2,156
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Flow line of density functional theory in heterogeneous persulfate-based advanced oxidation processes for pollutant degradation: A review

, , , , & ORCID Icon
Pages 483-503 | Published online: 08 May 2022

References

  • Ao, Z. M., Li, S., & Jiang, Q. (2009). Thermal stability of interaction between the CO molecules and the Al doped graphene. Physical Chemistry Chemical Physics, 11(11), 1683–1687. https://doi.org/10.1039/b812188e
  • Barazorda-Ccahuana, H. L., Gomez, B., Mas, F., & Madurga, S. (2020). Effect of pH on the supramolecular structure of helicobacter pylori urease by molecular dynamics simulations. Polymers, 12(11), 2713. https://doi.org/10.3390/polym12112713
  • Bernhammer, J. C., Frison, G., & Huynh, H. V. (2013). Electronic structure trends in N-heterocyclic carbenes (NHCs) with varying number of nitrogen atoms and NHC-transition-metal bond properties. Chemistry (Weinheim an Der Bergstrasse, Germany), 19(38), 12892–12905. https://doi.org/10.1002/chem.201301093
  • Chen, F., Li, X., Ma, J., Qu, J., Yang, Y., & Zhang, S. (2019). Remediation of soil co-contaminated with decabromodiphenyl ether (BDE-209) and copper by enhanced electrokinetics-persulfate process. Journal of Hazardous Materials, 369, 448–455. https://doi.org/10.1016/j.jhazmat.2019.02.043
  • Chen, G., Yu, Y., Liang, L., Duan, X., Li, R., Lu, X., Yan, B., Li, N., & Wang, S. (2021). Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review. Journal of Hazardous Materials, 408, 124461. https://doi.org/10.1016/j.jhazmat.2020.124461
  • Chen, J., Zhou, X., Sun, P., Zhang, Y., & Huang, C. H. (2019). Complexation enhances Cu(II)-activated peroxydisulfate: A novel activation mechanism and Cu(III) contribution. Environmental Science & Technology, 53(20), 11774–11782. https://doi.org/10.1021/acs.est.9b03873
  • Chen, T., Ma, J., Zhang, Q., Xie, Z., Zeng, Y., Li, R., Liu, H., Liu, Y., Lv, W., & Liu, G. (2019). Degradation of propranolol by UV-activated persulfate oxidation: Reaction kinetics, mechanisms, reactive sites, transformation pathways and Gaussian calculation. The Science of the Total Environment, 690, 878–890. https://doi.org/10.1016/j.scitotenv.2019.07.034
  • Chen, X., Oh, W. D., & Lim, T. T. (2018). Graphene- and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms. Chemical Engineering Journal, 354, 941–976. https://doi.org/10.1016/j.cej.2018.08.049
  • Chen, Y., Gao, S., Liu, Z., Shao, S., Yin, W., Fang, Z., & Huang, L. Z. (2018). Prolonged persulfate activation by UV irradiation of green rust for the degradation of organic pollutants. Environmental Chemistry Letters, 17(2), 1017–1021. https://doi.org/10.1007/s10311-018-0815-7
  • Chen, Z., He, S., Zhu, M., & Wei, C. (2020). The effect of peroxymonosulfate in WS2 nanosheets for the removal of diclofenac: Information exposure and degradation pathway. Chemosphere, 245, 125678. https://doi.org/10.1016/j.chemosphere.2019.125678
  • Cheng, Z., Ling, L., Wu, Z., Fang, J., Westerhoff, P., & Shang, C. (2020). Novel visible light-driven photocatalytic chlorine activation process for carbamazepine degradation in drinking water. Environmental Science & Technology, 54(18), 11584–11593. https://doi.org/10.1021/acs.est.0c03170
  • Chermette, H. (1998). Density functional theory. Coordination Chemistry Reviews, 178–180, 699–721. https://doi.org/10.1016/S0010-8545(98)00179-9
  • Dai, Z., Li, D., Ao, Z., Wang, S., & An, T. (2021). Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: Adsorption and catalytic oxidation. Journal of Hazardous Materials, 405, 124684. https://doi.org/10.1016/j.jhazmat.2020.124684
