3,152
Views
1
CrossRef citations to date
0
Altmetric
Reviews

What should we know when choosing feather, blood, egg or preen oil as biological samples for contaminants detection? A non-lethal approach to bird sampling for PCBs, OCPs, PBDEs and PFASs

ORCID Icon
Pages 625-649 | Published online: 30 May 2022

References

  • Ackerman, J. T., Eagles-Smith, C. A., Herzog, M. P., & Hartman, C. A. (2016). Maternal transfer of contaminants in birds: Mercury and selenium concentrations in parents and their eggs. Environmental Pollution, 210, 145–154. https://doi.org/10.1016/j.envpol.2015.12.016
  • Adrogué, A. Q., Miglioranza, K. S., Copello, S., Favero, M., & Pon, J. P. S. (2019). Pelagic seabirds as biomonitors of persistent organic pollutants in the Southwestern Atlantic. Marine Pollution Bulletin, 149, 110516. https://doi.org/10.1016/j.marpolbul.2019.110516
  • Ahrens, L., Herzke, D., Huber, S., Bustnes, J. O., Bangjord, G., & Ebinghaus, R. (2011). Temporal trends and pattern of polyfluoroalkyl compounds in tawny owl (Strix aluco) eggs from Norway, 1986–2009. Environmental Science & Technology, 45(19), 8090–8097. https://doi.org/10.1021/es103473v
  • Ask, A. V., Jenssen, B. M., Tartu, S., Angelier, F., Chastel, O., & Gabrielsen, G. W. (2021). Per- and polyfluoroalkyl substances are positively associated with thyroid hormones in an arctic seabird. Environmental Toxicology and Chemistry, 40(3), 820–831. https://doi.org/10.1002/etc.4978
  • Becker, P. H. (2003). Biomonitoring with birds. In B. Markert, T. Breure, & H. Zechmeister (Eds.), Bioindicators and biomonitors: Principles, concepts and applications (pp. 677–736). Elsevier Sciences Ltd.
  • Behrooz, R. D., Esmaili-Sari, A., Ghasempouri, S. M., Bahramifar, N., & Hosseini, S. M. (2009). Organochlorine pesticide and polychlorinated biphenyl in feathers of resident and migratory birds of South-West Iran. Archives of Environmental Contamination and Toxicology, 56(4), 803–810. https://doi.org/10.1007/s00244-008-9211-9
  • Bertolero, A., Vicente, J., Meyer, J., & Lacorte, S. (2015). Accumulation and maternal transfer of perfluorooctane sulphonic acid in yellow-legged (Larus michahellis) and Audouin’s gull (Larus audouinii) from the Ebro Delta Natural Park. Environmental Research, 137, 208–214. https://doi.org/10.1016/j.envres.2014.12.018
  • Blévin, P., Shaffer, S. A., Bustamante, P., Angelier, F., Picard, B., Herzke, D., Moe, B., Gabrielsen, G. W., Bustnes, J. O., & Chastel, O. (2020). Contaminants, prolactin and parental care in an Arctic seabird: Contrasted associations of perfluoroalkyl substances and organochlorine compounds with egg-turning behavior. General and Comparative Endocrinology, 291, 113420. https://doi.org/10.1016/j.ygcen.2020.113420
  • Bortolotti, G. R. (2010). Flaws and pitfalls in the chemical analysis of feathers: Bad news-good news for avian chemoecology and toxicology. Ecological Applications, 20(6), 1766–1774. https://doi.org/10.1890/09-1473.1
  • Bortolotti, G. R., Fernie, K. J., & Smits, J. E. (2003). Carotenoid concentration and coloration of American Kestrels (Falco sparverius) disrupted by experimental exposure to PCBs. Functional Ecology, 17(5), 651–657. https://doi.org/10.1046/j.1365-2435.2003.00778.x
  • Braune, B. M., Letcher, R. J., Gaston, A. J., & Mallory, M. L. (2015). Trends of polybrominated diphenyl ethers and hexabromocyclododecane in eggs of Canadian Arctic seabirds reflect changing use patterns. Environmental Research, 142, 651–661. https://doi.org/10.1016/j.envres.2015.08.010
  • Briels, N., Torgersen, L. N., Castaño-Ortiz, J. M., Løseth, M. E., Herzke, D., Nygård, T., Bustnes, J. O., Ciesielski, T. M., Poma, G., Malarvannan, G., Covaci, A., & Jaspers, V. L. B. (2019). Integrated exposure assessment of northern goshawk (Accipiter gentilis) nestlings to legacy and emerging organic pollutants using non-destructive samples. Environmental Research, 178, 108678. https://doi.org/10.1016/j.envres.2019.108678
  • Burger, J., & Gochfeld, M. (1997). Risk, mercury levels, and birds: Relating adverse laboratory effects to field biomonitoring. Environmental Research, 75(2), 160–172. https://doi.org/10.1006/enrs.1997.3778
  • Bustnes, J. O., Skaare, J. U., Erikstad, K. E., Bakken, V., & Mehlum, F. (2001). Whole blood concentrations of organochlorines as a dose metric for studies of the glaucous gull (Larus hyperboreus). Environmental Toxicology and Chemistry, 20(5), 1046–1052.
