431
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Comprehensive performance evaluation of plasma vitrification for detoxification and valorization of residual wastes

, , , , & ORCID Icon
Pages 527-549 | Published online: 20 May 2022

References

  • Addink, R., & Olie, K. (1995). Role of oxygen in formation of polychlorinated Dibenzo-p-dioxins/Dibenzofurans from carbon on fly ash. Environmental Science & Technology, 29(6), 1586–1590. https://doi.org/10.1021/es00006a023
  • Alhadj-Mallah, M. M., Huang, Q., Cai, X., Chi, Y., & Yan, J. (2015). Vitrification of municipal solid waste incineration fly ash using biomass ash as additives. Environmental Technology, 36(5–8), 654–660. https://doi.org/10.1080/09593330.2014.957245
  • Ali, A. M., Abu-Hassan, M. A. & Abdulkarim, B. I. (2019). Detoxification of incinerator ashes in thermal plasma reactor: A review. Journal of Advanced Research in Materials Science, 55(1), 13–24.
  • Alorro, R. D., Hiroyoshi, N., Ito, M., & Tsunekawa, M. (2009). Recovery of heavy metals from MSW molten fly ash by CIP method. Hydrometallurgy, 97(1-2), 8–14. https://doi.org/10.1016/j.hydromet.2008.12.007
  • Boesch, M. E., Vadenbo, C., Saner, D., Huter, C., & Hellweg, S. (2014). An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Management (New York, N.Y.), 34(2), 378–389. https://doi.org/10.1016/j.wasman.2013.10.019
  • Buser, H. R. (1979). Formation and identification of tetra- and pentachlorodibenzo-p-dioxins from photolysis of two isomeric hexachlorodibenzo-p-dioxins. Chemosphere, 8(4), 251–257. https://doi.org/10.1016/0045-6535(79)90076-6
  • Byun, Y., Cho, M., Hwang, S.-M., & Chung, J. (2012). Thermal plasma gasification of municipal solid waste. 183–210. In Y. Yun (Ed.), Gasification for practical applications. London: IntechOpen. https://doi.org/10.5772/48537.
  • Byun, Y., Namkung, W., Cho, M., Chung, J. W., Kim, Y. S., Lee, J. H., Lee, C. R., & Hwang, S. M. (2010). Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment. Environmental Science & Technology, 44(17), 6680–6684. https://doi.org/10.1021/es101244u
  • Cagnetta, G., Hassan, M. M., Huang, J., Yu, G., & Weber, R. (2016). Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling. Scientific Reports, 6, 22925. https://doi.org/10.1038/srep22925
  • Čarnogurská, M., Lázár, M., Puškár, M., Lengyelová, M., Václav, J., & Širillová, Ľ. (2015). Measurement and evaluation of properties of MSW fly ash treated by plasma. Measurement, 62, 155–161. https://doi.org/10.1016/j.measurement.2014.11.014
  • Chan, C. C. Y., & Kirk, D. W. (1999). Behaviour of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents. Journal of Hazardous Materials, 64(1), 75–89. https://doi.org/10.1016/S0304-3894(98)00227-1
  • Chang, J.-S., Ara, M., Urashima, K., Jimbo, H., & Oinuma, K. (2005). Comparisons of solid by-products generated from thermal plasma incineration ash melting systems by plasma torch and three-phase submerged arc processes. Journal of Advanced Oxidation Technologies, 8(1), 59–64. https://doi.org/10.1515/jaots-2005-0109
  • Chen, M., Meng, Y., Shi, J., Kuang, J., Ni, G., Liu, W., & Jiang, Y. (2009). DC arc plasma furnace melting of waste incinerator fly ash. Plasma Science and Technology, 11, 62.
