4,370
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Critical review of mercury methylation and methylmercury demethylation rate constants in aquatic sediments for biogeochemical modeling

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4353-4378 | Published online: 23 Dec 2021

References

  • Adediran, G. A., Liem-Nguyen, V., Song, Y., Schaefer, J. K., Skyllberg, U., & Björn, E. (2019). Microbial biosynthesis of thiol compounds: Implications for speciation, cellular uptake, and methylation of Hg(II). Environmental Science & Technology, 53(14), 8187–8196. https://doi.org/10.1021/acs.est.9b01502
  • Avramescu, M. L., Yumvihoze, E., Hintelmann, H., Ridal, J., Fortin, D., & R.S. Lean, D. (2011). Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada. The Science of the Total Environment, 409(5), 968–978. https://doi.org/10.1016/j.scitotenv.2010.11.016
  • Bailey, L. T., Mitchell, C. P. J., Engstrom, D. R., Berndt, M. E., Coleman Wasik, J. K., & Johnson, N. W. (2017). Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments. The Science of the Total Environment, 580, 1197–1204. https://doi.org/10.1016/j.scitotenv.2016.12.078
  • Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2–3), 355–384. https://doi.org/10.1016/S0168-6445(03)00046-9
  • Beckers, F., Mothes, S., Abrigata, J., Zhao, J., Gao, Y., & Rinklebe, J. (2019). Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime. The Science of the Total Environment, 672, 604–617. https://doi.org/10.1016/j.scitotenv.2019.03.401
  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. https://doi.org/10.1080/10643389.2017.1326277
  • Benoit, J. M. J., Gilmour, C. C., Heyes, A., Mason, R., & Miller, C. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. ACS Symposium, 835, 1–33. https://doi.org/10.1021/bk-2003-0835.ch019
  • Berner, R. A. (1964). An idealized model of dissolved sulfate distribution in recent sediments. Geochimica et Cosmochimica Acta, 28(9), 1497–1503. https://doi.org/10.1016/0016-7037(64)90164-4
  • Berner, R. A. (1980). Early diagenesis: A theoretical approach. Princeton University Press.
  • Bessinger, B. A., Vlassopoulos, D., Serrano, S., & O'Day, P. A. (2012). Reactive transport modeling of subaqueous sediment caps and implications for the long-term fate of arsenic, mercury, and methylmercury. Aquatic Geochemistry, 18(4), 297–326. https://doi.org/10.1007/s10498-012-9165-4
  • Bigham, G. N., Murray, K. J., Masue-Slowey, Y., & Henry, E. A. (2017). Biogeochemical controls on methylmercury in soils and sediments: Implications for site management. Integrated Environmental Assessment and Management, 13(2), 249–214. https://doi.org/10.1002/ieam.1822
  • Blanc, P., Burnol, A., Marty, N., Hellal, J., Guérin, V., & Laperche, V. (2018). Methylmercury complexes: Selection of thermodynamic properties and application to the modelling of a column experiment. The Science of the Total Environment, 621, 368–375. https://doi.org/10.1016/j.scitotenv.2017.11.259
  • Boudreau, B. P. (1997). Diagenetic models and their implementation. Springer. http://linkinghub.elsevier.com/retrieve/pii/S0264817298800056
  • Bravo, A. G., & Cosio, C. (2020). Biotic formation of methylmercury: A bio-physico-chemical conundrum. Limnology and Oceanography, 65(5), 1010–1027. https://doi.org/10.1002/lno.11366
  • Chen, C., Herr, J. W., & Tsai, W. (2006). Enhancement of Watershed Analysis Risk Management Framework (WARMF) for mercury watershed management and total maximum daily loads (TMDLs). Electric Power Research Institute.
