2,051
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Photocatalytic strategy to mitigate microplastic pollution in aquatic environments: Promising catalysts, efficiencies, mechanisms, and ecological risks

, , ORCID Icon, , , , , ORCID Icon & show all
Pages 504-526 | Published online: 13 May 2022

References

  • Abdelmoez, W., Dahab, I., Ragab, E. M., Abdelsalam, O. A., & Mustafa, A. (2021). Bio and oxo-degradable plastics: Insights on facts and challenges. Polymers for Advanced Technologies, 32(5), 1981–1996. https://doi.org/10.1002/pat.5253
  • Ali, S. S., Qazi, I. A., Arshad, M., Khan, Z., Voice, T. C., & Mehmood, C. T. (2016). Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes. Environmental Nanotechnology, Monitoring & Management, 5, 44–53. https://doi.org/10.1016/j.enmm.2016.01.001
  • Allé, P. H., Garcia-Muñoz, P., Adouby, K., Keller, N., & Robert, D. (2021). Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO2/β-SiC alveolar foams. Environmental Chemistry Letters, 19(2), 1803–1808. https://doi.org/10.1007/s10311-020-01099-2
  • Almond, J., Sugumaar, P., Wenzel, M. N., Hill, G., & Wallis, C. (2020). Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers, 20(1), 369–381. https://doi.org/10.1515/epoly-2020-0041
  • Antunes, M. C., Agnelli, J., Babetto, A. S., Bonse, B. C., & Bettini, S. (2017). Abiotic thermo-oxidative degradation of high density polyethylene: Effect of manganese stearate concentration. Polymer Degradation and Stability, 143, 95–103. https://doi.org/10.1016/j.polymdegradstab.2017.06.012
  • Ariza-Tarazona, M. C., Villarreal-Chiu, J. F., Barbieri, V., Siligardi, C., & Cedillo-González, E. I. (2019). New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceramics International, 45(7), 9618–9624. https://doi.org/10.1016/j.ceramint.2018.10.208
  • Ariza-Tarazona, M. C., Villarreal-Chiu, J. F., Hernández-López, J. M., Rivera De la Rosa, J., Barbieri, V., Siligardi, C., & Cedillo-González, E. I. (2020). Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process. Journal of Hazardous Materials, 395, 122632.
  • Bacha, A.-U.-R., Nabi, I., & Zhang, L. (2021). Mechanisms and the engineering approaches for the degradation of microplastics. ACS ES&T Engineering, 1(11), 1481–1501. https://doi.org/10.1021/acsestengg.1c00216
  • Bejgarn, S., MacLeod, M., Bogdal, C., & Breitholtz, M. (2015). Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere, 132, 114–119.
  • Beladi-Mousavi, S. M., Hermanová, S., Ying, Y., Plutnar, J., & Pumera, M. (2021). A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics. ACS Applied Materials & Interfaces, 13(21), 25102–25110. https://doi.org/10.1021/acsami.1c04559
  • Besseling, E., Redondo-Hasselerharm, P., Foekema, E. M., & Koelmans, A. A. (2019). Quantifying ecological risks of aquatic micro- and nanoplastic. Critical Reviews in Environmental Science and Technology, 49(1), 32–80. https://doi.org/10.1080/10643389.2018.1531688
  • Biale, G., La Nasa, J., Mattonai, M., Corti, A., Vinciguerra, V., Castelvetro, V., & Modugno, F. (2021). A systematic study on the degradation products generated from artificially aged microplastics. Polymers, 13(12), 1997. https://doi.org/10.3390/polym13121997
  • Cai, L., Wang, J., Peng, J., Wu, Z., & Tan, X. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments. The Science of the Total Environment, 628–629, 740–747.
  • Cai, M., He, H., Liu, M., Li, S., Tang, G., Wang, W., Huang, P., Wei, G., Lin, Y., Chen, B., Hu, J., & Cen, Z. (2018). Lost but can't be neglected: Huge quantities of small microplastics hide in the South China Sea. Science of the Total Environment, 633, 1206–1216. https://doi.org/10.1016/j.scitotenv.2018.03.197
  • Cao, B., Wan, S., Wang, Y., Guo, H., Ou, M., & Zhong, Q. (2022). Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1−xS photocatalyst. Journal of Colloid and Interface Science, 605, 311–319.