  • Chen, Z., Zhang, S., Lin, X., & Li, X. (2020). Decomposition and reformation pathways of PCDD/Fs during thermal treatment of municipal solid waste incineration fly ash. Journal of Hazardous Materials, 394, 122526. https://doi.org/10.1016/j.jhazmat.2020.122526
  • Cheng, T. W., Chu, J. P., Tzeng, C. C., & Chen, Y. S. (2002). Treatment and recycling of incinerated ash using thermal plasma technology. Waste Management (New York, N.Y.), 22(5), 485–490. https://doi.org/10.1016/S0956-053X(01)00043-5
  • Cheng, T. W., Tu, C. C., Ko, M. S., & Ueng, T. H. (2011). Production of glass–ceramics from incinerator ash using lab-scale and pilot-scale thermal plasma systems. Ceramics International, 37(7), 2437–2444. https://doi.org/10.1016/j.ceramint.2011.05.088
  • Chiang, K. Y., & Hu, Y. H. (2010). Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Management (New York, N.Y.), 30(5), 831–838. https://doi.org/10.1016/j.wasman.2009.12.009
  • Clavier, K. A., Paris, J. M., Ferraro, C. C., & Townsend, T. G. (2020). Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production: A review. Resources, Conservation and Recycling, 160, 104888. https://doi.org/10.1016/j.resconrec.2020.104888
  • Cudjoe, D., & Acquah, P. M. (2021). Environmental impact analysis of municipal solid waste incineration in African countries. Chemosphere, 265, 129186. https://doi.org/10.1016/j.chemosphere.2020.129186
  • Danthurebandara, M., Van Passel, S., Machiels, L., & Van Acker, K. (2015a). Valorization of thermal treatment residues in enhanced landfill mining: Environmental and economic evaluation. Journal of Cleaner Production, 99, 275–285. https://doi.org/10.1016/j.jclepro.2015.03.021
  • Danthurebandara, M., Van Passel, S., Vanderreydt, I., & Van Acker, K. (2015b). Environmental and economic performance of plasma gasification in Enhanced Landfill Mining. Waste Management (New York, N.Y.), 45, 458–467. https://doi.org/10.1016/j.wasman.2015.06.022
  • Ecke, H., Sakanakura, H., Matsuto, T., Tanaka, N., & Lagerkvist, A. (2000). State-of-the-art treatment processes for municipal solid waste incineration residues in Japan. Waste Management & Research: The Journal for a Sustainable Circular Economy, 18(1), 41–51. https://doi.org/10.1177/0734242X0001800106
  • Fantz, U. (2006). Basics of plasma spectroscopy. Plasma Sources Science and Technology, 15(4), S137–S147. https://doi.org/10.1088/0963-0252/15/4/S01
  • Fedorova, R. A., Bondarev, K. T., Shvorneva, L. I., & Frolova, V. P. (1978). Some aspects of corrosion mechanism in chromium-aluminum-zircon refractories. Glass and Ceramics, 35(3), 134–137. https://doi.org/10.1007/BF00696497
  • Ferraro, A., Farina, I., Race, M., Colangelo, F., Cioffi, R., & Fabbricino, M. (2019). Pre-treatments of MSWI fly-ashes: A comprehensive review to determine optimal conditions for their reuse and/or environmentally sustainable disposal. Reviews in Environmental Science and Bio/Technology, 18(3), 453–471. https://doi.org/10.1007/s11157-019-09504-1
  • Gao, J., Dong, C., Wang, X., Zhu, Y., Zhao, Y., Lin, Y., & Hu, X. (2021). Effect of additives on melting temperature and energy consumption of municipal solid waste incineration fly ash. Waste Management & Research, 39(12), 1451–1458.