  • Clarkson, T. W. (1997). The toxicology of mercury. Critical Reviews in Clinical Laboratory Sciences, 34(4), 369–403. https://doi.org/10.3109/10408369708998098
  • Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502. https://doi.org/10.1128/AEM.50.2.498-502.1985
  • Correia, R. R. S., Miranda, M. R., & Guimarães, J. R. D. (2012). Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: Effect of different inhibitors. Environmental Research, 112, 86–91. https://doi.org/10.1016/j.envres.2011.11.002
  • Deacon, G. (1978). Volatilisation of methyl-mercuric chloride by hydrogen sulphide. Nature, 275(5678), 344–344. https://doi.org/10.1038/275344a0
  • Drott, A., Lambertsson, L., Björn, E., & Skyllberg, U. (2007a). Effects of oxic and anoxic filtration on determined methyl mercury concentrations in sediment pore waters. Marine Chemistry, 103(1–2), 76–83. https://doi.org/10.1016/j.marchem.2006.06.004
  • Drott, A., Lambertsson, L., Björn, E., & Skyllberg, U. (2007b). Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology, 41(7), 2270–2276. https://doi.org/10.1021/es061724z
  • Drott, A., Lambertsson, L., Björn, E., & Skyllberg, U. (2008a). Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Environmental Science & Technology, 42(1), 153–158. https://doi.org/10.1021/es0715851
  • Drott, A., Lambertsson, L., Björn, E., & Skyllberg, U. (2008b). Potential demethylation rate determinations in relation to concentrations of MeHg, Hg and pore water speciation of MeHg in contaminated sediments. Marine Chemistry, 112(1–2), 93–101. https://doi.org/10.1016/j.marchem.2008.07.002
  • Du, H., Ma, M., Igarashi, Y., & Wang, D. (2019). Biotic and abiotic degradation of methylmercury in aquatic ecosystems: A review. Bulletin of Environmental Contamination and Toxicology, 102(5), 605–611. https://doi.org/10.1007/s00128-018-2530-2
  • Eckley, C. S., Gilmour, C. C., Janssen, S., Luxton, T. P., Randall, P. M., Whalin, L., & Austin, C. (2020). The assessment and remediation of mercury contaminated sites: A review of current approaches. The Science of the Total Environment, 707(December), 136031. https://doi.org/10.1016/j.scitotenv.2019.136031
  • Eckley, C. S., Luxton, T. P., Goetz, J., & McKernan, J. (2017). Water-level fluctuations influence sediment porewater chemistry and methylmercury production in a flood-control reservoir. Environmental Pollution, 222, 32–41. https://doi.org/10.1016/j.envpol.2017.01.010
  • Eckley, C. S., Watras, C. J., Hintelmann, H., Morrison, K., Kent, A. D., & Regnell, O. (2005). Mercury methylation in the hypolimnetic waters of lakes with and without connection to wetlands in northern Wisconsin. Canadian Journal of Fisheries and Aquatic Sciences, 62(2), 400–411. https://doi.org/10.1139/f04-205
  • Feng, X., Li, P., Qiu, G., Wang, S., Li, G., Shang, L., Meng, B., Jiang, H., Bai, W., Li, Z., & Fu, X. (2008). Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environmental Science & Technology, 42(1), 326–332. https://doi.org/10.1021/es071948x
  • Fleck, J. A., Gill, G., Bergamaschi, B. A., Kraus, T. E. C., Downing, B. D., & Alpers, C. N. (2014). Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter. The Science of the Total Environment, 484(1), 263–275. https://doi.org/10.1016/j.scitotenv.2013.03.107
  • Fleck, J. A., Marvin-DiPasquale, M., Eagles-Smith, C. A., Ackerman, J. T., Lutz, M. A., Tate, M., Alpers, C. N., Hall, B. D., Krabbenhoft, D. P., & Eckley, C. S. (2016). Mercury and methylmercury in aquatic sediment across western North America. The Science of the Total Environment, 568, 727–738. https://doi.org/10.1016/j.scitotenv.2016.03.044
  • Fleming, E. J., Mack, E. E., Green, P. G., & Nelson, D. C. (2006). Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72(1), 457–464. https://doi.org/10.1128/AEM.72.1.457-464.2006
  • Foster, T. J., Nakahara, H., Weiss, A. A., & Silver, S. (1979). Transposon A-generated mutations in the mercuric resistance genes of plasmid R100-1. Journal of Bacteriology, 140(1), 167–181. https://doi.org/10.1128/jb.140.1.167-181.1979