  • Delley, B. (1990). An all-electro numerical method for solving the density functional for polyatomic moleculles. The Journal of Chemical Physics, 92(1), 508–517. https://doi.org/10.1063/1.458452
  • DelloStritto, M. J., Kubicki, J., & Sofo, J. O. (2014). Density functional theory simulation of hydrogen-bonding structure and vibrational densities of states at the quartz (101)-water interface and its relation to dissolution as a function of solution pH and ionic strength. Journal of Physics: Condensed Matter, 26(24), 244101. https://doi.org/10.1088/0953-8984/26/24/244101
  • Du, W., Zhang, Q., Shang, Y., Wang, W., Li, Q., Yue, Q., Gao, B., & Xu, X. (2020). Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation. Applied Catalysis B: Environmental, 262, 118302. https://doi.org/10.1016/j.apcatb.2019.118302
  • Duan, X., Ao, Z., Li, D., Sun, H., Zhou, L., Suvorova, A., Saunders, M., Wang, G., & Wang, S. (2016). Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon, 103, 404–411. https://doi.org/10.1016/j.carbon.2016.03.034
  • Duan, X., Ao, Z., Sun, H., Indrawirawan, S., Wang, Y., Kang, J., Liang, F., Zhu, Z. H., & Wang, S. (2015). Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. ACS Applied Materials & Interfaces, 7(7), 4169–4178. https://doi.org/10.1021/am508416n
  • Duan, X., Ao, Z., Zhang, H., Saunders, M., Sun, H., Shao, Z., & Wang, S. (2018). Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: Core-shell layer dependence. Applied Catalysis B: Environmental, 222, 176–181. https://doi.org/10.1016/j.apcatb.2017.10.007
  • Duan, X., Ao, Z., Zhou, L., Sun, H., Wang, G., & Wang, S. (2016). Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Applied Catalysis B: Environmental, 188, 98–105. https://doi.org/10.1016/j.apcatb.2016.01.059
  • Duan, X., Kang, J., Tian, W., Zhang, H., Ho, S. H., Zhu, Y. A., Ao, Z., Sun, H., & Wang, S. (2019). Interfacial-engineered cobalt@carbon hybrids for synergistically boosted evolution of sulfate radicals toward green oxidation. Applied Catalysis B: Environmental, 256, 117795. https://doi.org/10.1016/j.apcatb.2019.117795
  • Duan, X., Li, W., Ao, Z., Kang, J., Tian, W., Zhang, H., Ho, S. H., Sun, H., & Wang, S. (2019). Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation. Journal of Materials Chemistry A, 7(41), 23904–23913. https://doi.org/10.1039/C9TA04885E
  • Duan, X., Su, C., Miao, J., Zhong, Y., Shao, Z., Wang, S., & Sun, H. (2018). Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Applied Catalysis B: Environmental, 220, 626–634. https://doi.org/10.1016/j.apcatb.2017.08.088
  • Duan, X., Sun, H., Ao, Z., Zhou, L., Wang, G., & Wang, S. (2016). Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation. Carbon, 107, 371–378. https://doi.org/10.1016/j.carbon.2016.06.016
  • Duan, X., Sun, H., Shao, Z., & Wang, S. (2018). Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 224, 973–982. https://doi.org/10.1016/j.apcatb.2017.11.051
  • Duan, X., Sun, H., Tade, M., & Wang, S. (2018). Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catalysis Today, 307, 140–146. https://doi.org/10.1016/j.cattod.2017.04.038
  • Gao, Y., An, T., Ji, Y., Li, G., & Zhao, C. (2015). Eco-toxicity and human estrogenic exposure risks from OH-initiated photochemical transformation of four phthalates in water: A computational study. Environmental Pollution (Barking, Essex: 1987), 206, 510–517. https://doi.org/10.1016/j.envpol.2015.08.006
  • Ghanbari, F., & Moradi, M. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chemical Engineering Journal, 310, 41–62. https://doi.org/10.1016/j.cej.2016.10.064