  • Gilardoni, S., Fermo, P., Cariati, F., Gianelle, V., Pitea, D., Collina, E., & Lasagni, M. (2004). MSWI fly ash particle analysis by scanning electron microscopy-energy dispersive X-ray spectroscopy. Environmental Science & Technology, 38(24), 6669–6675. https://doi.org/10.1021/es0494961
  • Gomez, E., Rani, D. A., Cheeseman, C. R., Deegan, D., Wise, M., & Boccaccini, A. R. (2009). Thermal plasma technology for the treatment of wastes: A critical review. Journal of Hazardous Materials, 161(2–3), 614–626. https://doi.org/10.1016/j.jhazmat.2008.04.017
  • Harja, M., Buema, G., Bulgariu, L., Bulgariu, D., Sutiman, D. M., & Ciobanu, G. (2015). Removal of cadmium(II) from aqueous solution by adsorption onto modified algae and ash. Korean Journal of Chemical Engineering, 32(9), 1804–1811. https://doi.org/10.1007/s11814-015-0016-z
  • Hasselriis, F. (1987). Optimization of combustion conditions to minimize dioxin emissions. Waste Management & Research: The Journal for a Sustainable Circular Economy, 5(1), 311–326. https://doi.org/10.1177/0734242X8700500143
  • Haugsten, K. E., & Gustavson, B. (2000). Environmental properties of vitrified fly ash from hazardous and municipal waste incineration. Waste Management, 20(2-3), 167–176. https://doi.org/10.1016/S0956-053X(99)00325-6
  • Hinton, W. S., & Lane, A. M. (1991). Characteristics of municipal solid waste incinerator fly ash promoting the formation of polychlorinated dioxins. Chemosphere, 22(5-6), 473–483. https://doi.org/10.1016/0045-6535(91)90059-M
  • Hu, H. Y., Liu, H., Shen, W. Q., Luo, G. Q., Li, A. J., Lu, Z. L., & Yao, H. (2013b). Comparison of CaO's effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China. Chemosphere, 93(4), 590–596. https://doi.org/10.1016/j.chemosphere.2013.05.077
  • Hu, H., Luo, G., Liu, H., Qiao, Y., Xu, M., & Yao, H. (2013a). Fate of chromium during thermal treatment of municipal solid waste incineration (MSWI) fly ash. Proceedings of the Combustion Institute, 34(2), 2795–2801. https://doi.org/10.1016/j.proci.2012.06.181
  • Huang, T. Y., Chiueh, P. T., & Lo, S. L. (2017). Life-cycle environmental and cost impacts of reusing fly ash. Resources, Conservation and Recycling, 123, 255–260. https://doi.org/10.1016/j.resconrec.2016.07.001
  • Huber, F., Herzel, H., Adam, C., Mallow, O., Blasenbauer, D., & Fellner, J. (2018a). Combined disc pelletisation and thermal treatment of MSWI fly ash. Waste Management, 73, 381–391. https://doi.org/10.1016/j.wasman.2017.12.020
  • Huber, F., Laner, D., & Fellner, J. (2018b). Comparative life cycle assessment of MSWI fly ash treatment and disposal. Waste Management, 73, 392–403. https://doi.org/10.1016/j.wasman.2017.06.004
  • Ikoma, T., Zhang, Q., Saito, F., Akiyama, K., Tero-Kubota, S., & Kato, T. (2001). Radicals in the mechanochemical dechlorination of hazardous organochlorine compounds using CaO Nanoparticles. Bulletin of the Chemical Society of Japan, 74(12), 2303–2309. https://doi.org/10.1246/bcsj.74.2303
  • Izumikawa, C. (1996). Metal recovery from fly ash generated from vitrification process for MSW ash. Waste Management, 16(5-6), 501–507. https://doi.org/10.1016/S0956-053X(96)00092-X
  • Jakob, A., Stucki, S., & Struis, R. (1996). Complete heavy metal removal from fly ash by heat treatment: Influence of chlorides on evaporation rates. Environmental Science & Technology, 30, 3275–3283.