  • Frohne, T., Rinklebe, J., Langer, U., Du Laing, G., Mothes, S., & Wennrich, R. (2012). Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences, 9(1), 493–507. https://doi.org/10.5194/bg-9-493-2012
  • Fuhrmann, B. C., Beutel, M. W., O’Day, P. A., Tran, C., Funk, A., Brower, S., Pasek, J., & Seelos, M. (2021). Effects of mercury, organic carbon, and microbial inhibition on methylmercury cycling at the profundal sediment-water interface of a sulfate-rich hypereutrophic reservoir. Environmental Pollution, 268, 115853. https://doi.org/10.1016/j.envpol.2020.115853
  • Furutani, A., & Rudd, J. W. M. (1980). Measurement of mercury methylation in lake water and sediment samples. Applied and Environmental Microbiology, 40(4), 770–776. https://aem.asm.org/content/40/4/770 https://doi.org/10.1128/aem.40.4.770-776.1980
  • Gilmour, C. C., Bullock, A. L., Mcburney, A., & Podar, M. (2018). Robust mercury methylation across diverse methanogenic archaea. American Society for Microbiology, 9(2), 1–13. https://mbio.asm.org/content/9/2/e02403-17.full.pdf
  • Gilmour, C. C., Henry, E. A., & Mitchell, R. (1992). Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology, 26(11), 2281–2287. https://doi.org/10.1021/es00035a029
  • Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., Johs, A., Hurt, R. A., Bailey, K. L., & Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology, 47(20), 11810–11820. https://doi.org/10.1021/es403075t
  • Gilmour, C. C., & Riedel, G. (1995). Measurement of Hg methylation in sediments using high specific-activity Hg and ambient incubation. Water, Air, & Soil Pollution, 80(14), 747–756. http://www.springerlink.com/index/G301128043174570.pdf https://doi.org/10.1007/BF01189726
  • Graham, A. M., Aiken, G. R., & Gilmour, C. C. (2012). Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environmental Science & Technology, 46(5), 2715–2723. https://doi.org/10.1021/es203658f
  • He, T., Feng, X., Guo, Y., Qiu, G., Li, Z., Liang, L., & Lu, J. (2008). The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: A case study from Hongfeng Reservoir, Guizhou, China. Environmental Pollution (Barking, Essex: 1987), 154(1), 56–67. https://doi.org/10.1016/j.envpol.2007.11.013
  • Hintelmann, H., Evans, D., & Villeneuve, J. Y. (1995). Measurement of mercury methylation in sediments by using enriched stable mercury isotopes combined with methylmercury determination by gas chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 10(9), 619–624. https://doi.org/10.1039/JA9951000619
  • Hintelmann, H., Keppel-Jones, K., & Evans, D. (2000). Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environmental Toxicology and Chemistry, 19(9), 2204–2211. https://doi.org/10.1002/etc.5620190909
  • Hoggarth, C. G. J., Hall, B. D., & Mitchell, C. P. J. (2015). Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America. Environmental Pollution (Barking, Essex: 1987), 205, 269–277. https://doi.org/10.1016/j.envpol.2015.05.046
  • Hollweg, T. A., Gilmour, C. C., & Mason, R. P. (2009). Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin. Marine Chemistry, 114(34), 86–101. https://doi.org/10.1016/j.marchem.2009.04.004
  • Hollweg, T. A., Gilmour, C. C., & Mason, R. P. (2010). Mercury and methylmercury cycling in sediments of the mid-Atlantic continental shelf and slope. Limnology and Oceanography, 55(6), 2703–2722. https://doi.org/10.4319/lo.2010.55.6.2703
  • Hsu-Kim, H., Eckley, C. S., Achá, D., Feng, X., Gilmour, C. C., Jonsson, S., & Mitchell, C. P. J. (2018). Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio, 47(2), 141–169. https://doi.org/10.1007/s13280-017-1006-7
  • Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science & Technology, 47(6), 2441–2456. https://doi.org/10.1021/es304370g
  • Hunter, K. S., Wang, Y., & Van Cappellen, P. (1998). Kinetic modeling of microbially-driven redox chemistry of subsurface environments: Coupling transport, microbial metabolism and geochemistry. Journal of Hydrology, 209(14), 53–80. https://doi.org/10.1016/S0022-1694(00)00219-5 https://doi.org/10.1016/S0022-1694(98)00157-7