  • Hamdaoui, M., Ney, M., Sarda, V., Karmazin, L., Bailly, C., Sieffert, N., Dohm, S., Hansen, A., Grimme, S., & Djukic, J.-P. (2016). Evidence of a donor–acceptor (Ir–H)→SiR3 interaction in a trapped Ir(III) silane catalytic intermediate. Organometallics, 35(13), 2207–2223. https://doi.org/10.1021/acs.organomet.6b00248
  • Han, C., Duan, X., Zhang, M., Fu, W., Duan, X., Ma, W., Liu, S., Wang, S., & Zhou, X. (2019). Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation. Carbon, 153, 73–80. https://doi.org/10.1016/j.carbon.2019.06.107
  • Han, W., Li, D., Zhang, M., Ximin, H., Duan, X., Liu, S., & Wang, S. (2020). Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots. Journal of Hazardous Materials, 395, 122695. https://doi.org/10.1016/j.jhazmat.2020.122695
  • He, P., Zhu, J., Chen, Y., Chen, F., Zhu, J., Liu, M., Zhang, K., & Gan, M. (2021). Pyrite-activated persulfate for simultaneous 2,4-DCP oxidation and Cr(VI) reduction. Chemical Engineering Journal, 406, 126758. https://doi.org/10.1016/j.cej.2020.126758
  • He, X., Wu, M., Ao, Z., Lai, B., Zhou, Y., An, T., & Wang, S. (2021). Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: Simple synthesis and contribution of carbon species. Journal of Hazardous Materials, 403, 124048. https://doi.org/10.1016/j.jhazmat.2020.124048
  • Jiang, H., Zhu, C., Yuan, Y., Yue, C., Ling, C., Liu, F., & Li, A. (2020). Enhanced activation of peroxymonosulfate with metal-substituted hollow MxCo3-xS4 polyhedrons for superfast degradation of sulfamethazine. Chemical Engineering Journal, 384, 123302. https://doi.org/10.1016/j.cej.2019.123302
  • Jiang, Q. G., Ao, Z. M., Li, S., & Wen, Z. (2014). Density functional theory calculations on the CO catalytic oxidation on Al-embedded graphene. RSC Advances, 4(39), 20290–20296. https://doi.org/10.1039/C4RA01908C
  • Jing, B., Ao, Z., Zhao, W., Xu, Y., Chen, Z., & An, T. (2020). Evaluation procedure of photocatalysts for VOCs degradation from the view of density functional theory calculations: g-C3N4 dots/graphene as an example. Journal of Materials Chemistry A, 8(39), 20363–20372. https://doi.org/10.1039/D0TA06060G
  • Kong, L., Fang, G., Xi, X., Wen, Y., Chen, Y., Xie, M., Zhu, F., Zhou, D., & Zhan, J. (2021). A novel peroxymonosulfate activation process by periclase for efficient singlet oxygen-mediated degradation of organic pollutants. Chemical Engineering Journal, 403, 126445. https://doi.org/10.1016/j.cej.2020.126445
  • Lai, L., Ji, H., Zhang, H., Liu, R., Zhou, C., Liu, W., Ao, Z., Li, N., Liu, C., Yao, G., & Lai, B. (2021). Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: Surface ≡V(III) and ≡V(IV) as electron donors promoted the regeneration of ≡Fe(II). Applied Catalysis B: Environmental, 282, 119559. https://doi.org/10.1016/j.apcatb.2020.119559
  • Lan, S., Chen, Y., Zeng, L., Ji, H., Liu, W., & Zhu, M. (2020). Piezo-activation of peroxymonosulfate for benzothiazole removal in water. Journal of Hazardous Materials, 393, 122448. https://doi.org/10.1016/j.jhazmat.2020.122448
  • Lan, S., Jing, B., Yu, C., Yan, D., Li, Z., Ao, Z., & Zhu, M. (2022). Protrudent iron single-atom accelerated interfacial piezoelectric polarization for self-powered water motion triggered Fenton-like reaction. Small, 18(2), 2105279. https://doi.org/10.1002/smll.202105279
  • Li, H., Miao, X., Zhang, J., Du, J., Xu, S., Tang, J., & Zhang, Y. (2020). DFT studies on the reaction mechanism and kinetics of dibutyl phthalate initiated by hydroxyl and sulfate radicals: Prediction of the most reactive sites. Chemical Engineering Journal, 381, 122680. https://doi.org/10.1016/j.cej.2019.122680
