4,322
Views
4
CrossRef citations to date
0
Altmetric
Invited Review

Phosphorus in water: A review on the speciation analysis and species specific removal strategies

, , , , & ORCID Icon
Pages 435-456 | Published online: 02 May 2022

References

  • Acevedo, B., Oehmen, A., Carvalho, G., Seco, A., Borrás, L., & Barat, R. (2012). Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Research, 46(6), 1889–1900. https://doi.org/10.1016/j.watres.2012.01.003
  • Alam, M. M., Srinivasan, V., Mueller, A. V., & Gu, A. Z. (2021). Status and advances in technologies for phosphorus species detection and characterization in natural environment—A comprehensive review . Talanta, 233, 122458. https://doi.org/10.1016/j.talanta.2021.122458
  • Anagnostou, E., & Sherrell, R. M. (2008). A MAGIC method for sub-nanomolar orthophosphate determination in freshwater. Limnology and Oceanography: Methods, 6(1), 64–74. https://doi.org/10.4319/lom.2008.6.64
  • Bacelo, H., Pintor, A. M. A., Santos, S. C. R., Boaventura, R. A. R., & Botelho, C. M. S. (2020). Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chemical Engineering Journal, 381, 122566. https://doi.org/10.1016/j.cej.2019.122566
  • Bai, X., Zhou, Y., Sun, J., Ma, J., Zhao, H., & Liu, X. (2015). Classes of dissolved and particulate phosphorus compounds and their spatial distributions in the water of a eutrophic lake: A 31P NMR study. Biogeochemistry, 126(1-2), 227–240. https://doi.org/10.1007/s10533-015-0155-7
  • Barrett, K. A., & McBride, M. B. (2005). Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environmental Science & Technology, 39(23), 9223–9228. https://doi.org/10.1021/es051342d
  • Bazmandegan-Shamili, A., Dadfarnia, S., Haji Shabani, A. M., Saeidi, M., & Rohani Moghadam, M. (2016). High-performance liquid chromatographic determination of diazinon after its magnetic dispersive solid-phase microextraction using magnetic molecularly imprinted polymer. Food Analytical Methods, 9(9), 2621–2630. https://doi.org/10.1007/s12161-016-0456-z
  • Bigley, A. N., Xiang, D. F., Ren, Z., Xue, H., Hull, K. G., Romo, D., & Raushel, F. M. (2016). Chemical mechanism of the phosphotriesterase from sphingobium sp. strain TCM1, an enzyme capable of hydrolyzing organophosphate flame retardants. Journal of the American Chemical Society, 138(9), 2921–2924. https://doi.org/10.1021/jacs.5b12739
  • Boels, L., Keesman, K. J., & Witkamp, G. J. (2012). Adsorption of phosphonate antiscalant from reverse osmosis membrane concentrate onto granular ferric hydroxide. Environmental Science & Technology, 46(17), 9638–9645. https://doi.org/10.1021/es302186k
  • Boels, L., Tervahaut, T., & Witkamp, G. J. (2010). Adsorptive removal of nitrilotris(methylenephosphonic acid) antiscalant from membrane concentrates by iron-coated waste filtration sand. Journal of Hazardous Materials, 182(1-3), 855–862. https://doi.org/10.1016/j.jhazmat.2010.06.123
  • Brabandere, H. D., Forsgard, N., Israelsson, L., Petterson, J., Rydin, E., Waldebäck, M., & Sjöberg, P. J. R. (2008). Screening for organic phosphorus compounds in aquatic sediments by liquid chromatography coupled to ICP-AES and ESI-MS/MS. Analytical Chemistry, 80(17), 6689–6697. https://doi.org/10.1021/ac8006335
  • Brown, N., & Shilton, A. (2014). Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: Current understanding and future direction. Reviews in Environmental Science and Bio/Technology, 13(3), 321–328. https://doi.org/10.1007/s11157-014-9337-3
  • Buchberger, W. W. (2000). Detection techniques in ion analysis: What are our choices? Journal of Chromatography. A, 884(1-2), 3–22. https://doi.org/10.1016/S0021-9673(00)00283-1
  • Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., & Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science, 6, 8. https://doi.org/10.3389/fenvs.2018.00008
  • Cade-Menun, B. J. (2005). Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta, 66(2), 359–371. https://doi.org/10.1016/j.talanta.2004.12.024
  • Chen, H., Zhao, L., Yu, F., & Du, Q. (2019). Detection of phosphorus species in water: Technology and strategies. The Analyst, 144(24), 7130–7148. https://doi.org/10.1039/c9an01161g
  • Chen, K. Y. (1999). Study of polyphosphate metabolism in intact cells by 31-P nuclear magnetic resonance spectroscopy. Inorganic Polyphosphates, 23, 253–273. https://doi.org/10.1007/978-3-642-58444-2_13
  • Chen, L., Xu, J., Wang, T., Huang, Y., Yuan, D., & Gong, Z. (2021). Toward a versatile flow technique: Development and application of reverse flow dual-injection analysis (rFDIA) for determining dissolved iron redox species and soluble reactive phosphorus in seawater. Talanta, 232, 122404. https://doi.org/10.1016/j.talanta.2021.122404
  • Chen, M., Liu, K., Zhong, D., & Chen, X. (2012). Trimethylsilyldiazomethane derivatization coupled with solid-phase extraction for the determination of alendronate in human plasma by LC-MS/MS. Analytical and Bioanalytical Chemistry, 402(2), 791–798. https://doi.org/10.1007/s00216-011-5467-4
  • China EPA. (1989). Water quality-determination of total phosphorus—Ammonium molybdate spectrophotometric method. China EPA, GB 1189389.