  • Bustnes, J. O., Bårdsen, B.-J., Moe, B., Herzke, D., Hanssen, S. A., Sagerup, K., Bech, C., Nordstad, T., Chastel, O., Tartu, S., & Gabrielsen, G. W. (2017). Temporal variation in circulating concentrations of organochlorine pollutants in a pelagic seabird breeding in the high Arctic. Environmental Toxicology and Chemistry, 36(2), 442–448. https://doi.org/10.1002/etc.3560
  • Bustnes, J. O., Borgå, K., Erikstad, K. E., Lorentsen, S.-H., & Herzke, D. (2008). Perfluorinated, brominated, and chlorinated contaminants in a population of lesser black-backed gulls (Larus fuscus). Environmental Toxicology and Chemistry, 27(6), 1383–1392. https://doi.org/10.1897/07-473.1
  • Campagna, S., Mardon, J., Celerier, A., & Bonadonna, F. (2012). Potential semiochemical molecules from birds: A practical and comprehensive compilation of the last 20 years studies. Chemical Senses, 37(1), 3–25. https://doi.org/10.1093/chemse/bjr067
  • Carravieri, A., Cherel, Y., Brault-Favrou, M., Churlaud, C., Peluhet, L., Labadie, P., Budzinski, H., Chastel, O., & Bustamante, P. (2017). From Antarctica to the subtropics: Contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.). Environmental Pollution, 228, 464–473. https://doi.org/10.1016/j.envpol.2017.05.053
  • Chen, C.-F., Foley, J., Tang, P.-C., Li, A., Jiang, T. X., Wu, P., Widelitz, R. B., & Chuong, C. M. (2015). Development, regeneration, and evolution of feathers. Annual Review of Animal Biosciences, 3(1), 169–111.27. https://doi.org/10.1146/annurev-animal-022513-114127
  • Cobb, G. P., Bargar, T. A., Pepper, C. B., Norman, D. M., Houlis, P. D., & Anderson, T. A. (2003). Using chorioallantoic membranes for non-lethal assessment of persistent organic pollutant exposure and effect in oviparous wildlife. Ecotoxicology, 12(1/4), 31–45. https://doi.org/10.1023/A:1022532711353
  • Colabuono, F. I., Vander Pol, S. S., Huncik, K. M., Taniguchi, S., Petry, M. V., Kucklick, J. R., & Montone, R. C. (2016). Persistent organic pollutants in blood samples of Southern Giant Petrels (Macronectes giganteus) from the South Shetland Islands, Antarctica. Environmental Pollution, 216, 38–45. https://doi.org/10.1016/j.envpol.2016.05.041
  • Dauwe, T., Jaspers, V., Covaci, A., Schepens, P., & Eens, M. (2005). Feathers as a nondestructive biomonitor for persistent organic pollutants. Environmental Toxicology and Chemistry, 24(2), 442–449. https://doi.org/10.1897/03-596.1
  • Dauwe, T., Jaspers, V. L., Covaci, A., & Eens, M. (2006). Accumulation of organochlorines and brominated flame retardants in the eggs and nestlings of great tits, Parus major. Environmental Science & Technology, 40(17), 5297–5303. https://doi.org/10.1021/es060747a
  • Dauwe, T., Van de Vijver, K., De Coen, W., & Eens, M. (2007). PFOS levels in the blood and liver of a small insectivorous songbird near a fluorochemical plant. Environment International, 33(3), 357–361. https://doi.org/10.1016/j.envint.2006.11.014
  • Ehresman, D. J., Froehlich, J. W., Olsen, G. W., Chang, S.-C., & Butenhoff, J. L. (2007). Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals. Environmental Research, 103(2), 176–184. https://doi.org/10.1016/j.envres.2006.06.008
  • Elliott, K. H., Cesh, L. S., Dooley, J. A., Letcher, R. J., & Elliott, J. E. (2009). PCBs and DDE, but not PBDEs, increase with trophic level and marine input in nestling bald eagles. The Science of the Total Environment, 407(12), 3867–3875. https://doi.org/10.1016/j.scitotenv.2009.02.027
  • Espín, S., Martínez-López, E., María-Mojica, P., & García-Fernández, A. J. (2012). Razorbill (Alca torda) feathers as an alternative tool for evaluating exposure to organochlorine pesticides. Ecotoxicology, 21(1), 183–190. https://doi.org/10.1007/s10646-011-0777-z
  • Espín, S., García-Fernández, A. J., Herzke, D., Shore, R. F., van Hattum, B., Martínez-López, E., Coeurdassier, M., Eulaers, I., Fritsch, C., Gómez-Ramírez, P., Jaspers, V. L. B., Krone, O., Duke, G., Helander, B., Mateo, R., Movalli, P., Sonne, C., & van den Brink, N. W. (2016). Tracking pan-continental trends in environmental contamination using sentinel raptors—What types of samples should we use? Ecotoxicology, 25(4), 777–801. https://doi.org/10.1007/s10646-016-1636-8