  • Chen, C., Chen, L., Yao, Y., Artigas, F., Huang, Q., & Zhang, W. (2019). Organotin release from polyvinyl chloride microplastics and concurrent photodegradation in water: Impacts from salinity, dissolved organic matter, and light exposure. Environmental Science & Technology, 53(18), 10741–10752.
  • Corami, F., Rosso, B., Bravo, B., Gambaro, A., & Barbante, C. (2020). A novel method for purification, quantitative analysis and characterization of microplastic fibers using Micro-FTIR. Chemosphere, 238, 124564.
  • Corcoran, P. L. (2020). Degradation of microplastics in the environment. In T. Rocha-Santos (Ed.). Handbook of microplastics in the environment (pp. 1–12). Springer International Publishing.
  • de Oliveira, C., Viana, M. M., Silva, G. R., Frade Lima, L. S., Coutinho de Paula, E., & Amaral, M. (2020). Potential use of green TiO2 and recycled membrane in a photocatalytic membrane reactor for oil refinery wastewater polishing. Journal of Cleaner Production, 257, 120526. https://doi.org/10.1016/j.jclepro.2020.120526
  • Ding, L., Mao, R., Ma, S., Guo, X., & Zhu, L. (2020). High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Research, 174, 115634.
  • Dong, F., Zhao, W., Wu, Z., & Guo, S. (2009). Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition. Journal of Hazardous Materials, 162(2–3), 763–770.
  • Du, H., Xie, Y., & Wang, J. (2021). Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives. Journal of Hazardous Materials, 418, 126377.
  • Dümichen, E., Eisentraut, P., Bannick, C. G., Barthel, A.-K., Senz, R., & Braun, U. (2017). Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere, 174, 572–584.
  • Ehsan, M. F., Shafiq, M., Hamid, S., Shafiee, A., Usman, M., Khan, I., Ashiq, M. N., & Arfan, M. (2020). Reactive oxygen species: New insights into photocatalytic pollutant degradation over g-C3N4/ZnSe nanocomposite. Applied Surface Science, 532, 147418. https://doi.org/10.1016/j.apsusc.2020.147418
  • Eriksen, M., Lebreton, L., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913
  • Fan, X., Zou, Y., Geng, N., Liu, J., Hou, J., Li, D., Yang, C., & Li, Y. (2021). Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process. Journal of Hazardous Materials, 401, 123363.
  • Fasano, E., Bono-Blay, F., Cirillo, T., Montuori, P., & Lacorte, S. (2012). Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control, 27(1), 132–138. https://doi.org/10.1016/j.foodcont.2012.03.005
  • Focke, W. W., Mashele, R. P., & Nhlapo, N. S. (2011). Stabilization of low-density polyethylene films containing metal stearates as photodegradants. Journal of Vinyl and Additive Technology, 17(1), 21–27. https://doi.org/10.1002/vnl.20248
  • Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M.-T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science: Processes & Impacts, 15, 1949–1956.
  • Gardon, T., Huvet, A., Paul-Pont, I., Cassone, A.-L., Sham Koua, M., Soyez, C., Jezequel, R., Receveur, J., & Le Moullac, G. (2020). Toxic effects of leachates from plastic pearl-farming gear on embryo-larval development in the pearl oyster Pinctada margaritifera. Water Research, 179, 115890.
  • Gu, J. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. International Biodeterioration & Biodegradation, 52(2), 69–91. https://doi.org/10.1016/S0964-8305(02)00177-4
  • Gulmine, J. V., Janissek, P. R., Heise, H. M., & Akcelrud, L. (2003). Degradation profile of polyethylene after artificial accelerated weathering. Polymer Degradation and Stability, 79(3), 385–397. https://doi.org/10.1016/S0141-3910(02)00338-5
  • Gündoğdu, S., Çevik, C., Güzel, E., & Kilercioğlu, S. (2018). Microplastics in municipal wastewater treatment plants in Turkey: A comparison of the influent and secondary effluent concentrations. Environmental Monitoring and Assessment, 190(11), 626.
  • Guo, X., & Wang, J. (2019). The chemical behaviors of microplastics in marine environment: A review. Marine Pollution Bulletin, 142, 1–14.