  • China EPA. (2002). Environmental quality standards for surface water. China EPA, GB 3838–2002.
  • Chokwe, T. B., Abafe, O. A., Mbelu, S. P., Okonkwo, J. O., & Sibali, L. L. (2020). A review of sources, fate, levels, toxicity, exposure and transformations of organophosphorus flame-retardants and plasticizers in the environment. Emerging Contaminants, 6, 345–366. https://doi.org/10.1016/j.emcon.2020.08.004
  • Christ, J. J., Willbold, S., & Blank, L. M. (2020). Methods for the analysis of polyphosphate in the life sciences. Analytical Chemistry, 92(6), 4167–4176. https://doi.org/10.1021/acs.analchem.9b05144
  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinge, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Ecology. Controlling eutrophication: Nitrogen and phosphorus. Science, 323(5917), 1014–1015. https://doi.org/10.1126/science.1167755
  • Cooper, W. T., Llewelyn, J. M., Bennett, G. L., & Salters, V. J. M. (2005). Mass spectrometry of natural organic phosphorus. Talanta, 66(2), 348–358. https://doi.org/10.1016/j.talanta.2004.12.028
  • Cusick, R. D., & Logan, B. E. (2012). Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technology, 107, 110–115. https://doi.org/10.1016/j.biortech.2011.12.038
  • D’Angelo, E., Crutchfield, J., & Vandiviere, M. (2001). Rapid, sensitive, microscale determination of phosphate in water and soil. Journal of Environmental Quality, 30(6), 2206–2209. https://doi.org/10.2134/jeq2001.2206
  • De Jager, H. J., & Heyns, A. M. (1998). Study of the hydrolysis of sodium polyphosphate in water using Raman spectroscopy. Applied Spectroscopy, 52(6), 808–814. https://doi.org/10.1366/0003702981944535
  • Deng, Y., Li, P., Fang, T., Jiang, Y., Chen, J., Chen, N., Yuan, D., & Ma, J. (2020). Automated determination of dissolved reactive phosphorus at nanomolar to micromolar levels in natural waters using a portable flow analyzer. Analytical Chemistry, 92(6), 4379–4386. https://doi.org/10.1021/acs.analchem.9b05252
  • Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926–929. https://doi.org/10.1126/science.1156401
  • Ellis, P. S., Lyddy-Meaney, A. J., Worsfold, P. J., & McKelvie, I. D. (2003). Multi-reflection photometric flow cell for use in flow injection analysis of estuarine waters. Analytica Chimica Acta, 499(1-2), 81–89. https://doi.org/10.1016/S0003-2670(03)00682-2
  • Fang, Y., Kim, E., & Strathmann, T. J. (2018). Mineral- and base-catalyzed hydrolysis of organophosphate flame retardants: Potential major fate-controlling sink in soil and aquatic environments. Environmental Science & Technology, 52(4), 1997–2006. https://doi.org/10.1021/acs.est.7b05911
  • Fischer, K. (1993). Distribution and elimination of HEDP in aquatic test systems. Water Research, 27(3), 485–493. https://doi.org/10.1016/0043-1354(93)90049-N
  • Frenzel, W., & Miró, M. (2019). Flow analysis | flow injection analysis: Environmental and agricultural. In P. Worsfold, A. Townshend, C. Poole, & M. Miró (Eds.), Encyclopedia of analytical science (3rd ed., pp. 164–194). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14557-3
  • Fu, D., Kurniawan, T. A., Avtar, R., Xu, P., & Othman, M. H. D. (2021). Recovering heavy metals from electroplating wastewater and their conversion into Zn2Cr-layered double hydroxide (LDH) for pyrophosphate removal from industrial wastewater. Chemosphere, 271, 129861. https://doi.org/10.1016/j.chemosphere.2021.129861
  • Fu, L., Liu, X., Hu, J., Zhao, X., Wang, H., & Wang, X. (2009). Application of dispersive liquid-liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Analytica Chimica Acta, 632(2), 289–295. https://doi.org/10.1016/j.aca.2008.11.020
  • Fujii, S., Inagaki, K., Takatsu, A., Yarita, T., & Chiba, K. (2009). Determination of phosphorus using capillary electrophoresis and micro-high-performance liquid chromatography hyphenated with inductively coupled plasma mass spectrometry for the quantification of nucleotides. Journal of Chromatography. A, 1216(44), 7488–7492. https://doi.org/10.1016/j.chroma.2009.05.019
  • Gao, Z., Deng, Y., Hu, X., Yang, S., Sun, C., & He, H. (2013). Determination of organophosphate esters in water samples using an ionic liquid-based sol-gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector. Journal of Chromatography. A, 1300, 141–150. https://doi.org/10.1016/j.chroma.2013.02.089