  • Eulaers, I., Covaci, A., Hofman, J., Nygård, T., Halley, D. J., Pinxten, R., Eens, M., & Jaspers, V. L. B. (2011a). A comparison of non-destructive sampling strategies to assess the exposure of white-tailed eagle nestlings (Haliaeetus albicilla) to persistent organic pollutants. The Science of the Total Environment, 410-411, 258–265. https://doi.org/10.1016/j.scitotenv.2011.09.070
  • Eulaers, I., Covaci, A., Herzke, D., Eens, M., Sonne, C., Moum, T., Schnug, L., Hanssen, S. A., Johnsen, T. V., Bustnes, J. O., & Jaspers, V. L. B. (2011b). A first evaluation of the usefulness of feathers of nestling predatory birds for non-destructive biomonitoring of persistent organic pollutants. Environment International, 37(3), 622–630. https://doi.org/10.1016/j.envint.2010.12.007
  • Eulaers, I., Jaspers, V. L. B., Bustnes, J. O., Covaci, A., Johnsen, T. V., Halley, D. J., Moum, T., Ims, R. A., Hanssen, S. A., Erikstad, K. E., Herzke, D., Sonne, C., Ballesteros, M., Pinxten, R., & Eens, M. (2013). Ecological and spatial factors drive intra- and interspecific variation in exposure of subarctic predatory bird nestlings to persistent organic pollutants. Environment International, 57-58, 25–33. https://doi.org/10.1016/j.envint.2013.03.009
  • Eulaers, I., Jaspers, V. L. B., Pinxten, R., Covaci, A., & Eens, M. (2014). Legacy and current-use brominated flame retardants in the Barn Owl. The Science of the Total Environment, 472, 454–462. https://doi.org/10.1016/j.scitotenv.2013.11.054
  • Fair, J., Paul, E., Jones, J., Clark, A. B., Davie, C., & Kaiser, G. (2010). Chapter 6: Minor manipulative procedures. In J. Fair, E. Paul, & J. Jones (Eds.), Guidelines to the use of wild birds in research (pp. 131–167). The Ornithological Council.
  • Finger, A., Lavers, J. L., Dann, P., Nugegoda, D., Orbell, J. D., Robertson, B., & Scarpaci, C. (2015). The little penguin (Eudyptula minor) as an indicator of coastal trace metal pollution. Environmental Pollution, 205, 365–377. https://doi.org/10.1016/j.envpol.2015.06.022
  • García-Fernandez, A. J., Espín, S., & Martínez-López, E. (2013). Feathers as a biomonitoring tool of polyhalogenated compounds: A review. Environmental Science & Technology, 47(7), 3028–3043. https://doi.org/10.1021/es302758x
  • Gebbink, W. A., & Letcher, R. J. (2012). Comparative tissue and body compartment accumulation and maternal transfer to eggs of perfluoroalkyl sulfonates and carboxylates in Great Lakes herring gulls. Environmental Pollution, 162, 40–47. https://doi.org/10.1016/j.envpol.2011.10.011
  • Goede, A. A., & De Bruin, M. (1986). The use of bird feathers for indicating heavy metal pollution. Environmental Monitoring and Assessment, 7(3), 249–256. https://doi.org/10.1007/BF00418017
  • Gómez-Ramírez, P., Bustnes, J. O., Eulaers, I., Herzke, D., Johnsen, T. V., Lepoint, G., Pérez-García, J. M., García-Fernández, A. J., & Jaspers, V. L. B. (2017). Per- and polyfluoroalkyl substances in plasma and feathers of nestling birds of prey from northern Norway. Environmental Research, 158, 277–285. https://doi.org/10.1016/j.envres.2017.06.019
  • González-Gómez, X., Simal-Gándara, J., Fidalgo Alvarez, L. E., López-Beceiro, A. M., Pérez-López, M., & Martínez-Carballo, E. (2020). Non-invasive biomonitoring of organic pollutants using feather samples in feral pigeons (Columba livia domestica). Environmental Pollution, 267, 115672. https://doi.org/10.1016/j.envpol.2020.115672
  • González-Rubio, S., Ballesteros-Gómez, A., Asimakopoulos, A. G., & Jaspers, V. L. B. (2021). A review on contaminants of emerging concern in European raptors (2002–2020). The Science of the Total Environment, 760, 143337. https://doi.org/10.1016/j.scitotenv.2020.143337
  • Groffen, T., Lasters, R., Bervoets, L., Prinsen, E., & Eens, M. (2020). Are feathers of a songbird model species (The Great Tit, Parus major) suitable for monitoring perfluoroalkyl acids (PFAAs) in blood plasma? Environmental Science & Technology, 54(15), 9334–9344. https://doi.org/10.1021/acs.est.0c00652
  • Guthrie, R., & Susi, A. (1963). A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics, 32, 338–343.
