard, S., Barber, D. G., Tremblay, J.-É., & Stern, G. A. (2014). Transformation of mercury at the bottom of the Arctic food web: An overlooked puzzle in the mercury exposure narrative. Environmental Science & Technology, 48(13), 7280–7288. https://doi.org/10.1021/es404851b
  • Radojevic, M., & Harrison, R. (1987). Concentrations and pathways of organolead compounds in the environment: A review. Science of the Total Environment, 59, 157–180. https://doi.org/10.1016/0048-9697(87)90439-6
  • Regnell, O., & Watras, C. J. (2019). Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environmental Science & Technology, 53(1), 4–19. https://doi.org/10.1021/acs.est.8b02709
  • Rosati, G., Heimbürger, L. E., Melaku Canu, D., Lagane, C., Laffont, L., Rijkenberg, M. J. A., Gerringa, L. J. A., Solidoro, C., Gencarelli, C. N., Hedgecock, I. M., De Baar, H. J. W., & Sonke, J. E. (2018). Mercury in the black sea: New insights from measurements and numerical modeling. Global Biogeochemical Cycles, 32(4), 529–550. https://doi.org/10.1002/2017GB005700
  • Rosera, T. J., Janssen, S. E., Tate, M. T., Lepak, R. F., Ogorek, J. M., DeWild, J. F., Babiarz, C. L., Krabbenhoft, D. P., & Hurley, J. P. (2020). Isolation of methylmercury using distillation and anion-exchange chromatography for isotopic analyses in natural matrices. Analytical and Bioanalytical Chemistry, 412(3), 681–690. https://doi.org/10.1007/s00216-019-02277-0
  • Schartup, A. T., Qureshi, A., Dassuncao, C., Thackray, C. P., Harding, G., & Sunderland, E. M. (2018). A model for methylmercury uptake and trophic transfer by marine plankton. Environmental Science & Technology, 52(2), 654–662. https://doi.org/10.1021/acs.est.7b03821
  • Selin, N. E. (2009). Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources, 34(1), 43–63. https://doi.org/10.1146/annurev.environ.051308.084314
  • Semeniuk, K., & Dastoor, A. (2017). Development of a global ocean mercury model with a methylation cycle: Outstanding issues. Global Biogeochemical Cycles, 31(2), 400–433. https://doi.org/10.1002/2016GB005452
  • Shanks, A. L., & Reeder, M. L. (1993). Reducing microzones and sulfide production in marine snow. Marine Ecology Progress Series, 96, 43–47. https://doi.org/10.3354/meps096043
  • Siciliano, S. D., O'Driscoll, N. J., Tordon, R., Hill, J., Beauchamp, S., & Lean, D. R. (2005). Abiotic production of methylmercury by solar radiation. Environmental Science & Technology, 39(4), 1071–1077. https://doi.org/10.1021/es048707z
  • Soerensen, A. L., Jacob, D. J., Schartup, A., Fisher, J. A., Lehnherr, I., St Louis, V. L., Heimbürger, L. E., Sonke, J. E., Krabbenhoft, D. P., & Sunderland, E. M. (2016). A mass budget for mercury and methylmercury in the arctic ocean. Global Biogeochemical Cycles, 30(4), 560–575. https://doi.org/10.1002/2015GB005280
  • Sun, R., Yuan, J., Sonke, J. E., Zhang, Y., Zhang, T., Zheng, W., Chen, S., Meng, M., Chen, J., Liu, Y., Peng, X., & Liu, C. (2020). Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nature Communications, 11(1), 3389. http://doi.org/10.1038/s41467-020-17045-3
  • Sunderland, E. M. (2007). Mercury exposure from domestic and imported estuarine and marine fish in the us seafood market. Environmental Health Perspectives, 115(2), 235–242. https://doi.org/10.1289/ehp.9377
  • Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., Strode, S. A., & Landing, W. M. (2009). Mercury sources, distribution, and bioavailability in the north Pacific Ocean: Insights from data and models. Global Biogeochemical Cycles, 23(2), n/a–14. https://doi.org/10.1029/2008GB003425
  • Tada, Y., Marumoto, K., & Takeuchi, A. (2020). Nitrospina-like bacteria are potential mercury methylators in the mesopelagic zone in the east China Sea. Frontiers in Microbiology, 11, 1369. https://doi.org/10.3389/fmicb.2020.01369
  • Tada, Y., Marumoto, K., & Takeuchi, A. (2021). Nitrospina-like bacteria are dominant potential mercury methylators in both the Oyashio and Kuroshio regions of the western north Pacific. Microbiology Spectrum, 9(2), e00833-21. https://doi.org/10.1128/Spectrum.00833-21