  • Li, H., Tian, J., Zhu, Z., Cui, F., Zhu, Y.-A., Duan, X., & Wang, S. (2018). Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application. Chemical Engineering Journal, 354, 507–516. https://doi.org/10.1016/j.cej.2018.08.043
  • Li, H., Zhang, Y., Wan, J., Xiao, H., & Chen, X. (2018). Theoretical investigation on the oxidation mechanism of dibutyl phthalate by hydroxyl and sulfate radicals in the gas and aqueous phase. Chemical Engineering Journal, 339, 381–392. https://doi.org/10.1016/j.cej.2017.12.153
  • Li, J., Li, M., Sun, H., Ao, Z., Wang, S., & Liu, S. (2020). Understanding of the oxidation behavior of benzyl alcohol by peroxymonosulfate via carbon nanotubes activation. ACS Catalysis, 10(6), 3516–3525. https://doi.org/10.1021/acscatal.9b05273
  • Li, M., Cai, B., Tian, R., Yu, X., Breese, M. B. H., Chu, X., Han, Z., Li, S., Joshi, R., Vinu, A., Wan, T., Ao, Z., Yi, J., & Chu, D. (2021). Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Chemical Engineering Journal, 409, 128158. https://doi.org/10.1016/j.cej.2020.128158
  • Li, M., Sun, B., Ao, Z., An, T., & Wang, G. (2020). Atomic-scale identification of influencing factors of sodium dendrite growth on different current collectors. Journal of Materials Chemistry A, 8(20), 10199–10205. https://doi.org/10.1039/D0TA01853H
  • Li, W., Guo, H., Wang, C., Zhang, Y., Cheng, X., Wang, J., Yang, B., & Du, E. (2020). ROS reevaluation for degradation of 4-chloro-3,5-dimethylphenol (PCMX) by UV and UV/persulfate processes in the water: Kinetics, mechanism, DFT studies and toxicity evolution. Chemical Engineering Journal, 390, 124610. https://doi.org/10.1016/j.cej.2020.124610
  • Li, W., Jiang, Q., Li, D., Ao, Z., & An, T. (2021). Density functional theory investigation on selective adsorption of VOCs on borophene. Chinese Chemical Letters, 32(9), 2803–2806. https://doi.org/10.1016/j.cclet.2021.01.026
  • Li, Z., Sun, Y., Yang, Y., Han, Y., Wang, T., Chen, J., & Tsang, D. C. W. (2020). Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. Journal of Hazardous Materials, 383, 121240. https://doi.org/10.1016/j.jhazmat.2019.121240
  • Liu, C., Liu, L., Tian, X., Wang, Y., Li, R., Zhang, Y., Song, Z., Xu, B., Chu, W., Qi, F., & Ikhlaq, A. (2019a). Coupling metal–organic frameworks and g-CN to derive Fe@N-doped graphene-like carbon for peroxymonosulfate activation: Upgrading framework stability and performance. Applied Catalysis B: Environmental, 255, 117763. https://doi.org/10.1016/j.apcatb.2019.117763
  • Liu, J., Zhong, S., Song, Y., Wang, B., & Zhang, F. (2018a). Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. Journal of Electroanalytical Chemistry, 809, 74–79. https://doi.org/10.1016/j.jelechem.2017.12.033
  • Liu, L., Yan, H., Yang, C., & Zhu, G. (2018b). Dewatering of drilling sludge by ultrasound assisted Fe(ii)-activated persulfate oxidation. RSC Advances, 8(52), 29756–29766. https://doi.org/10.1039/C8RA03376E
  • Liu, S., Jing, B., Nie, C., Ao, Z., Duan, X., Lai, B., Shao, Y., Wang, S., & An, T. (2021a). Piezoelectric activation of peroxymonosulfate by MoS2 nanoflowers for the enhanced degradation of aqueous organic pollutants. Environmental Science: Nano, 8(3), 784–794. https://doi.org/10.1039/D0EN01237H
  • Liu, W., Nie, C., Li, W., Ao, Z., Wang, S., & An, T. (2021b). Oily sludge derived carbons as peroxymonosulfate activators for removing aqueous organic pollutants: Performances and the key role of carbonyl groups in electron-transfer mechanism. Journal of Hazardous Materials, 414, 125552. https://doi.org/10.1016/j.jhazmat.2021.125552