  • Herzke, D., Nygård, T., Berger, U., Huber, S., & Røv, N. (2009). Perfluorinated and other persistent halogenated organic compounds in European shag (Phalacrocorax aristotelis) and common eider (Somateria mollissima) from Norway: A suburban to remote pollutant gradient. The Science of the Total Environment, 408(2), 340–348. https://doi.org/10.1016/j.scitotenv.2009.08.048
  • Holmström, K. E., & Berger, U. (2008). Tissue distribution of perfluorinated surfactants in common guillemot (Uria aalge) from the Baltic Sea. Environmental Science & Technology, 42(16), 5879–5884. https://doi.org/10.1021/es800529h
  • Holmström, K. E., Johansson, A. K., Bignert, A., Lindberg, P., & Berger, U. (2010). Temporal trends of perfluorinated surfactants in Swedish peregrine falcon eggs (Falco peregrinus), 1974-2007. Environmental Science & Technology, 44(11), 4083–4088. https://doi.org/10.1021/es100028f
  • Ito, A., Yamashita, R., Takada, H., Yamamoto, T., Shiomi, K., Zavalaga, C., Abe, T., Watanabe, S., Yamamoto, M., Sato, K., Kohno, H., Yoda, K., Iida, T., & Watanuki, Y. (2013). Contaminants in Tracked Seabirds Showing Regional Patterns of Marine Pollution. Environmental Science & Technology, 47(14), 7862–7867. https://doi.org/10.1021/es4014773
  • Jaspers, V. L. B., Voorspoels, S., Covaci, A., & Eens, M. (2006). Can predatory bird feathers be used as a non-destructive biomonitoring tool of organic pollutants? Biology Letters, 2(2), 283–285. https://doi.org/10.1098/rsbl.2006.0450
  • Jaspers, V. L. B., Voorspoels, S., Covaci, A., Lepoint, G., & Eens, M. (2007). Evaluation of the usefulness of bird feathers as a non-destructive biomonitoring tool for organic pollutants: A comparative and meta-analytical approach. Environment International, 33(3), 328–337. https://doi.org/10.1016/j.envint.2006.11.011
  • Jaspers, V. L. B., Covaci, A., Deleu, P., Neels, H., & Eens, M. (2008). Preen oil as the main source of external contamination with organic pollutants onto feathers of the common magpie (Pica pica). Environment International, 34(6), 741–748. https://doi.org/10.1016/j.envint.2007.12.002
  • Jaspers, V. L. B., Covaci, A., Herzke, D., Eulaers, I., & Eens, M. (2019). Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. Trends in Analytical Chemistry, 118, 223–226. https://doi.org/10.1016/j.trac.2019.05.019
  • Jaspers, V. L. B., Herzke, D., Eulaers, I., Gillespie, B. W., & Eens, M. (2013). Perfluoroalkyl substances in soft tissues and tail feathers of Belgian barn owls (Tyto alba) using statistical methods for left-censored data to handle non-detects. Environment International, 52, 9–16. https://doi.org/10.1016/j.envint.2012.11.002
  • Jones, P. D., Hu, W., De Coen, W., Newsted, J. L., & Giesy, J. P. (2003). Binding of perfluorinated fatty acids to serum proteins. Environmental Toxicology and Chemistry, 22(11), 2639–2649. https://doi.org/10.1897/02-553
  • King, A. S., & McLelland, J. (1975). Uropygial gland (preen gland or oil gland) and other cutaneous glands. In Outlines of avian anatomy (pp. 6–7). Balliere Tindall.