  • Godinot, C., Gaysinski, M., Thomas, O. P., Ferrier-Pagès, C., & Grover, R. (2016). On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae. Scientific Reports, 6, 21760. https://doi.org/10.1038/srep21760
  • Gray, H. E., Powell, T., Choi, S., Smith, D. S., & Parker, W. J. (2020). Organic phosphorus removal using an integrated advanced oxidation-ultrafiltration process. Water Research, 182, 115968. https://doi.org/10.1016/j.watres.2020.115968
  • Guo, Z. X., Cai, O., & Yang, Z. (2005). Determination of glyphosate and phosphate in water by ion chromatography—Inductively coupled plasma mass spectrometry detection. Journal of Chromatography A, 1100(2), 160–167. https://doi.org/10.1016/j.chroma.2005.09.034
  • Hafuka, A., Tsubokawa, Y., Shinohara, R., & Kimura, K. (2021). Phosphorus compounds in the dissolved and particulate phases in urban rivers and a downstream eutrophic lake as analyzed using 31P NMR. Environmental Pollution, 288, 117732. https://doi.org/10.1016/j.envpol.2021.117732
  • Hartenstein, S. D., Ruzicka, J., & Christian, G. D. (1985). Sensitivity enhancements for flow injection analysis-inductively coupled plasma atomic emission spectrometry using an on-line preconcentrating ion-exchange column. Analytical Chemistry, 57(1), 21–25. https://doi.org/10.1021/ac00279a010
  • Hasan, M. N., Altaf, M. M., Khan, N. A., Khan, A. H., Khan, A. A., Ahmed, S., Kumar, P. S., Naushad, M., Rajapaksh, A. U., Iqbal, J., Tirth, V., & Islam, S. (2021). Recent technologies for nutrient removal and recovery from wastewaters: A review. Chemosphere, 277, 130328. https://doi.org/10.1016/j.chemosphere.2021.130328
  • Huang, N., Wang, W., Xu, Z., Wu, Q., & Hu, H. (2019). UV/chlorine oxidation of the phosphonate antiscalant 1-hydroxyethane-1, 1-diphosphonic acid (HEDP) used for reverse osmosis processes: Organic phosphorus removal and scale inhibition properties changes. Journal of Environmental Management, 237, 180–186. https://doi.org/10.1016/j.jenvman.2019.02.055
  • Hug, A., & Udert, K. M. (2013). Struvite precipitation from urine with electrochemical magnesium dosage. Water Research, 47(1), 289–299. https://doi.org/10.1016/j.watres.2012.09.036
  • Itaya, K., & Ui, M. (1966). A new micromethod for the colorimetric determination of inorganic phosphate. Clinica Chimica Acta, 14(3), 361–366. https://doi.org/10.1016/0009-8981(66)90114-8
  • Jenkins, S. H. (1973). Phosphorus in fresh water and the marine environment. Biological Conservation, 5(2), 95. https://doi.org/10.1016/0006-3207(73)90085-2
  • Jiang, L., Huang, T., Feng, S., & Wang, J. (2016). Zirconium (IV) functionalized magnetic nanocomposites for extraction of organophosphorus pesticides from environmental water samples. Journal of Chromatography. A, 1456, 49–57. https://doi.org/10.1016/j.chroma.2016.06.005
  • Johnson, K. S., & Petty, R. L. (1982). Determination of phosphate in seawater by flow injection analysis with injection of reagent. Analytical Chemistry, 54(7), 1185–1187. https://doi.org/10.1021/ac00244a039
  • Kortazar, L., Alberdi, S., Tynan, E., & Fernández, L. A. (2016). An adapted flow injection analysis method of phosphate for estuarine samples avoiding matrix effects. Microchemical Journal, 124, 416–421. https://doi.org/10.1016/j.microc.2015.09.027
  • Kościelniak, P., & Kozak, J. (2002). Calibration by the gradient ratio-standard addition method in flow injection flame atomic absorption spectrometry. Analytica Chimica Acta, 460(2), 235–245. https://doi.org/10.1016/S0003-2670(02)00237-4
  • Kowalski, B., & Mazur, M. (2014). The simultaneous determination of six flame retardants in water samples using SPE pre-concentration and UHPLC-UV method. Water, Air, and Soil Pollution, 225, 1866. https://doi.org/10.1007/s11270-014-1866-4
  • Le, Q. A. T., Chang, R., & Kim, Y. H. (2015). Rational design of paraoxonase 1 (PON1) for the efficient hydrolysis of organophosphates. Chemical Communications (Cambridge, England), 51(77), 14536–14539. https://doi.org/10.1039/c5cc05857k
  • Lei, Y., Remmers, J. C., Saakes, M., Weijden, R. D. v. d., & Buisman, C. J. N. (2018). Is there a precipitation sequence in municipal wastewater induced by electrolysis? Environmental Science & Technology, 52(15), 8399–8407. https://doi.org/10.1021/acs.est.8b02869
  • Lei, Y., Saakes, M., Weijden, R. D. v d., & Buisman, C. J. N. (2020). Electrochemically mediated calcium phosphate precipitation from phosphonates: Implications on phosphorus recovery from non-orthophosphate. Water Research, 169, 115206. https://doi.org/10.1016/j.watres.2019.115206