  • Liu, Y., Wang, S., Wu, Y., Chen, H., Shi, Y., Liu, M., & Dong, W. (2019b). Degradation of ibuprofen by thermally activated persulfate in soil systems. Chemical Engineering Journal, 356, 799–810. https://doi.org/10.1016/j.cej.2018.09.002
  • Luo, T., Wan, J., Ma, Y., Wang, Y., & Wan, Y. (2019). Sulfamethoxazole degradation by an Fe(ii)-activated persulfate process: Insight into the reactive sites, product identification and degradation pathways. Environmental Science Processes & Impacts, 21(9), 1560–1569. https://doi.org/10.1039/c9em00254e
  • Matzek, L. W., & Carter, K. E. (2016). Activated persulfate for organic chemical degradation: A review. Chemosphere, 151, 178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055
  • Meng, H., Nie, C., Li, W., Duan, X., Lai, B., Ao, Z., Wang, S., & An, T. (2020). Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: Epicarp and mesocarp of citrus peels as examples. Journal of Hazardous Materials, 399, 123043. https://doi.org/10.1016/j.jhazmat.2020.123043
  • Nie, C., Dai, Z., Liu, W., Duan, X., Wang, C., Lai, B., Ao, Z., Wang, S., & An, T. (2020). Criteria of active sites in nonradical persulfate activation process from integrated experimental and theoretical investigations: Boron–nitrogen-co-doped nanocarbon-mediated peroxydisulfate activation as an example. Environmental Science: Nano, 7(7), 1899–1911. https://doi.org/10.1039/D0EN00347F
  • Nie, C., Dai, Z., Meng, H., Duan, X., Qin, Y., Zhou, Y., Ao, Z., Wang, S., & An, T. (2019). Peroxydisulfate activation by positively polarized carbocatalyst for enhanced removal of aqueous organic pollutants. Water Research, 166, 115043. https://doi.org/10.1016/j.watres.2019.115043
  • Parr, R. G., Donnelly, R. A., Levy, M., & Palke, W. E. (1978). Electronegativity: The density functional viewpoint. The Journal of Chemical Physics, 68(8), 3801–3807. https://doi.org/10.1063/1.436185
  • Parr, R. G., Szentpaly, L. V., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Parr, R. G., & Yang, W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049–4050. https://doi.org/10.1021/ja00326a036
  • Qi, Y., Wei, J., Qu, R., Al-Basher, G., Pan, X., Dar, A. A., Shad, A., Zhou, D., & Wang, Z. (2021). Mixed oxidation of aqueous nonylphenol and triclosan by thermally activated persulfate: Reaction kinetics and formation of co-oligomerization products. Chemical Engineering Journal, 403, 126396. https://doi.org/10.1016/j.cej.2020.126396
  • Ren, W., Zhou, P., Nie, G., Cheng, C., Duan, X., Zhang, H., & Wang, S. (2020). Hydroxyl radical dominated elimination of plasticizers by peroxymonosulfate on metal-free boron: Kinetics and mechanisms. Water Research, 186, 116361. https://doi.org/10.1016/j.watres.2020.116361
  • Renita, A. A., Vardhan, K. H., Kumar, P. S., Ngueagni, P. T., Abilarasu, A., Nath, S., Kumari, P., & Saravanan, R. (2021). Effective removal of malachite green dye from aqueous solution in hybrid system utilizing agricultural waste as particle electrodes. Chemosphere, 273, 129634. https://doi.org/10.1016/j.chemosphere.2021.129634
  • Saifuddin, N., Raziah, A. Z., & Junizah, A. R. (2013). Carbon nanotubes: A review on structure and their interaction with proteins. Journal of Chemistry, 2013, 1–18. https://doi.org/10.1155/2013/676815
  • Santos, A., Fernandez, J., Rodriguez, S., Dominguez, C. M., Lominchar, M. A., Lorenzo, D., & Romero, A. (2018). Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. The Science of the Total Environment, 615, 1070–1077. https://doi.org/10.1016/j.scitotenv.2017.09.224
