422
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Sources, intensities, and implications of subsurface warming in times of climate change

ORCID Icon, ORCID Icon & ORCID Icon
Pages 700-722 | Published online: 27 Jun 2022

References

  • Adam, D., & Markiewicz, R. (2009). Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique, 59(3), 229–236. https://doi.org/10.1680/geot.2009.59.3.229
  • Adjali, M., Davies, M., Riain, C. N., & Littler, J. (2000). In situ measurements and numerical simulation of heat transfer beneath a heated ground floor slab. Energy and Buildings, 33(1), 75–83. https://doi.org/10.1016/S0378-7788(00)00067-0
  • Agudelo-Vera, C., Avvedimento, S., Boxall, J., Creaco, E., de Kater, H., Di Nardo, A., Djukic, A., Douterelo, I., Fish, K. E., Iglesias Rey, P. L., Jacimovic, N., Jacobs, H. E., Kapelan, Z., Martinez Solano, J., Montoya Pachongo, C., Piller, O., Quintiliani, C., Ručka, J., Tuhovčák, L., & Blokker, M. (2020). Drinking water temperature around the globe: understanding, policies, challenges and opportunities. Water, 12(4), 1049. https://doi.org/10.3390/w12041049
  • Agudelo-Vera, C. M., Blokker, M., de Kater, H., & Lafort, R. (2017). Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system. Drinking Water Engineering and Science, 10(2), 83–91. https://doi.org/10.5194/dwes-10-83-2017
  • Ampofo, F., Maidment, G., & Missenden, J. (2006). Review of groundwater cooling systems in London. Applied Thermal Engineering, 26(17-18), 2055–2062. https://doi.org/10.1016/j.applthermaleng.2006.02.013
  • Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K., & Rogelj, J. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group 14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary.
  • Arola, T., & Korkka-Niemi, K. (2014). The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland. Hydrogeology Journal, 22(8), 1953–1967. https://doi.org/10.1007/s10040-014-1174-5
  • Attard, G., Bayer, P., Rossier, Y., Blum, P., & Eisenlohr, L. (2020). A novel concept for managing thermal interference between geothermal systems in cities. Renewable Energy, 145, 914–924. https://doi.org/10.1016/j.renene.2019.06.095
  • Attard, G., Rossier, Y., Winiarski, T., & Eisenlohr, L. (2016). Deterministic modeling of the impact of underground structures on urban groundwater temperature. The Science of the Total Environment, 572, 986–994. https://doi.org/10.1016/j.scitotenv.2016.07.229
  • Attard, G., Winiarski, T., Rossier, Y., & Eisenlohr, L. (2016). Impact of underground structures on the flow of urban groundwater. Hydrogeology Journal, 24(1), 5–19. https://doi.org/10.1007/s10040-015-1317-3
  • Bai, Y., Wang, Z., Fan, J., Yang, M., Li, X., Chen, L., Yuan, G., & Yang, J. (2020). Numerical and experimental study of an underground water pit for seasonal heat storage. Renewable Energy, 150, 487–508. https://doi.org/10.1016/j.renene.2019.12.080
  • Barla, M., & Di Donna, A. (2018). Energy tunnels: concept and design aspects. Underground Space, 3(4), 268–276. https://doi.org/10.1016/j.undsp.2018.03.003
  • Bartram, J., Chartier, Y., Lee, J. V., Pond, K., & Surman-Lee, S. (2007). Legionella and the prevention of legionellosis. World Health Organization.
  • Bauer, D., Heidemann, W., & Müller-Steinhagen, H. (2008). Solar unterstützte Nahwärmeversorgung: Langzeiterfahrungen der Anlage in Friedrichshafen. In Proceedings Tagungsband 18. Symposium Thermische Solarenergie, OTTI Regensburg, p. 532–537.