  • Hale, R. C. (2017). Analytical challenges associated with the determination of microplastics in the environment. Analytical Methods, 9(9), 1326–1327. https://doi.org/10.1039/C7AY90015E
  • Han, X., Zheng, Y., Dai, C., Duan, H., Gao, M., Ali, M. R., & Sui, L. (2021). Effect of polystyrene microplastics and temperature on growth, intestinal histology and immune responses of brine shrimp Artemia franciscana. Journal of Oceanology and Limnology, 39(3), 979–988. https://doi.org/10.1007/s00343-020-0118-2
  • He, J., Lyu, P., Jiang, B., Chang, S., Du, H., Zhu, J., & Li, H. (2021). A novel amorphous alloy photocatalyst (NiB/In2O3) composite for sunlight-induced CO2 hydrogenation to HCOOH. Applied Catalysis B: Environmental, 298, 120603. https://doi.org/10.1016/j.apcatb.2021.120603
  • He, J., Lyu, P., Li, D., Cheng, C., Chang, S., Qin, L., Zheng, C., & Zhu, J. (2021). Bio-alcohol induced self-assembly of heterojunctioned TiO2/WO3 composites into a hierarchical yolk-shell structure for photocatalysis. Chemical Communications, 57(56), 6883–6886.
  • He, W., Wu, H., Wamer, W. G., Kim, H., Zheng, J., Jia, H., Zheng, Z., & Yin, J. (2014). Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers. ACS Applied Materials & Interfaces, 6(17), 15527–15535. https://doi.org/10.1021/am5043005
  • Hebner, T. S., & Maurer-Jones, M. A. (2020). Characterizing microplastic size and morphology of photodegraded polymers placed in simulated moving water conditions. Environmental Science: Processes & Impacts, 22, 398–407.
  • Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. The Science of the Total Environment, 586, 127–141.
  • Hu, L., Fu, J., Wang, S., Xiang, Y., & Pan, X. (2021). Microplastics generated under simulated fire scenarios: Characteristics, antimony leaching, and toxicity. Environmental Pollution, 269, 115905.
  • Huang, S., Xu, Y., Liu, Q., Zhou, T., Zhao, Y., Jing, L., Xu, H., & Li, H. (2017). Enhancing reactive oxygen species generation and photocatalytic performance via adding oxygen reduction reaction catalysts into the photocatalysts. Applied Catalysis B: Environmental, 218, 174–185. https://doi.org/10.1016/j.apcatb.2017.06.030
  • Huang, Y., Ding, J., Zhang, G., Liu, S., Zou, H., Wang, Z., Zhu, W., & Geng, J. (2021). Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging. The Science of the Total Environment, 752, 142256.
  • Hüffer, T., Weniger, A.-K., & Hofmann, T. (2018). Data on sorption of organic compounds by aged polystyrene microplastic particles. Data in Brief, 18, 474–479.
  • Jiang, J.-Q. (2018). Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption, 13, 16–23. https://doi.org/10.1016/j.spc.2017.11.003
  • Jiang, R., Lu, G., Yan, Z., Liu, J., Wu, D., & Wang, Y. (2021). Microplastic degradation by hydroxy-rich bismuth oxychloride. Journal of Hazardous Materials, 405, 124247.
  • Jiao, X., Zheng, K., Chen, Q., Li, X., Li, Y., Shao, W., Xu, J., Zhu, J., Pan, Y., Sun, Y., & Xie, Y. (2020). Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angewandte Chemie International Edition, 59(36), 15497–15501.
  • Junaid, M., & Wang, J. (2021). Interaction of micro(nano)plastics with extracellular and intracellular biomolecules in the freshwater environment. Critical Reviews in Environmental Science and Technology, 1–25. https://doi.org/10.1080/10643389.2021.2002078
  • Klein, S., Dimzon, I. K., Eubeler, J., & Knepper, T. P. (2018). Analysis, occurrence, and degradation of microplastics in the aqueous environment. In M. Wagner & S. Lambert (Eds.), Freshwater microplastics: Emerging environmental contaminants? (pp. 51–67). Springer International Publishing.
  • Kumar, M., Chen, H., Sarsaiya, S., Qin, S., Liu, H., Awasthi, M. K., Kumar, S., Singh, L., Zhang, Z., Bolan, N. S., Pandey, A., Varjani, S., & Taherzadeh, M. J. (2021). Current research trends on micro and nano-plastics as an emerging threat to global environment: A review. Journal of Hazardous Materials, 409, 124967. https://doi.org/10.1016/j.jhazmat.2020.124967
  • Kumar, M., Xiong, X., He, M., Tsang, D., Gupta, J., Khan, E., Harrad, S., Hou, D., Ok, Y. S., & Bolan, N. S. (2020). Microplastics as pollutants in agricultural soils. Environmental Pollution, 265(Pt A), 114980.