  • Lei, Y., Song, B., Weijden, R. D. v d., Saakes, M., & Buisman, C. J. N. (2017). Electrochemical induced calcium phosphate precipitation: Importance of local pH. Environmental Science & Technology, 51(19), 11156–11164. https://doi.org/10.1021/acs.est.7b03909
  • Lesueur, C., Pfeffer, M., & Fuerhacker, M. (2005). Photodegradation of phosphonates in water. Chemosphere, 59(5), 685–691. https://doi.org/10.1016/j.chemosphere.2004.10.049
  • Li, B., Boiarkina, I., Yu, W., Huang, H. M., Munir, T., Wang, G. Q., & Young, B. R. (2019). Phosphorous recovery through struvite crystallization: Challenges for future design. The Science of the Total Environment, 648, 1244–1256. https://doi.org/10.1016/j.scitotenv.2018.07.166
  • Li, D., Zhong, Y., Zhu, X. F., Wang, H. L., Yang, W. Q., Deng, Y. R., Huang, W. L., & Peng, P. A. (2020). Enhanced reactivity of iron monosulfide towards reductive transformation of tris(2-chloroethyl) phosphate in the presence of cetyltrimethylammonium bromide. Environmental Pollution, 262, 114282. https://doi.org/10.1016/j.envpol.2020.114282
  • Li, D., Zhong, Y., Zhu, X. F., Wang, H. L., Yang, W. Q., Deng, Y. R., Huang, W. L., & Peng, P. A. (2021). Reductive degradation of chlorinated organophosphate esters by nanoscale zerovalent iron/cetyltrimethylammonium bromide composites: Reactivity, mechanism and new pathways. Water Research, 188, 116447. https://doi.org/10.1016/j.watres.2020.116447
  • Li, N., Tian, Y., Zhao, J., Zhan, W., Du, J., Kong, L., Zhang, J., & Zuo, W. (2018). Ultrafast selective capture of phosphorus from sewage by 3D Fe3O4@ZnO via weak magnetic field enhanced adsorption. Chemical Engineering Journal, 341, 289–297. https://doi.org/10.1016/j.cej.2018.02.029
  • Liang, S., Zheng, W. X., Zhu, L. Y., Duan, W. J., Wei, C. H., & Feng, C. H. (2019). One-step treatment of phosphite-laden wastewater: A single electrochemical reactor integrating superoxide radical-induced oxidation and electrocoagulation. Environmental Science & Technology, 53(9), 5328–5336. https://doi.org/10.1021/acs.est.9b00841
  • Liu, J., Ye, J. S., Chen, Y. F., Li, C. S., & Ou, H. S. (2018). UV-driven hydroxyl radical oxidation of tris(2-chloroethyl) phosphate: Intermediate products and residual toxicity. Chemosphere, 190, 225–233. https://doi.org/10.1016/j.chemosphere.2017.09.111
  • Liu, P., Li, C., Liang, X., Xu, J., Lu, G., & Ji, F. (2013). Advanced oxidation of hypophosphite and phosphite using a UV/H2O2 process. Environmental Technology, 34(13-16), 2231–2239. https://doi.org/10.1080/09593330.2013.765917
  • Liu, R., Chi, L., Wang, X., Sui, Y., Wang, Y., & Arandiyan, H. (2018). Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water. Journal of Environmental Chemical Engineering, 6(4), 5269–5286. https://doi.org/10.1016/j.jece.2018.08.008
  • Lorenzo, M., Campo, J., Suárez-Varela, M. M., & Picó, Y. (2019). Occurrence, distribution and behavior of emerging persistent organic pollutants (POPs) in a Mediterranean wetland protected area. The Science of the Total Environment, 646, 1009–1020. https://doi.org/10.1016/j.scitotenv.2018.07.304
  • Lu, Z., Liu, Y., Barreto, V., Pohl, C., Avdalovic, N., Joyce, R., & Newton, B. (2002). Determination of anions at trace levels in power plant water samples by ion chromatography with electrolytic eluent generation and suppression. Journal of Chromatography. A, 956(1-2), 129–138. https://doi.org/10.1016/S0021-9673(02)00143-7
  • Maher, W., Krikowa, F., Wruck, D., Louie, H., Nguyen, T., & Huang, W. Y. (2002). Determination of total phosphorus and nitrogen in turbid waters by oxidation with alkaline potassium peroxodisulfate and low pressure microwave digestion, autoclave heating or the use of closed vessels in a hot water bath: Comparison with Kjeldahl digestion. Analytica Chimica Acta, 463(2), 283–293. https://doi.org/10.1016/S0003-2670(02)00346-X
  • Martínez, R. J., & Farrell, J. (2017). Understanding nitrilotris(methylenephosphonic acid) reactions with ferric hydroxide. Chemosphere, 175, 490–496. https://doi.org/10.1016/j.chemosphere.2017.02.015
  • Maruo, M., Ishimaru, M., Azumi, Y., Kawasumi, Y., Nagafuchi, O., & Obata, H. (2016). Comparison of soluble reactive phosphorus and orthophosphate concentrations in river waters. Limnology, 17(1), 7–12. https://doi.org/10.1007/s10201-015-0463-6