  • Lasters, R., Groffen, T., Lopez-Antia, A., Bervoets, L., & Eens, M. (2019). Variation in PFAA concentrations and egg parameters throughout the egg-laying sequence in a free-living songbird (the great tit, Parus major): Implications for biomonitoring studies. Environmental Pollution, 246, 237–248. https://doi.org/10.1016/j.envpol.2018.12.014
  • Leat, E. H. K., Bourgeon, S., Hanssen, S. A., Petersen, A., Strøm, H., Bjørn, T. H., Gabrielsen, G. W., Bustnes, J. O., Furness, R. W., Haarr, A., & Borgå, K. (2019). The effect of long-range transport, trophic position and diet specialization on legacy contaminant occurrence in great skuas, Stercorarius skua, breeding across the Northeast Atlantic. Environmental Pollution, 244, 55–65. https://doi.org/10.1016/j.envpol.2018.10.005
  • Leat, E. H. K., Bourgeon, S., Magnusdottir, E., Gabrielsen, G. W., Grecian, W. J., Hanssen, S. A., Olafsdottir, K., Petersen, A., Phillips, R. A., Strøm, H., Ellis, S., Fisk, A. T., Bustnes, J. O., Furness, R. W., & Borgå, K. (2013). Influence of wintering area on persistent organic pollutants in a breeding migratory seabird. Marine Ecology Progress Series, 491, 277–293. https://doi.org/10.3354/meps10455
  • Letcher, R. J., Bustnes, J. O., Dietz, R., Jenssen, B. M., Jørgensen, E. H., Sonne, C., Verreault, J., Vijayan, M. M., & Gabrielsen, G. W. (2010). Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. The Science of the Total Environment, 408(15), 2995–3043. https://doi.org/10.1016/j.scitotenv.2009.10.038
  • Lehner, A. F., Rumbeiha, W., Shlosberg, A., Stuart, K., Johnson, M., Domenech, R., & Langner, H. (2013). Diagnostic analysis of veterinary dried blood spots for toxic heavy metals exposure. Journal of Analytical Toxicology, 37(7), 406–422. https://doi.org/10.1093/jat/bkt048
  • Lehman-McKeeman, L. D. (2008). Absorption, distribution, and excretion of toxicants. In C. D. Klaassen (Ed.), Casarett & Doull’s toxicology: The basic science of poisons (pp. 131–159). McGraw Hill Medical.
  • Lewis, P. J., McGrath, T. J., Chiaradia, A., McMahon, C. R., Emmerson, L., Allinson, G., & Shimeta, J. (2020). A baseline for POPs contamination in Australian seabirds: Little penguins vs. short-tailed shearwaters. Marine Pollution Bulletin, 159, 111488. https://doi.org/10.1016/j.marpolbul.2020.111488
  • Lohmann, R., Breivik, K., Dachs, J., & Muir, D. (2007). Global fate of POPs: Current and future research directions. Environmental Pollution, 150(1), 150–165. https://doi.org/10.1016/j.envpol.2007.06.051
  • Løseth, M. E., Briels, N., Flo, J., Malarvannan, G., Poma, G., Covaci, A., Herzke, D., Nygård, T., Bustnes, J. O., Jenssen, B. M., & Jaspers, V. L. B. (2019). White-tailed eagle (Haliaeetus albicilla) feathers from Norway are suitable for monitoring of legacy, but not emerging contaminants. The Science of the Total Environment, 647(647), 525–533. https://doi.org/10.1016/j.scitotenv.2018.07.333
  • Mardon, J., Saunders, S. M., & Bonadonna, F. (2011). From preen secretions to plumage: The chemical trajectory of blue petrels’ Halobaena caerulea social scent. Journal of Avian Biology, 42(1), 29–38. https://doi.org/10.1111/j.1600-048X.2010.05113.x
  • Martínez-López, E., María-Mojica, P., Martínez, J. E., Calvo, J. F., Wright, J., Shore, R. F., Romero, D., & García-Fernández, A. J. (2007). Organochlorine residues in booted eagle (Hieraaetus pennatus) and goshawk (Accipiter gentilis) eggs from southeastern Spain. Environmental Toxicology and Chemistry, 26(11), 2373–2378. https://doi.org/10.1897/07-057R.1
  • Matache, M. L., Hura, C., & David, I. G. (2016). Non-invasive monitoring of organohalogen compounds in eggshells and feathers of birds from the Lower Prut Floodplain Natural Park in Romania. Procedia Environmental Sciences, 32, 49–58. https://doi.org/10.1016/j.proenv.2016.03.011
  • Meyer, J., Jaspers, V. L. B., Eens, M., & de Coen, W. (2009). The relationship between perfluorinated chemical levels in the feathers and livers of birds from different trophic levels. Science of the Total Environment, 407(22), 5894–5900. https://doi.org/10.1016/j.scitotenv.2009.07.032