  • Bayer, P., Attard, G., Blum, P., & Menberg, K. (2019). The geothermal potential of cities. Renewable and Sustainable Energy Reviews, 106, 17–30. https://doi.org/10.1016/j.rser.2019.02.019
  • Becker, D., & Epting, J. (2021). Thermischer Einfluss urbaner Untergrundstrukturen auf die Grundwassertemperaturen im Kanton Basel-Stadt. Grundwasser 26(3), 269–220. https://doi.org/10.1007/s00767-021-00483-1
  • Bense, V. F., Kurylyk, B. L., Bruin, J. G. H., & Visser, P. (2020). Repeated subsurface thermal profiling to reveal temporal variability in deep groundwater flow conditions. Water Resources Research, 56(6), e2019WR026913. https://doi.org/10.1029/2019WR026913
  • Benz, S. A., Bayer, P., & Blum, P. (2017). Global patterns of shallow groundwater temperatures. Environmental Research Letters, 12(3), 034005. https://doi.org/10.1088/1748-9326/aa5fb0
  • Benz, S. A., Bayer, P., Blum, P., Hamamoto, H., Arimoto, H., & Taniguchi, M. (2018). Comparing anthropogenic heat input and heat accumulation in the subsurface of Osaka, Japan. The Science of the Total Environment, 643, 1127–1136. https://doi.org/10.1016/j.scitotenv.2018.06.253
  • Benz, S. A., Bayer, P., Menberg, K., Jung, S., & Blum, P. (2015). Spatial resolution of anthropogenic heat fluxes into urban aquifers. Science of the Total Environment 524-525, 427–439. https://doi.org/10.1016/j.scitotenv.2015.04.003
  • Benz, S. A., Bayer, P., Winkler, G., & Blum, P. (2018). Recent trends of groundwater temperatures in Austria. Hydrology and Earth System Sciences, 22(6), 3143–3154. https://doi.org/10.5194/hess-22-3143-2018
  • Beyer, C., Popp, S., & Bauer, S. (2016). Simulation of temperature effects on groundwater flow, contaminant dissolution, transport and biodegradation due to shallow geothermal use. Environmental Earth Sciences, 75(18), 1–20. https://doi.org/10.1007/s12665-016-5976-8
  • Bidarmaghz, A., Choudhary, R., Soga, K., Kessler, H., Terrington, R. L., & Thorpe, S. (2019). Influence of geology and hydrogeology on heat rejection from residential basements in urban areas. Tunnelling and Underground Space Technology, 92, 103068. https://doi.org/10.1016/j.tust.2019.103068
  • Bidarmaghz, A., Choudhary, R., Soga, K., Terrington, R. L., Kessler, H., & Thorpe, S. (2020). Large-scale urban underground hydro-thermal modelling: A case study of the Royal Borough of Kensington and Chelsea, London. The Science of the Total Environment, 700, 134955. https://doi.org/10.1016/j.scitotenv.2019.134955
  • Bloomfield, J. P., Jackson, C. R., & Stuart, M. E. (2013). Changes in groundwater levels, temperature and quality in the UK over the 20th century: an assessment of evidence of impacts from climate change.
  • Blum, P., Menberg, K., Koch, F., Benz, S. A., Tissen, C., Hemmerle, H., & Bayer, P. (2021). Is thermal use of groundwater a pollution? Journal of Contaminant Hydrology, 239, 103791. https://doi.org/10.1016/j.jconhyd.2021.103791
  • Bodmann, M., & Fisch, M. (2004). Solar unterstützte Nahwärmeversorgung-Pilotprojekte Hamburg, Hannover und Steinfurt. In Proceedings FKS-Symposium: FKS-Forschungskreis Solarenergie TU Braunschweig, Braunschweig, vol. 17.
  • Bonte, M., Stuyfzand, P., Van den Berg, G., & Hijnen, W. (2011). Effects of aquifer thermal energy storage on groundwater quality and the consequences for drinking water production: a case study from the Netherlands. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 63(9), 1922–1931. https://doi.org/10.2166/wst.2011.189
  • Bonte, M., van Breukelen, B. M., & Stuyfzand, P. J. (2013). Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Research, 47(14), 5088–5100. https://doi.org/10.1016/j.watres.2013.05.049
  • Bott, C., Dressel, I., & Bayer, P. (2019). State-of-technology review of water-based closed seasonal thermal energy storage systems. Renewable and Sustainable Energy Reviews, 113, 109241. https://doi.org/10.1016/j.rser.2019.06.048
  • Brandl, H. (2006). Energy foundations and other thermo-active ground structures. Géotechnique, 56(2), 81–122. https://doi.org/10.1680/geot.2006.56.2.81
  • Brielmann, H., Griebler, C., Schmidt, S. I., Michel, R., & Lueders, T. (2009). Effects of thermal energy discharge on shallow groundwater ecosystems.