  • Sinnecker, S., Rajendran, A., Klamt, A., Diedenhofen, M., & Neese, F. (2006). Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (Direct COSMO-RS). The Journal of Physical Chemistry. A, 110(6), 2235–2245. https://doi.org/10.1021/jp056016z
  • Sun, P., Liu, H., Feng, M., Zhai, Z., Fang, Y., Zhang, X., & Sharma, V. K. (2020). Strategic combination of N-doped graphene and g-C3N4: Efficient catalytic peroxymonosulfate-based oxidation of organic pollutants by non-radical-dominated processes. Applied Catalysis B: Environmental, 272, 119005. https://doi.org/10.1016/j.apcatb.2020.119005
  • Sun, Y., Cho, D. W., Graham, N. J. D., Hou, D., Yip, A. C. K., Khan, E., Song, H., Li, Y., & Tsang, D. C. W. (2019). Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions. The Science of the Total Environment, 664, 312–321. https://doi.org/10.1016/j.scitotenv.2019.02.006
  • Tsuneda, T. (2014). Density functional theory in quantum chemistry. Springer. https://doi.org/10.1007/978-4-431-54825-6_5
  • Wan, Z., Sun, Y., Tsang, D. C. W., Yu, I. K. M., Fan, J., Clark, J. H., Zhou, Y., Cao, X., Gao, B., & Ok, Y. S. (2019). A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes. Green Chemistry, 21(17), 4800–4814. https://doi.org/10.1039/C9GC01843C
  • Wang, D., Sun, Y., Tsang, D. C. W., Khan, E., Cho, D. W., Zhou, Y., Qi, F., Gong, J., & Wang, L. (2020). Synergistic utilization of inherent halides and alcohols in hydraulic fracturing wastewater for radical-based treatment: A case study of di-(2-ethylhexyl) phthalate removal. Journal of Hazardous Materials, 384, 121321. https://doi.org/10.1016/j.jhazmat.2019.121321
  • Wang, G., Nie, X., Ji, X., Quan, X., Chen, S., Wang, H., Yu, H., & Guo, X. (2019). Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: The synergism between Co and N. Environmental Science: Nano, 6(2), 399–410. https://doi.org/10.1039/C8EN01231H
  • Wang, L., Lu, W., Ni, D., Xu, T., Li, N., Zhu, Z., Chen, H., & Chen, W. (2017). Solar-initiated photocatalytic degradation of carbamazepine on excited-state hexadecachlorophthalocyanine in the presence of peroxymonosulfate. Chemical Engineering Journal, 330, 625–634. https://doi.org/10.1016/j.cej.2017.07.172
  • Wang, S., & Zhou, N. (2016). Removal of carbamazepine from aqueous solution using sono-activated persulfate process. Ultrasonics Sonochemistry, 29, 156–162. https://doi.org/10.1016/j.ultsonch.2015.09.008
  • Wang, X., Dong, W., Brigante, M., & Mailhot, G. (2019). Hydroxyl and sulfate radicals activated by Fe(III)-EDDS/UV: Comparison of their degradation efficiencies and influence of critical parameters. Applied Catalysis B: Environmental, 245, 271–278. https://doi.org/10.1016/j.apcatb.2018.12.052
  • Wang, Y., Ao, Z., Sun, H., Duan, X., & Wang, S. (2016). Activation of peroxymonosulfate by carbonaceous oxygen groups: Experimental and density functional theory calculations. Applied Catalysis B: Environmental, 198, 295–302. https://doi.org/10.1016/j.apcatb.2016.05.075
  • Wang, Y., Jing, B., Wang, F., Wang, S., Liu, X., Ao, Z., & Li, C. (2020). Mechanism Insight into enhanced photodegradation of pharmaceuticals and personal care products in natural water matrix over crystalline graphitic carbon nitrides. Water Research, 180, 115925. https://doi.org/10.1016/j.watres.2020.115925
  • Wang, Y., Yang, W., Chen, X., Wang, J., & Zhu, Y. (2018). Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Applied Catalysis B: Environmental, 220, 337–347. https://doi.org/10.1016/j.apcatb.2017.08.004
  • Wei, Z. Q., Gao, T., Wang, J. Z., Liu, H., Liu, C. S., Zhu, J. S., Zhou, J. M., & Chen, M. J. (2018). Mn(II)-activated persulfate for oxidative degradation of DDT [Article]. Fresenius Environmental Bulletin, 27(7), 4598–4605.