  • Monclús, L., Lopez-Bejar, M., De la Puente, J., Covaci, A., & Jaspers, V. L. B. (2018). First evaluation of the use of down feathers for monitoring persistent organic pollutants and organophosphate ester flame retardants: A pilot study using nestlings of the endangered cinereous vulture (Aegypius monachus). Environmental Pollution, 238, 413–420. https://doi.org/10.1016/j.envpol.2018.03.065
  • Morganti, M., Polesello, S., Pascariello, S., Ferrario, C., Rubolini, D., Valsecchi, S., & Parolini, M. (2021). Exposure assessment of PFAS-contaminated sites using avian eggs as a biomonitoring tool: A frame of reference and a case study in the Po River valley (Northern Italy). Integrated Environmental Assessment and Management, 17(4), 733–745. https://doi.org/10.1002/ieam.4417
  • Muñoz-Arnanz, J., Sáez, M., Aguirre, J. I., Hiraldo, F., Baos, R., Pacepavicius, G., Alaee, M., & Jiménez, B. (2011). Predominance of BDE-209 and other higher brominated diphenyl ethers in eggs of white stork (Ciconia ciconia) colonies from Spain. Environment International, 37(3), 572–576. https://doi.org/10.1016/j.envint.2010.11.013
  • Ohlendorf, H. M., & Fleming, W. J. (1988). Birds and environmental contaminants in San Francisco and Chesapeake Bays. Marine Pollution Bulletin, 19(9), 487–495. https://doi.org/10.1016/0025-326X(88)90405-5
  • Olsson, A., Ceder, K., Bergman, A., & Helander, B. (2000). Nestling blood of the white-tailed sea eagle (Haliaeetus albicilla) as an indicator of territorial exposure to organohalogen compounds: An evaluation. Environmental Science & Technology, 34(13), 2733–2740. https://doi.org/10.1021/es991426k
  • Ortiz-Santaliestra, M. E., Resano-Mayor, J., Hernández-Matías, A., Rodríguez-Estival, J., Camarero, P. R., Moleón, M., Real, J., & Mateo, R. (2015). Pollutant accumulation patterns in nestlings of an avian top predator: Biochemical and metabolic effects. The Science of the Total Environment, 538, 692–702. https://doi.org/10.1016/j.scitotenv.2015.08.053
  • Pacyna, A. D., Jakubas, D., Ausems, A. N. M. A., Frankowski, M., Polkowska, Ż., & Wojczulanis-Jakubas, K. (2019). Storm petrels as indicators of pelagic seabird exposure to chemical elements in the Antarctic marine ecosystem. The Science of the Total Environment, 692, 382–392. https://doi.org/10.1016/j.scitotenv.2019.07.137
  • Pacyna-Kuchta, A. D., Jakubas, D., Frankowski, M., Polkowska, Ż., & Wojczulanis-Jakubas, K. (2020). Exposure of a small Arctic seabird, the little auk (Alle alle) breeding in Svalbard, to selected elements throughout the course of a year. The Science of the Total Environment, 732, 139103. https://doi.org/10.1016/j.scitotenv.2020.139103
  • Peakall, D. B. (1974). DDE: Its presence in Peregrine eggs in 1948. Science, 183(4125), 673–674. https://doi.org/10.1126/science.183.4125.673
  • Pereira, M. G., Lacorte, S., Walker, L. A., & Shore, R. F. (2021). Contrasting long term temporal trends in perfluoroalkyl substances (PFAS) in eggs of the northern gannet (Morus bassanus) from two UK colonies. The Science of the Total Environment, 754, 141900. https://doi.org/10.1016/j.scitotenv.2020.141900
  • Perkins, C. R., & Barclay, J. S. (1997). Accumulation and mobilization of organochlorine contaminants in wintering greater scaup. Journal of Wildlife Management, 61(2), 444–449. https://doi.org/10.2307/3802602
  • Perkins, M., & Basu, N. (2018). Dried blood spots for estimating mercury exposure in birds. Environmental Pollution, 236, 236–246. https://doi.org/10.1016/j.envpol.2018.01.036
  • Pittman, H. T., Bowerman, W. W., Grim, L. H., Grubb, T. G., Bridges, W. C., & Wierda, M. R. (2015). Using nestling plasma to assess long-term spatial and temporal concentrations of organochlorine compounds in bald eagles within Voyageurs National Park, Minnesota, USA. Chemosphere, 123, 79–86. https://doi.org/10.1016/j.chemosphere.2014.12.043
  • Rawles, M. E. (1960). The uropygial gland. In A. J. Marshall (Ed.), Biology and comparative physiology of birds (pp. 211–212). Academic Press.