  • Jensen, S., & Jernelöv, A. (1969). Biological methylation of mercury in aquatic organisms. Nature, 223(5207), 753–754. https://doi.org/10.1038/223753a0
  • Johannesson, K. H., & Neumann, K. (2013). Geochemical cycling of mercury in a deep, confined aquifer: Insights from biogeochemical reactive transport modeling. Geochimica et Cosmochimica Acta, 106, 25–43. https://doi.org/10.1016/j.gca.2012.12.010
  • Johnson, W. P., Swanson, N., Black, B., Rudd, A., Carling, G., Fernandez, D. P., Luft, J., Van Leeuwen, J., & Marvin-DiPasquale, M. (2015). Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA. The Science of the Total Environment, 511, 489–500. https://doi.org/10.1016/j.scitotenv.2014.12.092
  • Jonsson, S., Skyllberg, U., Nilsson, M. B., Lundberg, E., Andersson, A., & Björn, E. (2014). Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nature Communications, 5(1), 4624. https://doi.org/10.1038/ncomms5624
  • Jonsson, S., Skyllberg, U., Nilsson, M. B., Westlund, P., Shchukarev, A., Lundberg, E., & Bjo, E. (2012). Mercury methylation rates for geochemically relevant Hg(II) species in sediments. Environmental Science & Technology, 46(21), 11653–11659. https://doi.org/10.1021/es3015327%0A https://doi.org/10.1021/es3015327
  • Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., & Mason, R. P. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology, 72(12), 7919–7921. https://doi.org/10.1128/AEM.01602-06
  • Kim, E. H., Mason, R. P., Porter, E. T., & Soulen, H. L. (2006). The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: A mesocosm study. Marine Chemistry, 102(34), 300–315. https://doi.org/10.1016/j.marchem.2006.05.006
  • Kritee, K., Barkay, T., & Blum, J. D. (2009). Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochimica et Cosmochimica Acta, 73(5), 1285–1296. https://doi.org/10.1016/j.gca.2008.11.038
  • Kritee, K., Blum, J. D., Reinfelder, J. R., & Barkay, T. (2013). Microbial stable isotope fractionation of mercury: A synthesis of present understanding and future directions. Chemical Geology, 336, 13–25. https://doi.org/10.1016/j.chemgeo.2012.08.017
  • Kronberg, R., Schaefer, J. K., Björn, E., & Skyllberg, U. (2018). Mechanisms of methyl mercury net degradation in alder swamps: The role of methanogens and abiotic processes. Environmental Science & Technology Letters, 5(4), 220–225. https://doi.org/10.1021/acs.estlett.8b00081
  • Kronberg, R. M., Tjerngren, I., Drott, A., Björn, E., & Skyllberg, U. (2012). Net degradation of methyl mercury in alder swamps. Environmental Science & Technology, 46(24), 13144–13151. https://doi.org/10.1021/es303543k
  • Lehnherr, I., Louis, V. L. S., Hintelmann, H., & Kirk, J. L. (2011). Methylation of inorganic mercury in polar marine waters. Nature Geoscience, 4(5), 298–302. https://doi.org/10.1038/ngeo1134
  • Leterme, B., Blanc, P., & Jacques, D. (2014). A reactive transport model for mercury fate in soil-application to different anthropogenic pollution sources. Environmental Science and Pollution Research International, 21(21), 12279–12293. https://doi.org/10.1007/s11356-014-3135-x
  • Leterme, B., & Jacques, D. (2015). A reactive transport model for mercury fate in contaminated soil-sensitivity analysis. Environmental Science and Pollution Research International, 22(21), 16830–16842. https://doi.org/10.1007/s11356-015-4876-x
  • Levenspiel, O. (1980). The monod equation: A revisit and a generalization to product inhibition situations. Biotechnology and Bioengineering, 22(8), 1671–1687. https://doi.org/10.1002/bit.260220810
  • Liem-Nguyen, V., Skyllberg, U., & Björn, E. (2017). Thermodynamic modeling of the solubility and chemical speciation of mercury and methylmercury driven by organic thiols and micromolar sulfide concentrations in boreal wetland soils. Environmental Science & Technology, 51(7), 3678–3686. https://doi.org/10.1021/acs.est.6b04622
  • Lim, L., Brodberg, R., Gassel, M., & Klasing, S. (2013). Statewide health advisory and guidelines for eating fish from California’s lakes and reservoirs without site-specific advice. California Environmental Protection Agency.