  • Jiao, F., Cheng, Y., Zhang, L., Yamada, N., Sato, A., & Ninomiya, Y. (2011). Effects of HCl, SO2 and H2O in flue gas on the condensation behavior of Pb and Cd vapors in the cooling section of municipal solid waste incineration. Proceedings of the Combustion Institute, 33(2), 2787–2793. https://doi.org/10.1016/j.proci.2010.07.062
  • Jimbo, H. (1996). Plasma melting and useful application of molten slag. Waste Management, 16(5-6), 417–422. https://doi.org/10.1016/S0956-053X(96)00087-6
  • Johnson, T. (2013). Tetronics plasma vitrification technology in the management and conditioning of nuclear waste. Tetronics International. Powerpoint Presentation. https://www.sheffield.ac.uk/polopoly_fs/1.384682!/file/10_TimJohnson.pdf
  • Jones, P. T., Geysen, D., Tielemans, Y., Van Passel, S., Pontikes, Y., Blanpain, B., Quaghebeur, M., & Hoekstra, N. (2013). Enhanced landfill mining in view of multiple resource recovery: A critical review. Journal of Cleaner Production, 55, 45–55. https://doi.org/10.1016/j.jclepro.2012.05.021
  • Jung, C. H., & Osako, M. (2007). Thermodynamic behavior of rare metals in the melting process of municipal solid waste (MSW) incineration residues. Chemosphere, 69(2), 279–288. https://doi.org/10.1016/j.chemosphere.2007.03.071
  • Karamanov, A., Pelino, M., & Hreglich, A. (2003). Sintered glass-ceramics from Municipal Solid Waste-incinerator fly ashes—part I: The influence of the heating rate on the sinter-crystallisation. Journal of the European Ceramic Society, 23(6), 827–832. https://doi.org/10.1016/S0955-2219(02)00210-8
  • Károly, Z., Mohai, I., Tóth, M., Wéber, F., & Szépvölgyi, J. (2007). Production of glass–ceramics from fly ash using arc plasma. Journal of the European Ceramic Society, 27(2-3), 1721–1725. https://doi.org/10.1016/j.jeurceramsoc.2006.05.015
  • Katou, K., Asou, T., Kurauchi, Y., & Sameshima, R. (2001). Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode. Thin Solid Films, 386(2), 183–188. https://doi.org/10.1016/S0040-6090(00)01640-0
  • Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank Publications.
  • Kim, K., Kim, K., & Kim, M. (2021). Characterization of municipal solid-waste incinerator fly ash, vitrified using only end-waste glass. Journal of Cleaner Production, 318, 128557. https://doi.org/10.1016/j.jclepro.2021.128557
  • Kim, M., & O'Keefe, P. W. (2000). Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in aqueous solutions and in organic solvents. Chemosphere, 41(6), 793–800. https://doi.org/10.1016/S0045-6535(99)00564-0
  • Kim, M.-R., Jang, J.-G., Lee, S.-K., Hwang, B.-Y., & Lee, J.-K. (2010). Correlation between the ash composition and melting temperature of waste incineration residue. Korean Journal of Chemical Engineering, 27(3), 1028–1034. https://doi.org/10.1007/s11814-010-0156-0
  • Kinoshita, K., Hayashi, A., Akahide, K., & Yamazaki, T. J. P. (1994). High power plasma arc melting process for incinerated ash contraction. Pure and Applied Chemistry, 66(6), 1295–1300. https://doi.org/10.1351/pac199466061295
  • Kinto, K. (1996). Ash melting system and reuse of products by arc processing. Waste Management, 16(5-6), 423–430. https://doi.org/10.1016/S0956-053X(96)00088-8
  • Kirk, D. W., Chan, C. C. Y., & Marsh, H. (2002). Chromium behavior during thermal treatment of MSW fly ash. Journal of Hazardous Materials, 90(1), 39–49. https://doi.org/10.1016/S0304-3894(01)00328-4
  • Kubota, Y., Ichiki, R., Hara, T., & Takemura, Y. (2009). Spectroscopic analysis of nitrogen atmospheric plasma jet. Journal of Plasma and Fusion Research, 8, 740–743.