  • Reynolds, K. D., Skipper, S. L., Cobb, G. P., & McMurry, S. T. (2004). Relationship between DDE concentrations and laying sequence in eggs of two passerine species. Archives of Environmental Contamination and Toxicology, 47(3), 336–340. https://doi.org/10.1007/s00244-004-3157-3
  • Sagerup, K., Helgason, L. B., Polder, A., Strøm, H., Josefsen, T. D., Skåre, J. U., & Gabrielsen, G. W. (2009). Persistent organic pollutants and mercury in dead and dying glaucous gulls (Larus hyperboreus) at Bjørnøya (Svalbard). The Science of the Total Environment, 407(23), 6009–6016. https://doi.org/10.1016/j.scitotenv.2009.08.020
  • Sandilands, V., Powell, K., Keeling, L., & Savory, C. J. (2004). Preen gland function in layer fowls: Factors affecting preen oil fatty acid composition. British Poultry Science, 45(1), 109–115. https://doi.org/10.1080/00071660410001668932
  • Shlosberg, A., Wu, Q., Rumbeiha, W. K., Lehner, A., Cuneah, O., King, R., Hatzofe, O., Kannan, K., & Johnson, M. (2012). Examination of Eurasian griffon vultures (Gyps fulvus fulvus) in Israel for exposure to environmental toxicants using dried blood spots. Archives of Environmental Contamination and Toxicology, 62(3), 502–511. https://doi.org/10.1007/s00244-011-9709-4
  • Soini, H. A., Whittaker, D. J., Wiesler, D., Ketterson, E. D., & Novotny, M. V. (2013). Chemosignaling diversity in songbirds: Chromatographic profiling of preen oil volatiles in different species. Journal of Chromatography. A, 1317, 186–192. https://doi.org/10.1016/j.chroma.2013.08.006
  • Solheim, S. A., Sagerup, K., Huber, S., Byrkjedal, I., & Gabrielsen, G. W. (2016). The black-legged kittiwake preen gland—An overlooked organ for depuration of fat-soluble contaminants? Polar Research, 35(1), 29651. https://doi.org/10.3402/polar.v35.29651
  • Sonne, C., Bustnes, J. O., Herzke, D., Jaspers, V. L. B., Covaci, A., Halley, D. J., Moum, T., Eulaers, I., Eens, M., Ims, R. A., Hanssen, S. A., Erikstad, K. E., Johnsen, T., Schnug, L., Riget, F. F., & Jensen, A. L. (2010). Relationships between organohalogen contaminants and blood plasma clinical-chemical parameters in chicks of three raptor species from Northern Norway. Ecotoxicology and Environmental Safety, 73(1), 7–17. https://doi.org/10.1016/j.ecoenv.2009.08.017
  • Sonne, C., Riget, F. F., Leat, E. H. K., Bourgeon, S., Borgå, K., Strøm, H., Hanssen, S. A., Gabrielsen, G. W., Petersen, A., Olafsdottir, K., Magnusdottir, E., Bustnes, J. O., Furness, R. W., & Kjelgaard-Hansen, M. (2013). Organohalogen contaminants and blood plasma clinical-chemical parameters in three colonies of North Atlantic Great skua (Stercorarius skua. )Ecotoxicology and Environmental Safety, 92, 245–251. https://doi.org/10.1016/j.ecoenv.2013.02.012
  • Souza, J. S., Pacyna-Kuchta, A. D., Schmauder Teixeira da Cunha, L., Schneider Costa, E., Niedzielski, P., & Machado Torres, J. P. (2021). Interspecific and intraspecific variation in organochlorine pesticides and polychlorinated biphenyls using non-destructive samples from Pygoscelis penguins. Environmental Pollution, 275, 116590. https://doi.org/10.1016/j.envpol.2021.116590
  • Su, G., Letcher, R. J., Moore, J. N., Williams, L. L., Martin, P. A., de Solla, S. R., & Bowerman, W. W. (2015). Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States. Environmental Research, 142, 720–730. https://doi.org/10.1016/j.envres.2015.08.018
  • Sun, J., Bossi, R., Bustnes, J. O., Helander, B., Boertmann, D., Dietz, R., Herzke, D., Jaspers, V. L. B., Labansen, A. L., Lepoint, G., Schulz, R., Sonne, C., Thorup, K., Tøttrup, A. P., Zubrod, J. P., Eens, M., & Eulaers, I. (2019). White-tailed eagle (Haliaeetus albicilla) body feathers document spatiotemporal trends of perfluoroalkyl substances in the northern environment. Environ. Environmental Science & Technology, 53(21), 12744–12753. https://doi.org/10.1021/acs.est.9b03514
  • Svendsen, N. B., Herzke, D., Harju, M., Bech, C., Gabrielsen, G. W., & Jaspers, V. L. B. (2018). Persistent organic pollutants and organophosphate esters in feathers and blood plasma of adult kittiwakes (Rissa tridactyla) from Svalbard—Associations with body condition and thyroid hormones. Environmental Research, 164, 158–164. https://doi.org/10.1016/j.envres.2018.02.012