  • Liu, B., Schaider, L. A., Mason, R. P., Shine, J. P., Rabalais, N. N., & Senn, D. B. (2015). Controls on methylmercury accumulation in northern Gulf of Mexico sediments. Estuarine, Coastal and Shelf Science, 159, 50–59. https://doi.org/10.1016/j.ecss.2015.03.030
  • Loux, N. T. (2007). An assessment of thermodynamic reaction constants for simulating aqueous environmental monomethylmercury speciation. Chemical Speciation & Bioavailability, 19(4), 183–196. https://doi.org/10.3184/095422907X255947
  • Lu, X., Gu, W., Zhao, L., Ul Haque, M. F., DiSpirito, A. A., Semrau, J. D., & Gu, B. (2017). Methylmercury uptake and degradation by methanotrophs. Science Advances, 3(5), 1–6. https://doi.org/10.1126/sciadv.1700041
  • Lu, X., Liu, Y., Johs, A., Zhao, L., Wang, T., Yang, Z., Lin, H., Elias, D. A., Pierce, E. M., Liang, L., Barkay, T., & Gu, B. (2016). Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem. Environmental Science & Technology, 50(8), 4366–4373. https://doi.org/10.1021/acs.est.6b00401
  • Ma, M., Du, H., & Wang, D. (2019). Mercury methylation by anaerobic microorganisms: A review. Critical Reviews in Environmental Science and Technology, 49(20), 1893–1936. https://doi.org/10.1080/10643389.2019.1594517
  • Malm, O., Branches, J. F., Akagi, H., Castro, M. B., Pfeiffer, W. C., Harada, M., Bastos, W. R., & Kato, H. (1995). Mercury and methylmercury in fish and human hair from the Tapajós river basin, Brazil. The Science of the Total Environment, 175(2), 141–150. https://doi.org/10.1016/0048-9697(95)04910-X
  • Marvin-DiPasquale, M., Lutz, M. A., Krabbenhoft, D. P., Aiken, G. R., Orem, W. H., Hall, B. D., DeWild, J. F., & Brigham, M. (2008). Total mercury, methylmercury, methylmercury production potential, and ancillary streambed-sediment and pore- water data for selected streams in Oregon, Wisconsin, and Florida, 2003–04, U.S. Geological Survey. Reston, VA (Data Series 375). https://pubs.usgs.gov/ds/375
  • Marvin-DiPasquale, M., & Agee, J. L. (2003). Microbial mercury cycling in sediments of the San Francisco Bay-Delta. Estuaries, 26(6), 1517–1528. https://doi.org/10.1007/BF02803660
  • Marvin-DiPasquale, M., Agee, J. L., Bouse, R. M., & Jaffe, B. E. (2003). Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environmental Geology, 43(3), 260–267. https://doi.org/10.1007/s00254-002-0623-y
  • Marvin-DiPasquale, M., Agee, J., McGowan, C., Oremland, R. S., Thomas, M., Krabbenhoft, D., & Gilmour, C. C. (2000). Methyl-mercury degradation pathways: A comparison among three mercury impacted ecosystems. Environmental Science & Technology, 34(23), 4908–4916. https://doi.org/10.1021/es0013125
  • Marvin-DiPasquale, M., & Oremland, R. S. (1998). Bacterial methylmercury degradation in Florida everglades peat sediment. Environmental Science & Technology, 32(17), 2556–2563. https://doi.org/10.1021/es971099l
  • Marvin-DiPasquale, M., Windham-Myers, L., Agee, J. L., Kakouros, E., Kieu, L. H., Fleck, J. A., Alpers, C. N., & Stricker, C. A. (2014). Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. The Science of the Total Environment, 484(1), 288–299. https://doi.org/10.1016/j.scitotenv.2013.09.098
  • Mason, R. P., Abbott, M. L., Bodaly, R. A., Bullock, O. R., Driscoll, C. T., Evers, D., Lindberg, S. E., Murray, M., & Swain, E. B. (2005). Monitoring the response to changing mercury deposition. Environmental Science & Technology, 39(1), 14A–22A. https://www.osti.gov/biblio/912319 https://doi.org/10.1021/es053155l
  • Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: A worldwide concern. Ambio, 36(1), 3–11. https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2
  • Merritt, K. A., & Amirbahman, A. (2009). Mercury methylation dynamics in estuarine and coastal marine environments - A critical review. Earth-Science Reviews, 96(1–2), 54–66. https://doi.org/10.1016/j.earscirev.2009.06.002
  • Mitchell, C. P. J., Branfireun, B. A., & Kolka, R. K. (2008). Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach. Applied Geochemistry, 23(3), 503–518. https://doi.org/10.1016/j.apgeochem.2007.12.020
  • Mitchell, C. P. J., & Gilmour, C. C. (2008). Methylmercury production in a Chesapeake Bay salt marsh. Journal of Geophysical Research, 113(G2). https://doi.org/10.1029/2008JG000765