  • Kuo, Y. M., Lin, T. C., & Tsai, P. J. (2004). Metal behavior during vitrification of incinerator ash in a coke bed furnace. Journal of Hazardous Materials, 109(1–3), 79–84. https://doi.org/10.1016/j.jhazmat.2004.02.053
  • Kuo, Y. M., Wang, J. W., Chao, H. R., Wang, C. T., & Chang-Chien, G. P. (2008a). Effect of cooling rate and basicity during vitrification of fly ash. Part 2. On the chemical stability and acid resistance of slags. Journal of Hazardous Materials, 152(2), 554–562. https://doi.org/10.1016/j.jhazmat.2007.07.017
  • Kuo, Y. M., Wang, J. W., Wang, C. T., & Tsai, C. H. (2008b). Effect of water quenching and SiO2 addition during vitrification of fly ash Part 1: On the crystalline characteristics of slags. Journal of Hazardous Materials, 152(3), 994–1001. https://doi.org/10.1016/j.jhazmat.2007.07.081
  • Lederer, J., Trinkel, V., & Fellner, J. (2017). Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria. Waste Management, 60, 247–258. https://doi.org/10.1016/j.wasman.2016.10.022
  • Li, R., Wang, L., Yang, T., & Raninger, B. (2007). Investigation of MSWI fly ash melting characteristic by DSC-DTA. Waste Management (New York, N.Y.), 27(10), 1383–1392. https://doi.org/10.1016/j.wasman.2006.11.017
  • Li, X., Chen, Q., Zhou, Y., Tyrer, M., & Yu, Y. (2014). Stabilization of heavy metals in MSWI fly ash using silica fume. Waste Management (New York, N.Y.), 34(12), 2494–2504. https://doi.org/10.1016/j.wasman.2014.08.027
  • Lin, K. L., & Chang, C. T. (2006). Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash. Journal of Hazardous Materials, 135(1-3), 296–302. https://doi.org/10.1016/j.jhazmat.2005.11.064
  • Lin, Y.-J., & Chen, J.-C. (2021). Resourcization and valorization of waste incineration fly ash for the synthesis of zeolite and applications. Journal of Environmental Chemical Engineering, 9(6), 106549. https://doi.org/10.1016/j.jece.2021.106549
  • Liu, G., Zhan, J., Zheng, M., Li, L., Li, C., Jiang, X., Wang, M., Zhao, Y., & Jin, R. (2015a). Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations. Journal of Hazardous Materials, 299, 471–478. https://doi.org/10.1016/j.jhazmat.2015.07.052
  • Liu, H., Wei, G., & Zhang, R. (2013). Effect of water washing pre-treatment on the properties of glass-ceramics from incinerator fly ash using electronic arc furnace. Journal of Wuhan University of Technology-Mater. Sci. Ed, 28(1), 62–68. https://doi.org/10.1007/s11595-013-0641-5
  • Liu, J., Chen, J., & Huang, L. (2015b). Heavy metal removal from MSS fly ash by thermal and chlorination treatments. Scientific Reports, 5, 17270. https://doi.org/10.1038/srep17270
  • Lu, J. W., Zhang, S., Hai, J., & Lei, M. (2017). Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Management, 69, 170–186. https://doi.org/10.1016/j.wasman.2017.04.014
  • Lundin, L., & Marklund, S. (2005). Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules. Environmental Science & Technology, 39(10), 3872–3877. https://doi.org/10.1021/es0485513
  • Lundin, L., Aurell, J., & Marklund, S. (2011). The behavior of PCDD and PCDF during thermal treatment of waste incineration ash. Chemosphere, 84(3), 305–310. https://doi.org/10.1016/j.chemosphere.2011.04.014
  • Ma, W., Fang, Y., Chen, D., Chen, G., Xu, Y., Sheng, H., & Zhou, Z. (2017). Volatilization and leaching behavior of heavy metals in MSW incineration fly ash in a DC arc plasma furnace. Fuel, 210, 145–153. https://doi.org/10.1016/j.fuel.2017.07.091
  • Ma, W., Shi, W., Shi, Y., Chen, D., Liu, B., Chu, C., Li, D., Li, Y., & Chen, G. (2021). Plasma vitrification and heavy metals solidification of MSW and sewage sludge incineration fly ash. J Hazard Mater, 408, 124809. https://doi.org/10.1016/j.jhazmat.2020.124809
  • Mackay, D., Shiu, W.-Y., & Lee, S. C. (2006). Handbook of physical-chemical properties and environmental fate for organic chemicals. CRC press.