  • Matthus, E., de Oude, N. T., Bolte, M., & Lemaire, J. (1989). Photodegradation of ferric ethylenediaminetetra(methylenephosphonic acid) (EDTMP) in aqueous solution. Water Research, 23(7), 845–851. https://doi.org/10.1016/0043-1354(89)90008-0
  • Mayer, B. K., Gerrity, D., Rittmann, B. E., Reisinger, D., & Brandt-Williams, S. (2013). Innovative strategies to achieve low total phosphorus concentrations in high water flows. Critical Reviews in Environmental Science and Technology, 43(4), 409–441. https://doi.org/10.1080/10643389.2011.604262
  • McKelvie, I. D., Peat, D. M., & Worsfold, P. J. (1995). Analytical perspective. Techniques for the quantification and speciation of phosphorus in natural waters. Analytical Proceedings Including Analytical Communications, 32(10), 437–445. https://doi.org/10.1039/ai9953200437
  • Miller-Ihli, N. J., & Baker, S. A. (2001). Trace element composition of municipal waters in the United States: A comparison of ICP-AES and ICP-MS methods. Journal of Food Composition and Analysis, 14(6), 619–629. https://doi.org/10.1006/jfca.2001.1024
  • Moser, V. C., Phillips, P. M., Hedge, J. M., & McDaniel, K. L. (2015). Neurotoxicological and thyroid evaluations of rats developmentally exposed to tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) and tris(2-chloro-2-ethyl)phosphate (TCEP). Neurotoxicology and Teratology, 52(Pt B), 236–247. https://doi.org/10.1016/j.ntt.2015.08.004
  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5
  • Nagul, E. A., McKelvie, I. D., Worsfold, P. J., & Kolev, S. D. (2015). The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. Analytica Chimica Acta, 890, 60–82. https://doi.org/10.1016/j.aca.2015.07.030
  • Nguyen, T. T., Ngo, H. H., & Guo, W. (2013). Pilot scale study on a new membrane bioreactor hybrid system in municipal wastewater treatment. Bioresource Technology, 141, 8–12. https://doi.org/10.1016/j.biortech.2013.03.125
  • Nowack, B., & Stone, A. T. (2000). Degradation of nitrilotris(methylenephosphonic acid) and related (amino)phosphonate chelating agents in the presence of manganese and molecular oxygen. Environmental Science & Technology, 34(22), 4759–4765. https://doi.org/10.1021/es0000908
  • Nowack, B., & Stone, A. T. (2006). Competitive adsorption of phosphate and phosphonates onto goethite. Water Research, 40(11), 2201–2209. https://doi.org/10.1016/j.watres.2006.03.018
  • Nutrient Criteria Technical Guidance Manual. (2000). Office of Science and Technology. U. S. EPA. EPA-822-B00-001.
  • Ormaza-González, F. I., & Statham, P. J. (1991). Determination of dissolved inorganic phosphorus in natural waters at nanomolar concentrations using a long capillary cell detector. Analytica Chimica Acta, 244, 63–70. https://doi.org/10.1016/S0003-2670(00)82479-4
  • Pan, B., Han, F., Nie, G., Wu, B., He, K., & Lu, L. (2014). New strategy to enhance phosphate removal from water by hydrous manganese oxide. Environmental Science & Technology, 48(9), 5101–5107. https://doi.org/10.1021/es5004044
  • Pan, B., Wu, J., Pan, B., Lv, L., Zhang, W., Xiao, L., Wang, X., Tao, X., & Zheng, S. (2009). Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Research, 43(17), 4421–4429. https://doi.org/10.1016/j.watres.2009.06.055
  • Pang, L., Yang, P., Yang, H., Ge, L., Xiao, J., & Zhou, Y. (2018). Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM). The Science of the Total Environment, 626, 42–47. https://doi.org/10.1016/j.scitotenv.2018.01.089
  • Pantelaki, I., & Voutsa, D. (2019). Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment. The Science of the Total Environment, 649, 247–263. https://doi.org/10.1016/j.scitotenv.2018.08.286
  • Pasek, M. A. (2008). Rethinking early Earth phosphorus geochemistry. Proceedings of the National Academy of Sciences of the United States of America, 105(3), 853–858. https://doi.org/10.1073/pnas.0708205105
  • Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768–781. https://doi.org/10.1016/j.chemosphere.2018.01.098
  • Pozzo, A. D., & Petrucci, E. (2013). Sequential use of Fenton and electro-Fenton process for the oxidation of an effluent-containing hypophosphite and phosphite. Desalination and Water Treatment, 53(5), 1–1360. https://doi.org/10.1080/19443994.2013.853628
  • Qiu, H. M., Geng, J. J., Shen, C. Y., Ren, H. Q., & Xu, Z. Y. (2015). Aquatic photooxidation of phosphite in the presence of ferric and oxalate ions. Chemical Engineering Journal, 269, 408–415. https://doi.org/10.1016/j.cej.2015.01.113