  • Monperrus, M., Tessier, E., Amouroux, D., Leynaert, A., Huonnic, P., & Donard, O. F. X. (2007). Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Marine Chemistry, 107(1), 49–63. https://doi.org/10.1016/j.marchem.2007.01.018
  • Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29(1), 543–566. https://doi.org/10.1146/annurev.ecolsys.29.1.543
  • Olsen, T. A., Brandt, C. C., & Brooks, S. C. (2016). Periphyton biofilms influence net methylmercury production in an industrially contaminated system. Environmental Science & Technology, 50(20), 10843–10850. https://doi.org/10.1021/acs.est.6b01538
  • Olsen, T. A., Muller, K. A., Painter, S. L., & Brooks, S. C. (2018). Kinetics of methylmercury production revisited. Environmental Science & Technology, 52(4), 2063–2070. https://doi.org/10.1021/acs.est.7b05152
  • Oremland, R. S., Miller, L. G., Dowdle, P., Connell, T., & Barkay, T. (1995). Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada. Applied and Environmental Microbiology, 61(7), 2745–2753. https://aem.asm.org/content/61/7/2745 https://doi.org/10.1128/aem.61.7.2745-2753.1995
  • Ortiz, V. L., Mason, R. P., & Evan Ward, J. (2015). An examination of the factors influencing mercury and methylmercury particulate distributions, methylation and demethylation rates in laboratory-generated marine snow. Marine Chemistry, 177, 753–762. https://doi.org/10.1016/j.marchem.2015.07.006
  • Pak, K.-R., & Bartha, R. (1998). Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria. Applied and Environmental Microbiology, 64(3), 1013–1017. https://aem.asm.org/content/64/3/1013 https://doi.org/10.1128/AEM.64.3.1013-1017.1998
  • Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC Version 3 — A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In U.S. Geological Survey Techniques and Methods, Book 6, Chapter A43. Denver, CO: U.S. Geological Survey. https://pubs.usgs.gov/tm/06/a43/
  • Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A ., Smith, S. D., Tomanicek, S. J., Qian, Y., Brown, S. D., Brandt, C. C., Palumbo, A. V., Smith, J. C., Wall, J. D., Elias, D. A., & Liang, L. (2013). The genetic basis for bacterial mercury methylation. Science (New York, N.Y.), 339(6125), 1332–1335. https://doi.org/10.1126/science.1230667
  • Pham, A. L. T., Morris, A., Zhang, T., Ticknor, J., Levard, C., & Hsu-Kim, H. (2014). Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: Structural properties, aggregation, and biotransformation. Geochimica et Cosmochimica Acta, 133, 204–215. https://doi.org/10.1016/j.gca.2014.02.027
  • Podar, M., Gilmour, C. C., Brandt, C. C., Soren, A., Brown, S. D., Crable, B. R., Palumbo, A. V., Somenahally, A. C., & Elias, D. A. (2015). Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Science Advances, 1(9), 1–13. https://doi.org/10.1126/sciadv.1500675
  • Qian, J., Skyllberg, U., Frech, W., Bleam, W. F., Bloom, P. R., & Petit, P. E. (2002). Bonding of methyl mercury to reduced sulfur groups in soil and stream organic matter as determined by X-ray absorption spectroscopy and binding affinity studies. Geochimica et Cosmochimica Acta, 66(22), 3873–3885. https://doi.org/10.1016/S0016-7037(02)00974-2
  • Ramlal, P. S., Rudd, J. W. M., & Hecky, R. E. (1986). Methods for measuring specific rates of mercury methylation and degradation and their use in determining factors controlling net rates of mercury methylation. Applied and Environmental Microbiology, 51(1), 110–114. https://aem.asm.org/content/51/1/110 https://doi.org/10.1128/aem.51.1.110-114.1986
  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter-A review. Chemosphere, 55(3), 319–331. https://doi.org/10.1016/j.chemosphere.2003.11.011
  • Regnell, O., & Watras, C. J. (2019). Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environmental Science & Technology, 53(1), 4–19. https://doi.org/10.1021/acs.est.8b02709
  • Richard, J.-H., Bischoff, C., & Biester, H. (2016). Comparing modeled and measured mercury speciation in contaminated groundwater: Importance of dissolved organic matter composition. Environmental Science & Technology, 50(14), 7508–7516. https://doi.org/10.1021/acs.est.6b00500