  • Lee, S., Stubelius, A., Olejniczak, J., Jang, H., Huu, V., & Almutairi, A. (2017). Chemical amplification accelerates reactive oxygen species triggered polymeric degradation. Biomaterials Science, 6(1), 107–114.
  • Lei, L., Wu, S., Lu, S., Liu, M., Song, Y., Fu, Z., Shi, H., Raley-Susman, K. M., & He, D. (2018). Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. The Science of the Total Environment, 619–620, 1–8.
  • Li, S., Xu, S., He, L., Xu, F., Wang, Y., & Zhang, L. (2010). Photocatalytic degradation of polyethylene plastic with polypyrrole/TiO2 nanocomposite as photocatalyst. Polymer-Plastics Technology and Engineering, 49(4), 400–406. https://doi.org/10.1080/03602550903532166
  • Liu, G., Liao, S., Zhu, D., Cui, J., & Zhou, W. (2011). Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2. Solid State Sciences, 13(1), 88–94. https://doi.org/10.1016/j.solidstatesciences.2010.10.014
  • Liu, H., Feng, Y., Shao, J., Chen, Y., Wang, Z. L., Li, H., Chen, X., & Bian, Z. (2020). Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis. Nano Energy, 70, 104499. https://doi.org/10.1016/j.nanoen.2020.104499
  • Liu, P., Qian, L., Wang, H., Zhan, X., Lu, K., Gu, C., & Gao, S. (2019). New Insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environmental Science & Technology, 53(7), 3579–3588. https://doi.org/10.1021/acs.est.9b00493
  • Liu, P., Shi, Y., Wu, X., Wang, H., Huang, H., Guo, X., & Gao, S. (2021). Review of the artificially-accelerated aging technology and ecological risk of microplastics. The Science of the Total Environment, 768, 144969.
  • Liu, P., Zhan, X., Wu, X., Li, J., Wang, H., & Gao, S. (2020). Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks. Chemosphere, 242, 125193.
  • Liu, X., Ma, R., Zhuang, L., Hu, B., Chen, J., Liu, X., & Wang, X. (2021). Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Critical Reviews in Environmental Science and Technology, 51(8), 751–790. https://doi.org/10.1080/10643389.2020.1734433
  • Llorente-García, B. E., Hernández-López, J. M., Zaldívar-Cadena, A. A., Siligardi, C., & Cedillo-González, E. I. (2020). First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N-TiO2 coating: Effect of size and shape of microplastics. Coatings, 10(7), 658. https://doi.org/10.3390/coatings10070658
  • Luo, H., Li, Y., Zhao, Y., Xiang, Y., He, D., & Pan, X. (2020). Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environmental Pollution, 257, 113475. https://doi.org/10.1016/j.envpol.2019.113475
  • Luo, H., Xiang, Y., He, D., Li, Y., Zhao, Y., Wang, S., & Pan, X. (2019). Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. The Science of the Total Environment, 678, 1–9.
  • Luo, H., Xiang, Y., Li, Y., Zhao, Y., & Pan, X. (2021). Photocatalytic aging process of nano-TiO2 coated polypropylene microplastics: Combining atomic force microscopy and infrared spectroscopy (AFM-IR) for nanoscale chemical characterization. Journal of Hazardous Materials, 404(Pt B), 124159.
  • Luo, H., Zhao, Y., Li, Y., Xiang, Y., He, D., & Pan, X. (2020). Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids. The Science of the Total Environment, 714, 136862.
  • Ma, H., Brennan, A., & Diamond, S. A. (2012). Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology and Chemistry, 31(9), 2099–2107.
  • Maalihan, R. D., & Pajarito, B. B. (2016). Effect of colorant, thickness, and pro-oxidant loading on degradation of low-density polyethylene films during thermal aging. Journal of Plastic Film & Sheeting, 32(2), 124–129. https://doi.org/10.1177/8756087915590276
  • Majewsky, M., Bitter, H., Eiche, E., & Horn, H. (2016). Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). The Science of the Total Environment, 568, 507–511.
  • Makuła, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. The Journal of Physical Chemistry Letters, 9(23), 6814–6817.
  • Mao, R., Lang, M., Yu, X., Wu, R., Yang, X., & Guo, X. (2020). Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of Hazardous Materials, 393, 122515.