  • Read, E. K., Ivancic, M., Hanson, P., Cade-Menun, B. J., & McMahon, K. D. (2014). Phosphorus speciation in a eutrophic lake by 31P NMR spectroscopy. Water Research, 62, 229–240. https://doi.org/10.1016/j.watres.2014.06.005
  • Reinhardt, T., Gómez Elordi, M., Minke, R., Schönberger, H., & Rott, E. (2020). Batch studies of phosphonate adsorption on granular ferric hydroxides. Water Science and Technology, 81(1), 10–20. https://doi.org/10.2166/wst.2020.055
  • Ren, G., Chu, X., Zhang, J., Zheng, K., Zhou, X., Zeng, X., & Yu, Z. (2019). Organophosphate esters in the water, sediments, surface soils, and tree bark surrounding a manufacturing plant in north China. Environmental Pollution, 246, 374–380. https://doi.org/10.1016/j.envpol.2018.12.020
  • Ren, J., Li, N., Wei, H., Li, A. M., & Yang, H. (2020). Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based flocculant. Water Research, 170, 115361. https://doi.org/10.1016/j.watres.2019.115361
  • Rott, E., Minke, R., Bali, U., & Steinmetz, H. (2017a). Removal of phosphonates from industrial wastewater with UV/FeII, Fenton and UV/Fenton treatment. Water Research, 122, 345–354. https://doi.org/10.1016/j.watres.2017.06.009
  • Rott, E., Minke, R., & Steinmetz, H. (2017b). Removal of phosphorus from phosphonate-loaded industrial wastewaters via precipitation/flocculation. Journal of Water Process Engineering, 17, 188–196. https://doi.org/10.1016/j.jwpe.2017.04.008
  • Rott, E., Nouri, M., Meyer, C., Minke, R., Schneider, M., Mandel, K., & Drenkova-Tuhtan, A. (2018). Removal of phosphonates from synthetic and industrial wastewater with reusable magnetic adsorbent particles. Water Research, 145, 608–617. https://doi.org/10.1016/j.watres.2018.08.067
  • Rott, E., Steinmetz, H., & Metzger, J. W. (2018). Organophosphonates: A review on environmental relevance, biodegradability and removal in wastewater treatment plants. The Science of the Total Environment, 615, 1176–1191. https://doi.org/10.1016/j.scitotenv.2017.09.223
  • Roy, E. D. (2017). Phosphorus recovery and recycling with ecological engineering: A review. Ecological Engineering, 98, 213–227. https://doi.org/10.1016/j.ecoleng.2016.10.076
  • Ruiz-Calero, V., & Galceran, M. T. (2005). Ion chromatographic separations of phosphorus species: A review. Talanta, 66(2), 376–410. https://doi.org/10.1016/j.talanta.2005.01.027
  • Ṙuz̆ic̆ka, J., & Hansen, E. H. (1975). Flow injection analysis: Part 1. A new concept of fast continuous flow analysis. Analytica Chimica Acta, 78(1), 145–157. https://doi.org/10.1016/S0003-2670(01)84761-9
  • Saint-Hilaire, D., & Jans, U. (2013). Reactions of three halogenated organophosphorus flame retardants with reduced sulfur species. Chemosphere, 93(9), 2033–2039. https://doi.org/10.1016/j.chemosphere.2013.07.028
  • Schmidt, C. K., Raue, B., Brauch, H. J., & Sacher, F. (2014). Trace-level analysis of phosphonates in environmental waters by ion chromatography and inductively coupled plasma mass spectrometry. International Journal of Environmental Analytical Chemistry, 94(4), 385–398. https://doi.org/10.1080/03067319.2013.831410
  • Seviour, R. J., Mino, T., & Onuki, M. (2003). The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiology Reviews, 27(1), 99–127. https://doi.org/10.1016/S0168-6445(03)00021-4
  • Sud, D., Kaur, P., & Bansal, P. (2021). Chapter 8 High-performance liquid chromatographic techniques for determination of organophosphate pesticides in complex matrices. In Inamuddin, R. Boddula, & A. M. Asiri (Eds.), Green sustainable process for chemical and environmental engineering and science (pp. 175–196). Elsevier. https://doi.org/10.1016/B978-0-12-821883-9.00006-0
  • Sun, S., Shan, C., Yang, Z., Wang, S., & Pan, B. (2022). Self-enhanced selective oxidation of phosphonate into phosphate by Cu(II)/H2O2: Performance, mechanism, and validation. Environmental Science & Technology, 56(1), 634–641. https://doi.org/10.1021/acs.est.1c06471
  • Sun, S. H., Wang, S., Ye, Y. X., & Pan, B. C. (2019). Highly efficient removal of phosphonates from water by a combined Fe(III)/UV/co-precipitation process. Water Research, 153, 21–28. https://doi.org/10.1016/j.watres.2019.01.007
  • Tian, S. C., & Zhang, Z. H. (2019). Photo-electrochemical oxidation of hypophosphite and phosphorous recovery by UV/Fe2+/peroxydisulfate with electrochemical process. Chemical Engineering Journal, 359, 1075–1085. https://doi.org/10.1016/j.cej.2018.11.076