  • Rodrı́guez Martı́n-Doimeadios, R. C., Tessier, E., Amouroux, D., Guyoneaud, R., Duran, R., Caumette, P., & Donard, O. F. X., (2004). Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes. Marine Chemistry, 90(14), 107–123. https://doi.org/10.1016/j.marchem.2004.02.022
  • Rothenberg, S. E., Anders, M., Ajami, N. J., Petrosino, J. F., & Balogh, E. (2016). Water management impacts rice methylmercury and the soil microbiome. Science of the Total Environment, 572, 608–617. https://doi.org/10.1016/j.scitotenv.2016.07.017
  • Schaefer, J. K., Letowski, J., & Barkay, T. (2002). mer-mediated resistance and volatilization of Hg (II) under anaerobic conditions. Geomicrobiology Journal, 19(1), 87–102. https://doi.org/10.1080/014904502317246192
  • Schaefer, J. K., & Morel, F. M. M. (2009). High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nature Geoscience, 2(2), 123–126. https://doi.org/10.1038/ngeo412
  • Schaefer, J. K., Yagi, J., Reinfelder, J. R., Cardona, T., Ellickson, K. M., Tel-Or, S., & Barkay, T. (2004). Role of the bacterial organomercury lyase (MerB) in controlling methylmercury accumulation in mercury-contaminated natural waters. Environmental Science & Technology, 38(16), 4304–4311. https://doi.org/10.1021/es049895w
  • Schartup, A. T., Mason, R. P., Balcom, P. H., Hollweg, T. A., & Chen, C. Y. (2013). Methylmercury production in estuarine sediments: Role of organic matter. Environmental Science & Technology, 47(2), 695–700. https://doi.org/10.1021/es302566w
  • Schottel, J. L. (1978). The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. Journal of Biological Chemistry, 253(12), 4341–4349. https://doi.org/10.1016/S0021-9258(17)34725-7
  • Schwartz, G., & Gilmour, C. (2017). Geochemical controls on activated carbon effectiveness in remediating mercury and methylmercury-contaminated soils [Paper presentation]. Ninth International Conference on the Remediation and Management of Contaminated Sediment, New Orleans, LA.
  • Schwartz, G. E., Sanders, J. P., McBurney, A. M., Brown, S. S., Ghosh, U., & Gilmour, C. C. (2019). Impact of dissolved organic matter on mercury and methylmercury sorption to activated carbon in soils: Implications for remediation. Environmental Science: Processes & Impacts, 21(3), 485–496. https://doi.org/10.1039/c8em00469b
  • Shen, X., Lampert, D., Ogle, S., & Reible, D. (2018). A software tool for simulating contaminant transport and remedial effectiveness in sediment environments. Environmental Modelling & Software, 109(August), 104–113. https://doi.org/10.1016/j.envsoft.2018.08.014
  • Si, Y., Zou, Y., Liu, X., Si, X., & Mao, J. (2015). Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere, 122, 206–212. https://doi.org/10.1016/j.chemosphere.2014.11.054
  • Silver, S., & Phung, L. T. (1996). Bacterial heavy metal resistance: New surprises. Annual Review of Microbiology, 50(1), 753–789. https://doi.org/10.1146/annurev.micro.50.1.753
  • Singer, M. B., Harrison, L. R., Donovan, P. M., Blum, J. D., & Marvin-DiPasquale, M. (2016). Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors. The Science of the Total Environment, 568, 697–711. https://doi.org/10.1016/j.scitotenv.2016.03.005
  • Skyllberg, U. (2008). Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. Journal of Geophysical Research, 113(G2). https://doi.org/10.1029/2008JG000745
  • Skyllberg, U., Qian, J., Frech, W., Xia, K., & Bleam, W. F. (2003). Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64(1), 53–76. https://doi.org/10.1023/A:1024904502633
  • Summers, A. O., & Sugarman, L. I. (1974). Cell-free mercury (II)-reducing activity in a plasmid-bearing strain of Escherichia coli. Journal of Bacteriology, 119(1), 242–249. https://doi.org/10.1128/jb.119.1.242-249.1974
  • Ticknor, J. L., Kucharzyk, K. H., Porter, K. A., Deshusses, M. A., & Hsu-Kim, H. (2015). Thiol-based selective extraction assay to comparatively assess bioavailable mercury in sediments. Environmental Engineering Science, 32(7), 564–573. https://doi.org/10.1089/ees.2014.0526
  • Tjerngren, I., Karlsson, T., Björn, E., & Skyllberg, U. (2012). Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands. Biogeochemistry, 108(13), 335–350. https://doi.org/10.1007/s10533-011-9603-1
  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293. https://doi.org/10.1080/20016491089226