  • Mätzing, H., Baumann, W., Becker, B., Jay, K., Paur, H.-R., & Seifert, H. (2001). Adsorption of PCDD/F on MWI fly ash. Chemosphere, 42(5-7), 803–809. https://doi.org/10.1016/S0045-6535(00)00254-X
  • McKay, G. (2002). Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chemical Engineering Journal, 86(3), 343–368. https://doi.org/10.1016/S1385-8947(01)00228-5
  • Ni, G., Zhao, P., Jiang, Y., & Meng, Y. (2012). Vitrification of MSWI fly ash by thermal plasma melting and fate of heavy metals. Plasma Science and Technology, 14(9), 813–818. https://doi.org/10.1088/1009-0630/14/9/08
  • Noma, A., Mawatari, M., Goto, C., Hoshi, Y., Inoue, K., & Yoshikawa, K. (2006). Analysis of melting phenomena in a DC plasma ash melting furnace. Industrial & Engineering Chemistry Research, 45(14), 5127–5133. https://doi.org/10.1021/ie051332l
  • Nowak, B., Frías Rocha, S., Aschenbrenner, P., Rechberger, H., & Winter, F. (2012). Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type. Chemical Engineering Journal, 179, 178–185. https://doi.org/10.1016/j.cej.2011.10.077
  • Okada, T., & Tomikawa, H. (2016). Efficiencies of metal separation and recovery in ash-melting of municipal solid waste under non-oxidative atmospheres with different reducing abilities. Journal of Environmental Management, 166, 147–155. https://doi.org/10.1016/j.jenvman.2015.10.010
  • Okada, T., Tojo, Y., Tanaka, N., & Matsuto, T. (2007). Recovery of zinc and lead from fly ash from ash-melting and gasification-melting processes of MSW-comparison and applicability of chemical leaching methods. Waste Management (New York, N.Y.), 27(1), 69–80. https://doi.org/10.1016/j.wasman.2005.12.006
  • Park, H.-S. (2011). Study of slag content and properties after plasma melting of incineration ash. Thermophysics and Aeromechanics, 18(2), 313–321. https://doi.org/10.1134/S0869864311020119
  • Park, K., Hyun, J., Maken, S., Jang, S., & Park, J.-W. (2005). Vitrification of municipal solid waste incinerator fly ash using brown's gas. Energy & Fuels, 19(1), 258–262. https://doi.org/10.1021/ef049953z
  • Park, Y. J., & Heo, J. (2002). Vitrification of fly ash from municipal solid waste incinerator. Journal of Hazardous Materials, 91(1-3), 83–93. https://doi.org/10.1016/S0304-3894(01)00362-4
  • Pei, S. L., Chen, T. L., Pan, S. Y., Yang, Y. L., Sun, Z. H., & Li, Y. J. (2020). Addressing environmental sustainability of plasma vitrification technology for stabilization of municipal solid waste incineration fly ash. Journal of Hazardous Materials, 398, 122959. https://doi.org/10.1016/j.jhazmat.2020.122959
  • Phan, D. N. C., Jansson, S., & Boily, J.-F. (2014). Link between fly ash properties and polychlorinated organic pollutants formed during simulated municipal solid waste incineration. Energy & Fuels, 28(4), 2761–2769. https://doi.org/10.1021/ef4023459
  • Poirier, J., Qafssaoui, F., Ildefonse, J. P., & Bouchetou, M. L. (2008). Analysis and interpretation of refractory microstructures in studies of corrosion mechanisms by liquid oxides. Journal of the European Ceramic Society, 28(8), 1557–1568. https://doi.org/10.1016/j.jeurceramsoc.2007.10.012
  • Quina, M. J., Bontempi, E., Bogush, A., Schlumberger, S., Weibel, G., Braga, R., Funari, V., Hyks, J., Rasmussen, E., & Lederer, J. (2018). Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. The Science of the Total Environment, 635, 526–542. https://doi.org/10.1016/j.scitotenv.2018.04.150
  • Quina, M. J., Santos, R. C., Bordado, J. C., & Quinta-Ferreira, R. M. (2008). Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal. Journal of Hazardous Materials, 152(2), 853–869. https://doi.org/10.1016/j.jhazmat.2007.07.055