  • Venkiteshwaran, K., Mcnamara, P. J., & Mayer, B. K. (2018). Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery. The Science of the Total Environment, 644, 661–674. https://doi.org/10.1016/j.scitotenv.2018.06.369
  • Wang, D., Weston, D. P., & Lydy, M. J. (2009). Method development for the analysis of organophosphate and pyrethroid insecticides at low parts per trillion levels in water. Talanta, 78(4-5), 1345–1351. https://doi.org/10.1016/j.talanta.2009.02.012
  • Wang, J. L., & Chen, H. (2020). Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. The Science of the Total Environment, 704, 135249. https://doi.org/10.1016/j.scitotenv.2019.135249
  • Wang, S., Sun, S., Shan, C., & Pan, B. (2019). Analysis of trace phosphonates in authentic water samples by pre-methylation and LC-Orbitrap MS/MS. Water Research, 161, 78–88. https://doi.org/10.1016/j.watres.2019.05.099
  • Wang, W., Deng, S., Li, D., Ren, L., Shan, D., Wang, B., Huang, J., Wang, Y., & Yu, G. (2018a). Sorption behavior and mechanism of organophosphate flame retardants on activated carbons. Chemical Engineering Journal, 332, 286–292. https://doi.org/10.1016/j.cej.2017.09.085
  • Wang, W., Deng, S., Li, D., Ren, L., Wang, B., Huang, J., Wang, Y., & Yu, G. (2018b). Adsorptive removal of organophosphate flame retardants from water by non-ionic resins. Chemical Engineering Journal, 354, 105–112. https://doi.org/10.1016/j.cej.2018.08.002
  • Wang, Z., Chen, G., Patton, S., Ren, C., Liu, J., & Liu, H. (2019). Degradation of nitrilotris-methylenephosphonic acid (NTMP) antiscalant via persulfate photolysis: Implications on desalination concentrate treatment. Water Research, 159, 30–37. https://doi.org/10.1016/j.watres.2019.04.051
  • Wei, G.-L., Li, D.-Q., Zhuo, M.-N., Liao, Y.-S., Xie, Z.-Y., Guo, T.-L., Li, J.-J., Zhang, S.-Y., & Liang, Z.-Q. (2015). Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environmental Pollution, 196, 29–46. https://doi.org/10.1016/j.envpol.2014.09.012
  • Worsfold, P., McKelvie, I., & Monbet, P. (2016). Determination of phosphorus in natural waters: A historical review. Analytica Chimica Acta, 918, 8–20. https://doi.org/10.1016/j.aca.2016.02.047
  • Worsfold, P. J., Gimbert, L. J., Mankasingh, U., Omaka, O. N., Hanrahan, G., Gardolinski, P. C. F. C., Haygarth, P. M., Turner, B. L., Keith-Roach, M. J., & McKelvie, I. D. (2005). Sampling, sample treatment and quality assurance issues for the determination of phosphorus species in natural waters and soils. Talanta, 66(2), 273–293. https://doi.org/10.1016/j.talanta.2004.09.006
  • Wu, B., Wan, J., Zhang, Y., Pan, B., & Lo, I. M. C. (2020). Selective phosphate removal from water and wastewater using sorption: Process fundamentals and removal mechanisms. Environmental Science & Technology, 54(1), 50–66. https://doi.org/10.1021/acs.est.9b05569
  • Xu, X. X., Chen, J., Qu, R. J., & Wang, Z. Y. (2017). Oxidation of tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways. Chemosphere, 185, 833–843. https://doi.org/10.1016/j.chemosphere.2017.07.090
  • Xu, Y. F., Hong, H., Yang, F., Zhang, L., Xu, J. H., Dou, L., Hao, Y., Qian, G. R., & Zhou, J. Z. (2019). Removal behaviors and mechanisms of orthophosphate and pyrophosphate by calcined dolomite with ferric chloride assistance. Chemosphere, 235, 1015–1021. https://doi.org/10.1016/j.chemosphere.2019.07.018
  • Xu, Z. B., Wang, W. L., Huang, N., Wu, Q. Y., Lee, M. Y., & Hu, H. Y. (2019). 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) degradation by ozonation: Kinetics, phosphorus transformation, anti-precipitation property changes and phosphorus removal. Water Research, 148, 334–343. https://doi.org/10.1016/j.watres.2018.10.038
  • Yan, W., & Jing, C. (2018). Molecular insights into glyphosate adsorption to goethite gained from ATR-FTIR, two-dimensional correlation spectroscopy, and DFT study. Environmental Science & Technology, 52(4), 1946–1953. https://doi.org/10.1021/acs.est.7b05643
  • Yan, X., Qian, J., Wang, S., Zhang, X., Zhang, Y., & Pan, B. (2022). Selective removal of organic phosphonates via coupling hyper-cross-linked resin with nanoconfined hydrated oxides. Chemical Engineering Journal, 428, 132620. https://doi.org/10.1016/j.cej.2021.132620
  • Yang, F., Zhang, C., Rong, H., & Cao, Y. (2019). Research progress and application prospect of anaerobic biological phosphorus removal. Applied Microbiology and Biotechnology, 103(5), 2133–2139. https://doi.org/10.1007/s00253-019-09634-0