  • Brielmann, H., Lueders, T., Schreglmann, K., Ferraro, F., Avramov, M., Hammerl, V., Blum, P., Bayer, P., & Griebler, C. (2011). Oberflächennahe Geothermie und ihre potenziellen Auswirkungen auf Grundwasserökosysteme: Grundwasser. Grundwasser, 16(2), 77–91. https://doi.org/10.1007/s00767-011-0166-9
  • Brinks, P., Kornadt, O., & Oly, R. (2014). Thermal losses via large slabs on grade. in Proceedings the 2nd Asia Conference of International Building Performance Simulation Association, Nagoya, p. 427–434.
  • Bucci, A., Barbero, D., Lasagna, M., Forno, M. G., & De Luca, D. A. (2017). Shallow groundwater temperature in the Turin area (NW Italy): vertical distribution and anthropogenic effects. Environmental Earth Sciences, 76(5), 221. https://doi.org/10.1007/s12665-017-6546-4
  • Čermák, V., Bodri, L., Kresl, M., Dedecek, P., & Safanda, J. (2017). Eleven years of ground–air temperature tracking over different land cover types. International Journal of Climatology, 37(2), 1084–1099. https://doi.org/10.1002/joc.4764
  • Čermák, V., Bodri, L., Šafanda, J., Krešl, M., & Dědeček, P. (2014). Ground-air temperature tracking and multi-year cycles in the subsurface temperature time series at geothermal climate-change observatory. Studia Geophysica et Geodaetica, 58(3), 403–424. https://doi.org/10.1007/s11200-013-0356-2
  • Chapuis, R. P. (2010). Using a leaky swimming pool for a huge falling-head permeability test. Engineering Geology, 114(1-2), 65–70. https://doi.org/10.1016/j.enggeo.2010.04.004
  • Cheon, J.-Y., Ham, B.-S., Lee, J.-Y., Park, Y., & Lee, K.-K. (2014). Soil temperatures in four metropolitan cities of Korea from 1960 to 2010: implications for climate change and urban heat. Environmental Earth Sciences, 71(12), 5215–5230. https://doi.org/10.1007/s12665-013-2924-8
  • Cipolla, S. S., & Maglionico, M. (2014). Heat recovery from urban wastewater: Analysis of the variability of flow rate and temperature. Energy and Buildings, 69, 122–130. https://doi.org/10.1016/j.enbuild.2013.10.017
  • Coccia, C. J., Gupta, R., Morris, J., & McCartney, J. S. (2013). Municipal solid waste landfills as geothermal heat sources. Renewable and Sustainable Energy Reviews, 19, 463–474. https://doi.org/10.1016/j.rser.2012.07.028
  • Dernbach, H. (1982). Versuche zur Abschätzung des Gaspotentials einer Deponie anhand von Müllproben: Veröffentlichung des Instituts für Stadtbauwesen. Gas-und Wasserhaushalt von Mülldeponien, 33, S 447.