  • Sakai, S-i., & Hiraoka, M. (2000). Municipal solid waste incinerator residue recycling by thermal processes. Waste Management, 20(2-3), 249–258. https://doi.org/10.1016/S0956-053X(99)00315-3
  • Sandhage, K. H., & Yurek, G. J. (1988). Indirect Dissolution of Sapphire into Silicate Melts. Journal of the American Ceramic Society, 71(6), 478–489. https://doi.org/10.1111/j.1151-2916.1988.tb05898.x
  • Sobiecka, E., & Szymanski, L. (2014). Thermal plasma vitrification process as an effective technology for fly ash and chromium-rich sewage sludge utilization. Journal of Chemical Technology & Biotechnology, 89(7), 1115–1117. https://doi.org/10.1002/jctb.4221
  • Stanmore, B. R. (2004). The formation of dioxins in combustion systems. Combustion and Flame, 136(3), 398–427. https://doi.org/10.1016/j.combustflame.2003.11.004
  • Tang, J., Su, M., Wu, Q., Wei, L., Wang, N., Xiao, E., Zhang, H., Wei, Y., Liu, Y., Ekberg, C., Steenari, B.-M., & Xiao, T. (2019). Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption. Journal of Cleaner Production, 234, 139–149. https://doi.org/10.1016/j.jclepro.2019.06.198
  • Thevenin, G., Poirier, J., Prigent, P., Fourcault, A., Robert-Arnouil, J. P., Edme, E., Marias, F., & Demarthon, R. (2014). Modelling and design of a refractory lining for a biomass gasification reactor fed by a plasma torch. Waste and Biomass Valorization, 5(5), 865–877. https://doi.org/10.1007/s12649-014-9292-9
  • Tu, X., Yan, J., Ma, Z., Wang, Q., Cen, K., & Chéron, B. (2007). Vitrification of MSWI fly ash using thermal plasma technology. Challenges of Power Engineering and Environment (823–826): Springer.
  • Tuan, Y.-J., Wang, H. P., & Chang, J.-E. (2012). Tracking of chromium in plasma co-melting of fly ashes and sludges. Water, Air, & Soil Pollution, 223(8), 5283–5288. https://doi.org/10.1007/s11270-012-1278-2
  • Valincius, V., Kėželis, R., Gimžauskaitė, D., Grigaitienė, V., & Valatkevičius, P. (2020). The investigation of an electric arc in a plasma chemical reactor for hazardous waste treatment. Journal of Chemical Technology & Biotechnology, 95(2), 450–456. https://doi.org/10.1002/jctb.6045
  • Varshneya, A. K. (1994). Chapter 3: Glass formation principles. In. A. K. Varshneya (ed.) Fundamentals of Inorganic Glasses (27–59). Academic Press.
  • Wang, F. H., Zhang, F., Chen, Y. J., Gao, J., & Zhao, B. (2015a). A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash. Journal of Hazardous Materials, 300, 451–458. https://doi.org/10.1016/j.jhazmat.2015.07.037
  • Wang, Q., Yan, J. H., Chi, Y., Li, X. D., & Lu, S. Y. (2010a). Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere, 78(5), 626–630.
  • Wang, Q., Yan, J., Tu, X., Chi, Y., Li, X., Lu, S., & Cen, K. (2009). Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel, 88(5), 955–958. https://doi.org/10.1016/j.fuel.2008.12.011
  • Wang, S. J., He, P. J., Shao, L. M., & Zhang, H. (2016). Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment. Chemosphere, 161, 242–250.
  • Wang, X., Huang, Y., Zhong, Z., Yan, Y., Niu, M., & Wang, Y. (2014). Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes. Fuel Processing Technology, 119, 228–235. https://doi.org/10.1016/j.fuproc.2013.11.012
  • Wang, X., Jin, B., Xu, B., Lan, W., & Qu, C. (2015b). Melting characteristics during the vitrification of MSW incinerator fly ash by swirling melting treatment. Journal of Material Cycles and Waste Management, 19(1), 483–495. https://doi.org/10.1007/s10163-015-0449-9
  • Wang, X., Xu, B., Zhao, D., & Jin, B. (2010b). Experimental Analysis of Heavy Metals Behavior during Melting Process of Fly Ashes from MSWI under Different Atmospheres 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 1–4.