  • Matthews, S., Mai, L., Jeong, C.-B., Lee, J.-S., Zeng, E. Y., & Xu, E. G. (2021). Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups. Comparative Biochemistry and Physiology C: Toxicology & Pharmacology, 247, 109056. https://doi.org/10.1016/j.cbpc.2021.109056
  • Maulana, D. A., Ibadurrohman., & M., Slamet. (2021). Synthesis of nano-composite Ag/TiO2 for polyethylene microplastic degradation applications. IOP Conference Series: Materials Science and Engineering, 1011, 012054. https://doi.org/10.1088/1757-899X/1011/1/012054
  • Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, S., & Wang, X. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. Journal of Hazardous Materials, 399, 123023.
  • Miranda, M. N., Sampaio, M. J., Tavares, P. B., Silva, A., & Pereira, M. (2021). Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors. The Science of the Total Environment, 796, 148914.
  • Miri, S., Saini, R., Davoodi, S. M., Pulicharla, R., Brar, S. K., & Magdouli, S. (2022). Biodegradation of microplastics: Better late than never. Chemosphere, 286(Pt 1), 131670.
  • Mosca Angelucci, D., & Tomei, M. C. (2022). Uptake/release of organic contaminants by microplastics: A critical review of influencing factors, mechanistic modeling, and thermodynamic prediction methods. Critical Reviews in Environmental Science and Technology, 52(8), 1356–1400.
  • Mu, C., Zhang, Y., Cui, W., Liang, Y., & Zhu, Y. (2017). Removal of bisphenol A over a separation free 3D Ag3PO4-graphene hydrogel via an adsorption-photocatalysis synergy. Applied Catalysis B: Environmental, 212, 41–49. https://doi.org/10.1016/j.apcatb.2017.04.018
  • Murphy, F., & Quinn, B. (2018). The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environmental Pollution, 234, 487–494. https://doi.org/10.1016/j.envpol.2017.11.029
  • Nabi, I., Bacha, A.-U.-R., Ahmad, F., & Zhang, L. (2021). Application of titanium dioxide for the photocatalytic degradation of macro and micro-plastics: A review. Journal of Environmental Chemical Engineering, 9(5), 105964. https://doi.org/10.1016/j.jece.2021.105964
  • Nabi, I., Bacha, A.-U.-R., Li, K., Cheng, H., Wang, T., Liu, Y., Ajmal, S., Yang, Y., Feng, Y., & Zhang, L. (2020). Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film. Iscience, 23(7), 101326.
  • Nabi, I., Bacha, A.-U.-R., & Zhang, L. (2022). A review on microplastics separation techniques from environmental media. Journal of Cleaner Production, 337, 130458. https://doi.org/10.1016/j.jclepro.2022.130458
  • Natarajan, L., Omer, S., Jetly, N., Jenifer, M. A., Chandrasekaran, N., Suraishkumar, G. K., & Mukherjee, A. (2020). Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp. Environmental Research, 188, 109842. https://doi.org/10.1016/j.envres.2020.109842
  • Nosaka, Y., & Nosaka, A. Y. (2017). Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 117(17), 11302–11336.
  • Ouyang, Z., Zhang, Z., Jing, Y., Bai, L., Zhao, M., Hao, X., Li, X., & Guo, X. (2021). The photo-aging of polyvinyl chloride microplastics under different UV irradiations. Gondwana Research. https://doi.org/10.1016/j.gr.2021.07.010
  • Padervand, M., Lichtfouse, E., Robert, D., & Wang, C. (2020). Removal of microplastics from the environment. A review. Environmental Chemistry Letters, 18(3), 807–828. https://doi.org/10.1007/s10311-020-00983-1
  • Peez, N., Janiska, M.-C., & Imhof, W. (2019). The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS). Analytical and Bioanalytical Chemistry, 411(4), 823–833. https://doi.org/10.1007/s00216-018-1510-z
  • Peñalver, R., Arroyo-Manzanares, N., López-García, I., & Hernández-Córdoba, M. (2020). An overview of microplastics characterization by thermal analysis. Chemosphere, 242, 125170.
  • Peng, X., Ng, T. W., Huang, G., Wang, W., An, T., & Wong, P. K. (2017). Bacterial disinfection in a sunlight/visible-light-driven photocatalytic reactor by recyclable natural magnetic sphalerite. Chemosphere, 166, 521–527.