  • Wu, Y., & Song, K. (2019). Effect of thermal activated peroxydisulfate pretreatment on short-chain fatty acids production from waste activated sludge anaerobic fermentation. Bioresource Technology, 292, 121977. https://doi.org/10.1016/j.biortech.2019.121977
  • Xiong, Z., Jiang, Y., Wu, Z., Yao, G., & Lai, B. (2021). Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review. Chemical Engineering Journal, 421, 127863. https://doi.org/10.1016/j.cej.2020.127863
  • Xu, L., Qi, L., Sun, Y., Gong, H., Chen, Y., Pei, C., & Gan, L. (2020). Mechanistic studies on peroxymonosulfate activation by g-C3N4 under visible light for enhanced oxidation of light-inert dimethyl phthalate. Chinese Journal of Catalysis, 41(2), 322–332. https://doi.org/10.1016/S1872-2067(19)63447-9
  • Yang, W., Gao, Z., Liu, X., Li, X., Ding, X., & Yan, W. (2018). Single-atom iron catalyst with single-vacancy graphene-based substrate as a novel catalyst for NO oxidation: A theoretical study. Catalysis Science & Technology, 8(16), 4159–4168. https://doi.org/10.1039/C8CY01225C
  • Yang, W., Gao, Z., Liu, X., Ma, C., Ding, X., & Yan, W. (2019). Directly catalytic reduction of NO without NH3 by single atom iron catalyst: A DFT calculation. Fuel, 243, 262–270. https://doi.org/10.1016/j.fuel.2019.01.125
  • Ye, S., Zeng, G., Tan, X., Wu, H., Liang, J., Song, B., Tang, N., Zhang, P., Yang, Y., Chen, Q., & Li, X. (2020). Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer. Applied Catalysis B: Environmental, 269, 118850. https://doi.org/10.1016/j.apcatb.2020.118850
  • Yin, R., Guo, W., Ren, N., Zeng, L., & Zhu, M. (2020). New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water. Water Research, 171, 115374. https://doi.org/10.1016/j.watres.2019.115374
  • Yin, R., Guo, W., Wang, H., Du, J., Zhou, X., Wu, Q., Zheng, H., Chang, J., & Ren, N. (2018). Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms. Chemical Engineering Journal, 335, 145–153. https://doi.org/10.1016/j.cej.2017.10.063
  • Yin, R., Jing, B., He, S., Hu, J., Lu, G., Ao, Z., Wang, C., & Zhu, M. (2021). Near-infrared light to heat conversion in peroxydisulfate activation with MoS2: A new photo-activation process for water treatment. Water Research, 190, 116720. https://doi.org/10.1016/j.watres.2020.116720
  • Yin, Z., Han, M., Hu, Z., Feng, L., Liu, Y., Du, Z., & Zhang, L. (2020). Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C3N4 catalysts: The role of sulfate radicals and hydroxyl radicals. Chemical Engineering Journal, 390, 124532. https://doi.org/10.1016/j.cej.2020.124532
  • Young, D. C. (2001). Computational chemistry: A practical guide for applying techniques to real-world problems. John Wiley & Sons, Inc.