  • Weibel, G., Zappatini, A., Wolffers, M., & Ringmann, S. (2021). Optimization of metal recovery from MSWI fly ash by acid leaching: Findings from laboratory- and industrial-scale experiments. Processes, 9(2), 352. https://doi.org/10.3390/pr9020352
  • Weidemann, E., Lundin, L., & Boily, J. F. (2016). Thermal decomposition of municipal solid waste fly ash and desorption of polychlorinated dibenzo-p-dioxins and furans from fly ash surfaces. Environmental Science and Pollution Research International, 23(22), 22843–22851.
  • Wu, C. H., & Ng, H. Y. (2008b). Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: Direct photolysis and photocatalysis processes. Journal of Hazardous Materials, 151(2-3), 507–514.
  • Wu, C. H., Chang-Chien, G. P., & Lee, W. S. (2005). Photodegradation of tetra- and hexachlorodibenzo-p-dioxins. Journal of Hazardous Materials, 120(1-3), 257–263.
  • Wu, C.-H., & Ng, H.-Y. (2008a). Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: Direct photolysis and photocatalysis processes. Journal of Hazardous Materials, 151(2-3), 507–514.
  • Wunsch, P., Greilinger, C., Bieniek, D., & Kettrup, A. (1996). Investigation of the binding of heavy metals in thermally treated residues from waste incineration. Chemosphere, 32(11), 2211–2218. https://doi.org/10.1016/0045-6535(96)00123-3
  • Xiao, H., Ru, Y., Peng, Z., Yan, D., Li, L., Karstensen, K. H., Wang, N., & Huang, Q. (2018). Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln. Chemosphere, 210, 779–788. https://doi.org/10.1016/j.chemosphere.2018.07.058
  • Yang, L., Wang, H., Wang, H., Wang, D., & Wang, Y. (2011). Solid waste plasma disposal plant. Journal of Electrostatics, 69(5), 411–413. https://doi.org/10.1016/j.elstat.2011.05.007
  • Yao, H., Mkilaha, I. S. N., & Naruse, I. (2004). Screening of sorbents and capture of lead and cadmium compounds during sewage sludge combustion. Fuel, 83(7-8), 1001–1007. https://doi.org/10.1016/j.fuel.2003.10.022
  • Yu, J., Sun, L., Ma, C., Qiao, Y., Xiang, J., Hu, S., & Yao, H. (2016). Mechanism on heavy metals vaporization from municipal solid waste fly ash by MgCl⋅6HO. Waste Management (New York, N.Y.), 49, 124–130. https://doi.org/10.1016/j.wasman.2015.12.015
  • Yue, Y., Zhang, J., Sun, F., Wu, S., Pan, Y., Zhou, J., & Qian, G. (2019). Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash. Journal of Environmental Management, 232, 226–235. https://doi.org/10.1016/j.jenvman.2018.11.053
  • Zacco, A., Borgese, L., Gianoncelli, A., Struis, R., Depero, L. E., & Bontempi, E. (2014). Review of fly ash inertisation treatments and recycling. Environmental Chemistry Letters, 12(1), 153–175. https://doi.org/10.1007/s10311-014-0454-6
  • Zhang, J., Zhang, S., & Liu, B. (2020). Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review. Journal of Cleaner Production, 250, 119507. https://doi.org/10.1016/j.jclepro.2019.119507
  • Zhang, Z., Geng, F., Huang, J., Zhou, X. Y., Feng, S. Q., Cheng, X. L., Jiang, X. D., Wu, W. D., Zheng, W. G., & Tang, Y. J. (2014). Spectral and temporal characteristics of air-plasma continuum generated by nanosecond laser at 355nm. Optics & Laser Technology, 56, 358–361. https://doi.org/10.1016/j.optlastec.2013.09.016
  • Zhao, P., Ni, G., Jiang, Y., Chen, L., Chen, M., & Meng, Y. (2010a). Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. Journal of Hazardous Materials, 181(1-3), 580–585. https://doi.org/10.1016/j.jhazmat.2010.05.052
  • Zhao, P., Ni, G., Jiang, Y., Chen, L., Chen, M., & Meng, Y. (2010b). Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. Journal of Hazardous Materials, 181(1-3), 580–585. https://doi.org/10.1016/j.jhazmat.2010.05.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.