  • Tang, K. W., Glud, R. N., Glud, A., Rysgaard, S., & Nielsen, T. G. (2011). Copepod guts as biogeochemical hotspots in the sea: Evidence from microelectrode profiling of Calanus spp. Limnology and Oceanography, 56(2), 666–672. https://doi.org/10.4319/lo.2011.56.2.0666
  • Tsui, M. T.-K., Blum, J. D., & Kwon, S. Y. (2020). Review of stable mercury isotopes in ecology and biogeochemistry. Science of the Total Environment, 716, 135386. https://doi.org/10.1016/j.scitotenv.2019.135386
  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293. https://doi.org/10.1080/20016491089226
  • Villar, E., Cabrol, L., & Heimbürger-Boavida, L. E. (2020). Widespread microbial mercury methylation genes in the global ocean. Environmental Microbiology Reports, 12(3), 277–287. https://doi.org/10.1111/1758-2229.12829
  • Wang, F., Macdonald, R. W., Armstrong, D. A., & Stern, G. A. (2012). Total and methylated mercury in the Beaufort Sea: The role of local and recent organic remineralization. Environmental Science & Technology, 46(21), 11821–11828. https://doi.org/10.1021/es302882d
  • Wang, J., Shaheen, S. M., Jing, M., Anderson, C. W., Swertz, A.-C., Wang, S.-L., Feng, X., & Rinklebe, J. r. (2021). Mobilization, methylation, and demethylation of mercury in a paddy soil under systematic redox changes. Environmental Science & Technology, 55(14), 10133–10141. https://doi.org/10.1021/acs.est.0c07321
  • Wang, K. (2019). Methylmercury in seawater and its bioaccumulation in marine food webs of the canadian arctic [Doctoral dissertation]. University of Manitoba. http://mspace.lib.umanitoba.ca/handle/1993/33838
  • Wang, K., Munson, K. M., Armstrong, D., Macdonald, R. W., & Wang, F. (2020). Determining seawater mercury methylation and demethylation rates by the seawater incubation approach: A critique. Marine Chemistry, 219, 103753. https://doi.org/10.1016/j.marchem.2020.103753
  • Wang, K., Munson, K. M., Beaupré-Laperrière, A., Mucci, A., Macdonald, R. W., & Wang, F. (2018). Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the canadian arctic. Scientific Reports, 8(1), 1–5. https://doi.org/10.1038/s41598-018-32760-0
  • Weber, J. H. (1993). Review of possible paths for abiotic methylation of mercury (II) in the aquatic environment. Chemosphere, 26(11), 2063–2077. https://doi.org/10.1016/0045-6535(93)90032-Z
  • Weber, J. H., Reisinger, K., & Stoeppler, M. (1985). Methylation of mercury (II) by fulvic acid. Environmental Technology Letters, 6(1–11), 203–208. https://doi.org/10.1080/09593338509384337
  • Whalin, L., Kim, E.-H., & Mason, R. (2007). Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Marine Chemistry, 107(3), 278–294. https://doi.org/10.1016/j.marchem.2007.04.002
  • White, S. N. (2010). Qualitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy. Applied Spectroscopy, 64(7), 819–827. https://doi.org/10.1366/000370210791666354
  • Yin, Y., Chen, B., Mao, Y., Wang, T., Liu, J., Cai, Y., & Jiang, G. (2012). Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. Chemosphere, 88(1), 8–16. https://doi.org/10.1016/j.chemosphere.2012.01.006
  • Yin, Y., Li, Y., Tai, C., Cai, Y., & Jiang, G. (2014). Fumigant methyl iodide can methylate inorganic mercury species in natural waters. Nature Communications, 5, 4633. https://doi.org/10.1038/ncomms5633
  • Zhang, H., Feng, X., Larssen, T., Shang, L., & Li, P. (2010). Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza Sativa L.) grain. Environmental Science & Technology, 44(12), 4499–4504. https://doi.org/10.1021/es903565t
  • Zhang, H., Guo, C., Feng, H., Shen, Y., Wang, Y., Zeng, T., & Song, S. (2020). Total mercury, methylmercury, and selenium in aquatic products from coastal cities of China: Distribution characteristics and risk assessment. Science of the Total Environment, 739, 140034. https://doi.org/10.1016/j.scitotenv.2020.140034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.