  • Zhang, J., Li, T., Li, X., Liu, Y., Li, N., Wang, Y., & Li, X. (2021). A key role of inner-cation-pi interaction in adsorption of Pb(II) on carbon nanotubes: Experimental and DFT studies. Journal of Hazardous Materials, 412, 125187. https://doi.org/10.1016/j.jhazmat.2021.125187
  • Zhang, J., & Lu, T. (2021). Efficient evaluation of electrostatic potential with computerized optimized code. Physical Chemistry Chemical Physics: PCCP, 23(36), 20323–20328. https://doi.org/10.1039/d1cp02805g
  • Zhang, P., Yang, Y., Duan, X., Liu, Y., & Wang, S. (2021). Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions. ACS Catalysis, 11(17), 11129–11159. https://doi.org/10.1021/acscatal.1c03099
  • Zhang, W., Li, Y., Fan, X., Zhang, F., Zhang, G., Zhu, Y.-A., Peng, W., Wang, S., & Duan, X. (2019). Synergy of nitrogen doping and structural defects on hierarchically porous carbons toward catalytic oxidation via a non-radical pathway. Carbon, 155, 268–278. https://doi.org/10.1016/j.carbon.2019.08.071
  • Zhang, X., Chen, A., Zhang, Z., Jiao, M., & Zhou, Z. (2018). Transition metal anchored C2N monolayers as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 6(24), 11446–11452. https://doi.org/10.1039/C8TA03302A
  • Zhang, Y., Moores, A., Liu, J., & Ghoshal, S. (2019). New insights into the degradation mechanism of perfluorooctanoic acid by persulfate from density functional theory and experimental data. Environmental Science & Technology, 53(15), 8672–8681. https://doi.org/10.1021/acs.est.9b00797
  • Zhao, C., Liu, B., Li, X., Zhu, K., Hu, R., Ao, Z., & Wang, J. (2019). A Co-Fe Prussian blue analogue for efficient Fenton-like catalysis: The effect of high-spin cobalt. Chemical Communications (Cambridge, England), 55(50), 7151–7154. https://doi.org/10.1039/c9cc01872g
  • Zhen, G., Lu, X., Su, L., Kobayashi, T., Kumar, G., Zhou, T., Xu, K., Li, Y. Y., Zhu, X., & Zhao, Y. (2018). Unraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterability. Water Research, 134, 101–114. https://doi.org/10.1016/j.watres.2018.01.072
  • Zheng, W., Liu, Y., Liu, W., Ji, H., Li, F., Shen, C., Fang, X., Li, X., & Duan, X. (2021). A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants. Water Research, 194, 116961. https://doi.org/10.1016/j.watres.2021.116961
  • Zhou, J. Li, D., Zhao, W., Jing, B., Ao, Z., & An, T. (2021). First-principles evaluation of volatile organic compounds degradation in Z-scheme photocatalytic systems: MXene and graphitic-CN heterostructures. ACS Applied Materials & Interfaces, 13(20), 23843–23852. https://doi.org/10.1021/acsami.1c05617
  • Zhou, Z. G., Du, H. M., Dai, Z., Mu, Y., Tong, L. L., Xing, Q. J., Liu, S. S., Ao, Z., & Zou, J. P. (2019). Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with different crystalline structures: Catalytic performances and mechanisms. Chemical Engineering Journal, 374, 170–180. https://doi.org/10.1016/j.cej.2019.05.170
  • Zhuang, Y., Wang, X., Zhang, L., Dionysiou, D. D., Kou, Z., & Shi, B. (2020). Double-network hydrogel templated FeS/graphene with enhanced PMS activation performance: Considering the effect of the template and iron species. Environmental Science: Nano, 7(3), 817–828. https://doi.org/10.1039/C9EN01391A
  • Zou, M., Zhang, J., Chen, J., & Li, X. (2012). Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water. Environmental Science & Technology, 46(16), 8887–8894. https://doi.org/10.1021/es301370f
  • Zrinyi, N., & Pham, A. L. (2017). Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution. Water Research, 120, 43–51. https://doi.org/10.1016/j.watres.2017.04.066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.