  • Pflugmacher, S., Sulek, A., Mader, H., Heo, J., Noh, J. H., Penttinen, O.-P., Kim, Y., Kim, S., & Esterhuizen, M. (2020). The influence of new and artificial aged microplastic and leachates on the germination of Lepidium sativum L. Plants 9, 9(3), 339. https://doi.org/10.3390/plants9030339
  • Pico, Y., Alfarhan, A., & Barcelo, D. (2019). Nano and microplastic analysis: Focus on their occurrence in freshwater ecosystems and remediation technologies. TrAC Trends in Analytical Chemistry, 113, 409–425. https://doi.org/10.1016/j.trac.2018.08.022
  • Poulain, M., Mercier, M. J., Brach, L., Martignac, M., Routaboul, C., Perez, E., Desjean, M. C., & ter Halle, A. (2019). Small microplastics as a main contributor to plastic mass balance in the North Atlantic subtropical gyre. Environmental Science & Technology, 53(3), 1157–1164. https://doi.org/10.1021/acs.est.8b05458
  • Prabhakaran, V., Arges, C. G., & Ramani, V. (2012). Investigation of polymer electrolyte membrane chemical degradation and degradation mitigation using in situ fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1029–1034.
  • Qi, K., Lu, N., Zhang, S., Wang, W., Wang, Z., & Guan, J. (2021). Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: Adsorption and combined toxicity in comparison to natural solid substrates. Journal of Hazardous Materials, 411, 125115.
  • Razali, N., Abdullah, W., & Zikir, N. M. (2020). Effect of thermo-photocatalytic process using zinc oxide on degradation of macro/micro-plastic in aqueous environment. Journal of Sustainability Science and Management, 15(6), 1–14. https://doi.org/10.46754/jssm.2020.08.001
  • Rodríguez-Narvaez, O. M., Goonetilleke, A., Perez, L., & Bandala, E. R. (2021). Engineered technologies for the separation and degradation of microplastics in water: A review. Chemical Engineering Journal, 414, 128692. https://doi.org/10.1016/j.cej.2021.128692
  • Saini, A., Thaysen, C., Jantunen, L., McQueen, R. H., & Diamond, M. L. (2016). From clothing to laundry water: Investigating the fate of phthalates, brominated flame retardants, and organophosphate esters. Environmental Science & Technology, 50(17), 9289–9297. https://doi.org/10.1021/acs.est.6b02038
  • Sarkar, B., Dissanayake, P. D., Bolan, N. S., Dar, J. Y., Kumar, M., Haque, M. N., Mukhopadhyay, R., Ramanayaka, S., Biswas, J. K., Tsang, D., Rinklebe, J., & Ok, Y. S. (2022). Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environmental Research, 207, 112179.
  • Schiavo, S., Oliviero, M., Chiavarini, S., & Manzo, S. (2020). Adverse effects of oxo-degradable plastic leachates in freshwater environment. Environmental Science and Pollution Research International, 27(8), 8586–8595.
  • Schwaferts, C., Niessner, R., Elsner, M., & Ivleva, N. P. (2019). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends in Analytical Chemistry, 112, 52–65. https://doi.org/10.1016/j.trac.2018.12.014
  • Shang, J., Chai, M., & Zhu, Y. (2003). Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst. Journal of Solid State Chemistry, 174(1), 104–110. https://doi.org/10.1016/S0022-4596(03)00183-X
  • Shi, Y., Liu, P., Wu, X., Shi, H., Huang, H., Wang, H., & Gao, S. (2021). Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics. Water Research, 195, 116980.
  • Simon, M., Hartmann, N. B., & Vollertsen, J. (2021). Accelerated weathering increases the release of toxic leachates from microplastic particles as demonstrated through altered toxicity to the green algae Raphidocelis subcapitata. Toxics, 9(8), 185.
  • Singh, B., & Sharma, N. (2008). Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 93(3), 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008
  • Sorathiya, K., Mishra, B., Kalarikkal, A., Reddy, K. P., Gopinath, C. S., & Khushalani, D. (2016). Enhancement in rate of photocatalysis upon catalyst recycling. Scientific Reports, 6, 35075.
  • Su, J., Zhang, Y., Xu, S., Wang, S., Ding, H., Pan, S., Wang, G., Li, G., & Zhao, H. (2014). Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale, 6(10), 5181–5192.
  • Sun, B., Hu, Y., Cheng, H., & Tao, S. (2019). Releases of brominated flame retardants (BFRs) from microplastics in aqueous medium: Kinetics and molecular-size dependence of diffusion. Water Research, 151, 215–225. https://doi.org/10.1016/j.watres.2018.12.017
  • Sun, J., Dai, X., Wang, Q., van Loosdrecht, M., & Ni, B. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21–37.