  • Van Cappellen, P., & Wang, Y. (1996). Cycling of iron and manganese in surface and sediments: A general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. American Journal of Science, 296(3), 197–243. https://doi.org/10.1126/science.3.53.32 https://doi.org/10.2475/ajs.296.3.197
  • Vlassopoulos, D., Kanematsu, M., Henry, E. A., Goin, J., Leven, A., Glaser, D., Brown, S. S., & O'Day, P. A. (2018). Manganese(IV) oxide amendments reduce methylmercury concentrations in sediment porewater. Environmental Science. Processes & Impacts, 20(12), 1746–1760. https://doi.org/10.1039/c7em00583k
  • West, J., Graham, A. M., Liem-Nguyen, V., & Jonsson, S. (2020). Dimethylmercury degradation by dissolved sulfide and mackinawite. Environmental Science & Technology, 54(21), 13731–13738. https://doi.org/10.1021/acs.est.0c04134
  • Windham-Myers, L., Marvin-Dipasquale, M., Krabbenhoft, D. P., Agee, J. L., Cox, M. H., Heredia-Middleton, P., Coates, C., & Kakouros, E. (2009). Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment. Journal of Geophysical Research: Biogeosciences, 114(G2). https://doi.org/10.1029/2008JG000815
  • Windham-Myers, L., Marvin-DiPasquale, M., Stricker, C. A., Agee, J. L., Kieu, L. H., & Kakouros, E. (2014). Mercury cycling in agricultural and managed wetlands of California, USA: Experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production. The Science of the Total Environment, 484, 300–307. https://doi.org/10.1016/j.scitotenv.2013.05.028
  • Wood, J. M., Kennedy, F. S., & Rosen, C. G. (1968). Synthesis of Methyl-mercury compounds by extracts of a methanogenic bacterium. Nature, 220(5163), 173–174. https://doi.org/10.1038/220173a0
  • Xu, J., Buck, M., Eklöf, K., Ahmed, O. O., Schaefer, J. K., Bishop, K., Skyllberg, U., Björn, E., Bertilsson, S., & Bravo, A. G. (2019). Mercury methylating microbial communities of boreal forest soils. Scientific Reports, 9(1), 518. https://doi.org/10.1038/s41598-018-37383-z
  • Yang, Z., Fang, W., Lu, X., Sheng, G. P., Graham, D. E., Liang, L., Wullschleger, S. D., & Gu, B. (2016). Warming increases methylmercury production in an Arctic soil. Environmental Pollution (Barking, Essex: 1987), 214, 504–509. https://doi.org/10.1016/j.envpol.2016.04.069
  • Yu, H., Chu, L., & Misra, T. K. (1996). Intracellular inducer Hg2+ concentration is rate determining for the expression of the mercury-resistance operon in cells. Journal of Bacteriology, 178(9), 2712–2714. https://doi.org/10.1128/jb.178.9.2712-2714.1996
  • Yu, R. Q., Reinfelder, J. R., Hines, M. E., & Barkay, T. (2018). Syntrophic pathways for microbial mercury methylation. The ISME Journal, 12(7), 1826–1810. https://doi.org/10.1038/s41396-018-0106-0
  • Zhang, L., Liang, X., Wang, Q., Zhang, Y., Yin, X., Lu, X., Pierce, E. M., & Gu, B. (2021). Isotope exchange between mercuric [Hg(II)] chloride and Hg(II) bound to minerals and thiolate ligands: Implications for enriched isotope tracer studies. Geochimica et Cosmochimica Acta, 292, 468–481. https://doi.org/10.1016/j.gca.2020.10.013
  • Zhang, L., Wu, S., Zhao, L., Lu, X., Pierce, E. M., Gu, B., Wu, S., Zhao, L., Lu, X., Pierce, E. M., & Gu, B. (2019). Mercury sorption and desorption on organo-mineral particulates as a source for microbial methylation. Environmental Science & Technology, 53(5), 2426–2433. https://doi.org/10.1021/acs.est.8b06020
  • Zhang, T., Kim, B., Levard, C., Reinsch, B. C., Lowry, G. V., Deshusses, M. A., & Hsu-Kim, H. (2012). Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environmental Science & Technology, 46(13), 6950–6958. https://doi.org/10.1021/es203181m
  • Zhu, S., Zhang, Z., & Liu, X. (2017). Enhanced two dimensional hydrodynamic and water quality model (CE-QUAL-W2) for simulating mercury transport and cycling in water bodies. Water, 9(9), 643. https://doi.org/10.3390/w9090643
  • Zhu, S., Zhang, Z., & Žagar, D. (2018). Mercury transport and fate models in aquatic systems: A review and synthesis. The Science of the Total Environment, 639, 538–549. https://doi.org/10.1016/j.scitotenv.2018.04.397
  • Zhu, W., Song, Y., Adediran, G. A., Jiang, T., Reis, A. T., Pereira, E., Skyllberg, U., & Björn, E. (2018). Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter. Geochimica et Cosmochimica Acta, 220, 158–179. https://doi.org/10.1016/j.gca.2017.09.045