  • Yaqoob, M., Nabi, A., & Worsfold, P. J. (2004). Determination of nanomolar concentrations of phosphate in freshwaters using flow injection with luminol chemiluminescence detection. Analytica Chimica Acta, 510(2), 213–218. https://doi.org/10.1016/j.aca.2003.12.070
  • Ye, J. S., Liu, J., Li, C. S., Zhou, P. L., Wu, S., & Ou, H. S. (2017). Heterogeneous photocatalysis of tris(2-chloroethyl) phosphate by UV/TiO2: Degradation products and impacts on bacterial proteome. Water Research, 124, 29–38. https://doi.org/10.1016/j.watres.2017.07.034
  • Ye, L., Meng, W., Huang, J., Li, J., & Su, G. (2021). Establishment of a target, suspect, and functional group-dependent screening strategy for organophosphate esters (OPEs): “into the unknown” of OPEs in the sediment of Taihu lake, China. Environmental Science & Technology, 55(9), 5836–5847. https://doi.org/10.1021/acs.est.0c07825
  • Yu, X. L., Yin, H., Peng, H., Lu, G. N., & Dang, Z. (2019). Oxidation degradation of tris-(2-chloroisopropyl) phosphate by ultraviolet driven sulfate radical: Mechanisms and toxicology assessment of degradation intermediates using flow cytometry analyses. The Science of the Total Environment, 687, 732–740. https://doi.org/10.1016/j.scitotenv.2019.06.163
  • Yuan, X. J., Lacorte, S., Cristale, J., Dantas, R. F., Sans, C., Esplugas, S., & Qiang, Z. M. (2015). Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments. Separation and Purification Technology, 156, 1028–1034. https://doi.org/10.1016/j.seppur.2015.09.052
  • Zagatto, E. A. G., Arruda, M. A. Z., Jacintho, A. O., & Mattos, I. L. (1990). Compensation of the Schlieren effect in flow-injection analysis by using dual-wavelength spectrophotometry. Analytica Chimica Acta, 234, 153–160. https://doi.org/10.1016/S0003-2670(00)83550-3
  • Zhang, J. J., Zhao, X., Wang, Y., & Djellabi, R. (2020). Recovery of phosphorus from hypophosphite-laden wastewater: A single-compartment photoelectrocatalytic cell system integrating oxidation and precipitation. Environmental Science & Technology, 54(2), 1204–1213. https://doi.org/10.1021/acs.est.9b05125
  • Zhang, L., Dan, H., Bukasa, O. T., Song, L., Liu, Y., Wang, L., & Li, J. (2020). Low-cost efficient magnetic adsorbent for phosphorus removal from water. ACS Omega, 5(39), 25326–25333. https://doi.org/10.1021/acsomega.0c03657
  • Zhang, X., Li, J., Fan, W. Y., & Sheng, G. P. (2019). Photomineralization of effluent organic phosphorus to orthophosphate under simulated light illumination. Environmental Science & Technology, 53(9), 4997–5004. https://doi.org/10.1021/acs.est.9b00348
  • Zhang, Y., Kong, B., Shen, Z., Qian, J., & Pan, B. (2021). Phosphorus binding by lanthanum modified pyroaurite-like clay: Performance and mechanisms. ACS ES&T Engineering, 1(11), 1565–1575. https://doi.org/10.1021/acsestengg.1c00218
  • Zhang, Y., Pan, B., Shan, C., & Gao, X. (2016). Enhanced phosphate removal by nanosized hydrated La(III) oxide confined in cross-linked polystyrene networks. Environmental Science & Technology, 50(3), 1447–1454. https://doi.org/10.1021/acs.est.5b04630
  • Zhang, Y., She, X., Gao, X., Shan, C., & Pan, B. (2019). Unexpected favorable role of Ca2+ in phosphate removal by using nanosized ferric oxides confined in porous polystyrene beads. Environmental Science & Technology, 53(1), 365–372. https://doi.org/10.1021/acs.est.8b05177
  • Zhang, Y., Wang, M., Gao, X., Qian, J., & Pan, B. (2021). Structural evolution of lanthanum hydroxides during long-term phosphate mitigation: Effect of nanoconfinement. Environmental Science & Technology, 55(1), 665–676. https://doi.org/10.1021/acs.est.0c05577
  • Zhang, Y., Zhang, X., Cheng, H., Nina, M. R. H., Ge, J., & Bai, Y. (2021). Reshaping the active pocket of promiscuous lactonases for degrading bulky organophosphate flame retardants. Chemical Communications (Cambridge, England), 57(53), 6475–6478. https://doi.org/10.1039/d1cc02657g
  • Zhao, Z., Dong, W., Wang, H., Chen, G., Wang, W., Liu, Z., Gao, Y., & Zhou, B. (2017). Advanced oxidation removal of hypophosphite by O3/H2O2 combined with sequential Fe(II) catalytic process. Chemosphere, 180, 48–56. https://doi.org/10.1016/j.chemosphere.2017.04.003
  • Zhu, J., Wang, S., Li, H., Qian, J., Lv, L., & Pan, B. (2021). Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism. Water Research, 202, 117397. https://doi.org/10.1016/j.watres.2021.117397

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.