  • Sun, Q., Li, J., Wang, C., Chen, A., You, Y., Yang, S., Liu, H., Jiang, G., Wu, Y., & Li, Y. (2022). Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Frontiers of Environmental Science & Engineering, 16(1), 1. https://doi.org/10.1007/s11783-021-1429-z
  • Thompson Richard, C., Olsen, Y., Mitchell Richard, P., Davis, A., Rowland Steven, J., John Anthony, W. G., McGonigle, D., & Russell Andrea, E. (2004). Lost at sea: Where is all the plastic? Science, 304(5672), 838.
  • Tofa, T. S., Kunjali, K. L., Paul, S., & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environmental Chemistry Letters, 17(3), 1341–1346. https://doi.org/10.1007/s10311-019-00859-z
  • Tofa, T. S., Ye, F., Kunjali, K. L., & Dutta, J. (2019). Enhanced visible light photodegradation of microplastic fragments with plasmonic platinum/Zinc oxide nanorod photocatalysts. Catalysts, 9(10), 819. https://doi.org/10.3390/catal9100819
  • Torikai, A., Takeuchi, A., Nagaya, S., & Fueki, K. (1986). Photodegradation of polyethylene: Effect of crosslinking on the oxygenated products and mechanical properties. Polymer Photochemistry, 7(3), 199–211. https://doi.org/10.1016/0144-2880(86)90027-8
  • Uekert, T., Kasap, H., & Reisner, E. (2019). Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. Journal of the American Chemical Society, 141(38), 15201–15210.
  • Uheida, A., Mejía, H. G., Abdel-Rehim, M., Hamd, W., & Dutta, J. (2021). Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. Journal of Hazardous Materials, 406, 124299.
  • Vital-Grappin, A. D., Ariza-Tarazona, M. C., Luna-Hernández, V. M., Villarreal-Chiu, J. F., Hernández-López, J. M., Siligardi, C., & Cedillo-González, E. I. (2021). The role of the reactive species involved in the photocatalytic degradation of hdpe microplastics using C,N-TiO2 powders. Polymers, 13(7), 999. https://doi.org/10.3390/polym13070999
  • Wang, C., Xian, Z., Jin, X., Liang, S., Chen, Z., Pan, B., Wu, B., Ok, Y. S., & Gu, C. (2020). Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids. Water Research, 183, 116082.
  • Wang, L., Kaeppler, A., Fischer, D., & Simmchen, J. (2019). Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Applied Materials & Interfaces, 11(36), 32937–32944. https://doi.org/10.1021/acsami.9b06128
  • Wang, Q., Wangjin, X., Zhang, Y., Wang, N., Wang, Y., Meng, G., & Chen, Y. (2020). The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii. The Science of the Total Environment, 749, 141603.
  • Wang, Q., Zhang, Y., Wangjin, X., Wang, Y., Meng, G., & Chen, Y. (2020). The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. Journal of Environmental Sciences (China), 87, 272–280.
  • Wang, X., Bolan, N., Tsang, D., Sarkar, B., Bradney, L., & Li, Y. (2021). A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. Journal of Hazardous Materials, 402, 123496. https://doi.org/10.1016/j.jhazmat.2020.123496
  • Wang, X., Li, Y., Zhao, J., Xia, X., Shi, X., Duan, J., & Zhang, W. (2020). UV-induced aggregation of polystyrene nanoplastics: Effects of radicals, surface functional groups and electrolyte. Environmental Science: Nano, 7, 3914–3926.
  • Wang, X., Zheng, H., Zhao, J., Luo, X., Wang, Z., & Xing, B. (2020). Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis. Environmental Science & Technology, 54(10), 6202–6212.
  • Winkler, A., Santo, N., Ortenzi, M. A., Bolzoni, E., Bacchetta, R., & Tremolada, P. (2019). Does mechanical stress cause microplastic release from plastic water bottles? Water Research, 166, 115082.
  • Wright, S. L., Rowe, D., Thompson, R. C., & Galloway, T. S. (2013). Microplastic ingestion decreases energy reserves in marine worms. Current Biology, 23(23), R1031–R1033. https://doi.org/10.1016/j.cub.2013.10.068
  • Wu, H., Zhao, Y., Dong, X., Su, L., Wang, K., & Wang, D. (2021). Probing into the microstructural evolution of isotactic polypropylene during photo-oxidation degradation. Polymer Degradation and Stability, 183, 109434. https://doi.org/10.1016/j.polymdegradstab.2020.109434
  • Wu, X., Liu, P., Shi, H., Wang, H., Huang, H., Shi, Y., & Gao, S. (2021). Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water Research, 188, 116456.