  • Tartu, S., Gabrielsen, G. W., Blevin, P., Ellis, H., Bustnes, J. O., Herzke, D., & Chastel, O. (2014). Endocrine and fitness correlates of long-chain perfluorinated carboxylates exposure in arctic breeding black-legged kittiwakes. Environmental Science & Technology, 48(22), 13504–13510. https://doi.org/10.1021/es503297n
  • Thorstensen, H., Ruus, A., Helberg, M., Baek, K., Enge, E. K., & Borgå, K. (2021). Common eider and herring gull as contaminant indicators of different ecological niches of an urban fjord system. Integrated Environmental Assessment and Management, 17(2), 402–412. https://doi.org/10.1002/ieam.4340
  • Van den Steen, E., Dauwe, T., Covaci, A., Jaspers, V. L. B., Pinxten, R., & Eens, M. (2006). Within-and among-clutch variation of organohalogenated contaminants in eggs of great tits (Parus major. Environmental Pollution, 144(1), 355–359. https://doi.org/10.1016/j.envpol.2005.10.053
  • Van den Steen, E., Covaci, A., Jaspers, V. L. B., Dauwe, T., Voorspoels, S., Eens, M., & Pinxten, R. (2007). Experimental evaluation of the usefulness of feathers as a non-destructive biomonitor for polychlorinated biphenyls (PCBs) using silastic implants as a novel method of exposure. Environment International, 33(2), 257–264. https://doi.org/10.1016/j.envint.2006.09.018
  • Van den Steen, E., Jaspers, V. L. B., Covaci, A., Neels, H., Eens, M., & Pinxten, R. (2009). Maternal transfer of organochlorines and brominated flame retardants in blue tits (Cyanistes caeruleus). Environment International, 35(1), 69–75. https://doi.org/10.1016/j.envint.2008.08.003
  • Verreault, J., Houde, M., Gabrielsen, G. W., Berger, U., Haukås, M., Letcher, R. J., & Muir, D. C. G. (2005). Perfluorinated alkyl substances in plasma, liver, brain, and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian Arctic. Environmental Science & Technology, 39(19), 7439–7445. https://doi.org/10.1021/es051097y
  • Verreault, J., Villa, R. A., Gabrielsen, G. W., Skaare, J. U., & Letcher, R. J. (2006). Maternal transfer of organohalogen contaminants and metabolites to eggs of Arctic-breeding glaucous gulls. Environmental Pollution, 144(3), 1053–1060. https://doi.org/10.1016/j.envpol.2005.10.055
  • Vicente, J., Sanpera, C., García-Tarrasón, M., Pérez, A., & Lacorte, S. (2015). Perfluoroalkyl and polyfluoroalkyl substances in entire clutches of Audouin’s gulls from the ebro delta. Chemosphere, 119, S62–S68. https://doi.org/10.1016/j.chemosphere.2014.04.041
  • Warner, N. A., Sagerup, K., Kristoffersen, S., Herzke, D., Gabrielsen, G. W., & Jenssen, B. M. (2019). Snow buntings (Plectrophenax nivealis) as bio-indicators for exposure differences to legacy and emerging persistent organic pollutants from the Arctic terrestrial environment on Svalbard. The Science of the Total Environment, 667, 638–647. https://doi.org/10.1016/j.scitotenv.2019.02.351
  • Wang, J., Caccamise, S. A. L., Woodward, L. A., & Li, Q. X. (2015). Polychlorinated biphenyls in the plasma and preen oil of black-footed albatross (Diomedea nigripes) chicks and adults on Midway Atoll, North Pacific Ocean. PLoS One, 10(4), e0123041. https://doi.org/10.1371/journal.pone.0123041
  • Wang, F., Zhao, C., Gao, Y., Fu, J., Gao, K., Lv, K., Wang, K., Yue, H., Lan, X., Liang, Y., Wang, Y., & Jiang, G. (2019). Protein-specific distribution patterns of perfluoroalkyl acids in egg yolk and albumen samples around a fluorochemical facility. The Science of the Total Environment, 650(Pt 2), 2697–2704. https://doi.org/10.1016/j.scitotenv.2018.10.006
  • Yamashita, R., Takada, H., Murakami, M., Fukuwaka, M.-A., & Watanuki, Y. (2007). Evaluation of noninvasive approach for monitoring PCB pollution of seabirds using preen gland oil. Environmental Science & Technology, 41(14), 4901–4906. https://doi.org/10.1021/es0701863
  • Yamashita, R., Takada, H., Nakazawa, A., Takahashi, A., Ito, M., Yamamoto, T., Watanabe, Y. Y., Kokubun, N., Sato, K., Wanless, S., Daunt, F., Hyrenbach, D., Hester, M., Deguchi, T., Nishizawa, B., Shoji, A., & Watanuki, Y. (2018). Global monitoring of persistent organic pollutants (POPs) using seabird preen gland oil. Archives of Environmental Contamination and Toxicology, 75(4), 545–556. https://doi.org/10.1007/s00244-018-0557-3
  • Zhao, Z., Li, Q., Ni, C., & Zhang, L. (2019). Non-destructive bioindicator of little egret (egretta garzetta) to assess the pollution of highly toxic organic pollutants in Poyang Lake wetland. Wetlands, 39(S1), 137–150. https://doi.org/10.1007/s13157-017-0978-1