  • Xiao, S., Dai, W., Liu, X., Pan, D., Zou, H., Li, G., Zhang, G., Su, C., Zhang, D., Chen, W., & Li, H. (2019). Microwave-induced metal dissolution synthesis of core-shell copper nanowires/ZnS for visible light photocatalytic H2 evolution. Advanced Energy Materials, 9(22), 1900775. https://doi.org/10.1002/aenm.201900775
  • Xu, E. G., Cheong, R. S., Liu, L., Hernandez, L. M., Azimzada, A., Bayen, S., & Tufenkji, N. (2020). Primary and secondary plastic particles exhibit limited acute toxicity but chronic effects on Daphnia magna. Environmental Science & Technology, 54(11), 6859–6868. https://doi.org/10.1021/acs.est.0c00245
  • Xu, M., Chen, Y., Qin, J., Feng, Y., Li, W., Chen, W., Zhu, J., Li, H., & Bian, Z. (2018). Unveiling the role of defects on oxygen activation and photodegradation of organic pollutants. Environmental Science & Technology, 52(23), 13879–13886.
  • Xu, X. Y., Lee, W. T., Chan, A., Lo, H. S., Shin, P., & Cheung, S. G. (2017). Microplastic ingestion reduces energy intake in the clam Atactodea striata. Marine Pollution Bulletin, 124(2), 798–802.
  • Yang, C., Gong, C., Peng, T., Deng, K., & Zan, L. (2010). High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film. Journal of Hazardous Materials, 178(1–3), 152–156.
  • Yin, K., Wang, Y., Zhao, H., Wang, D., Guo, M., Mu, M., Liu, Y., Nie, X., Li, B., Li, J., & Xing, M. (2021). A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Science of the Total Environment, 774, 145758. https://doi.org/10.1016/j.scitotenv.2021.145758
  • Zhang, C., Qiu, L., Ke, F., Zhu, Y., Yuan, Y., Xu, G., & Jiang, X. (2013). A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. Journal of Materials Chemistry A, 1(45), 14329–14334. https://doi.org/10.1039/c3ta13030d
  • Zhang, K., Cao, W., & Zhang, J. (2004). Solid-phase photocatalytic degradation of PVC by Tungstophosphoric acid—A novel method for PVC plastic degradation. Applied Catalysis A: General, 276(1–2), 67–73. https://doi.org/10.1016/j.apcata.2004.07.056
  • Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang, J., Wu, C., & Lam, P. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 274, 116554. https://doi.org/10.1016/j.envpol.2021.116554
  • Zhang, K., Su, J., Xiong, X., Wu, X., Wu, C., & Liu, J. (2016). Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environmental Pollution, 219, 450–455. https://doi.org/10.1016/j.envpol.2016.05.048
  • Zhang, X., Xia, M., Su, X., Yuan, P., Li, X., Zhou, C., Wan, Z., & Zou, W. (2021). Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. Journal of Hazardous Materials, 413, 125321.
  • Zhang, Z., & Chen, Y. (2020). Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review. Chemical Engineering Journal, 382, 122955. https://doi.org/10.1016/j.cej.2019.122955
  • Zheng, J., & Suh, S. (2019). Strategies to reduce the global carbon footprint of plastics. Nature Climate Change, 9(5), 374–378. https://doi.org/10.1038/s41558-019-0459-z
  • Zhou, D., Chen, J., Wu, J., Yang, J., & Wang, H. (2021). Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution. Sustainable Materials and Technologies, 28, e00251. https://doi.org/10.1016/j.susmat.2021.e00251
  • Zhou, D., Wang, L., Zhang, F., Wu, J., Wang, H., & Yang, J. (2022). Feasible degradation of polyethylene terephthalate fiber-based microplastics in alkaline media with Bi2O3@N-TiO2 Z-scheme photocatalytic system. Advanced Sustainable Systems, 2100516. https://doi.org/10.1002/adsu.202100516
  • Zhou, L., Wang, T., Qu, G., Jia, H., & Zhu, L. (2020). Probing the aging processes and mechanisms of microplastic under simulated multiple actions generated by discharge plasma. Journal of Hazardous Materials, 398, 122956.
  • Zhu, K., Jia, H., Sun, Y., Dai, Y., Zhang, C., Guo, X., Wang, T., & Zhu, L. (2020). Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Research, 173, 115564.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.