  • Di Donna, A., Loveridge, F., Piemontese, M., & Barla, M. (2021). The role of ground conditions on the heat exchange potential of energy walls. Geomechanics for Energy and the Environment, 25, 100199. https://doi.org/10.1016/j.gete.2020.100199
  • Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., Stefan, C., Pettenati, M., van der Gun, J., Sprenger, C., Massmann, G., Scanlon, B. R., Xanke, J., Jokela, P., Zheng, Y., … Sapiano, M. (2019). Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal, 27(1), 1–30. https://doi.org/10.1007/s10040-018-1841-z
  • Dolna, O., & Mikielewicz, J. (2020). The ground impact on the ultra-low and low-temperature district heating operation. Renewable Energy, 146, 1232–1241. https://doi.org/10.1016/j.renene.2019.07.048
  • Eggleston, J., & McCoy, K. J. (2015). Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA. Hydrogeology Journal, 23(1), 105–120. https://doi.org/10.1007/s10040-014-1189-y
  • Epting, J., Baralis, M., Künze, R., Mueller, M. H., Insana, A., Barla, M., & Huggenberger, P. (2020). Geothermal potential of tunnel infrastructures – Development of tools at the city-scale of Basel, Switzerland. Geothermics, 83, 101734. https://doi.org/10.1016/j.geothermics.2019.101734
  • Epting, J., Böttcher, F., Mueller, M. H., García-Gil, A., Zosseder, K., & Huggenberger, P. (2020). City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials. Renewable Energy, 147, 751–763. https://doi.org/10.1016/j.renene.2019.09.021
  • Epting, J., García-Gil, A., Huggenberger, P., Vázquez-Suñe, E., & Mueller, M. H. (2017). Development of concepts for the management of thermal resources in urban areas – Assessment of transferability from the Basel (Switzerland) and Zaragoza (Spain) case studies. Journal of Hydrology, 548, 697–715. https://doi.org/10.1016/j.jhydrol.2017.03.057
  • Epting, J., Händel, F., & Huggenberger, P. (2013). Thermal management of an unconsolidated shallow urban groundwater body. Hydrology and Earth System Sciences, 17(5), 1851–1869. https://doi.org/10.5194/hess-17-1851-2013
  • Epting, J., & Huggenberger, P. (2013). Unraveling the heat island effect observed in urban groundwater bodies – Definition of a potential natural state. Journal of Hydrology, 501, 193–204. https://doi.org/10.1016/j.jhydrol.2013.08.002
  • Epting, J., Scheidler, S., Affolter, A., Borer, P., Mueller, M. H., Egli, L., García-Gil, A., & Huggenberger, P. (2017). The thermal impact of subsurface building structures on urban groundwater resources – A paradigmatic example. Science of the Total Environment 596-597, 87–96. https://doi.org/10.1016/j.scitotenv.2017.03.296
  • Felix, M., Sohr, A., Riedel, P., Assmann, L. (2009). Kurzbericht zu den Forschungsberichten 2005 bis 2007 zur Thematik Gefährdungspotenzial Steinkohlenhalden Zwickau/Oelsnitz.
  • Ferguson, G., & Woodbury, A. D. (2004). Subsurface heat flow in an urban environment. Journal of Geophysical Research: Solid Earth, 109(B2) https://doi.org/10.1029/2003JB002715
  • Ferguson, G., & Woodbury, A. D. (2007). Urban heat island in the subsurface. Geophysical Research Letters, 34(23), n/a–n/a. https://doi.org/10.1029/2007GL032324
  • Figura, S., Livingstone, D. M., Hoehn, E., & Kipfer, R. (2011). Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophysical Research Letters, 38(23), n/a–n/a. https://doi.org/10.1029/2011GL049749
  • Figura, S., Livingstone, D. M., & Kipfer, R. (2015). Forecasting groundwater temperature with linear regression models using historical data. Ground Water, 53(6), 943–954. https://doi.org/10.1111/gwat.12289
  • Fischer, D., Charles, E. G., & Baehr, A. L. (2003). Effects of stormwater infiltration on quality of groundwater beneath retention and detention basins. Journal of Environmental Engineering, 129(5), 464–471. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:5(464)
  • Fleuchaus, P., Godschalk, B., Stober, I., & Blum, P. (2018). Worldwide application of aquifer thermal energy storage – A review. Renewable and Sustainable Energy Reviews, 94, 861–876. https://doi.org/10.1016/j.rser.2018.06.057
  • Ford, M., & Tellam, J. (1994). Source, type and extent of inorganic contamination within the Birmingham urban aquifer system, UK. Journal of Hydrology, 156(1-4), 101–135. https://doi.org/10.1016/0022-1694(94)90074-4
  • Foulquier, A., Malard, F., Barraud, S., & Gibert, J. (2009). Thermal influence of urban groundwater recharge from stormwater infiltration basins: Hydrological Processes. Hydrological Processes, 23(12), 1701–1713. https://doi.org/10.1002/hyp.7305
  • Founda, D., & Santamouris, M. (2017). Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-11407-6
  • García-Gil, A., Gasco-Cavero, S., Garrido, E., Mejías, M., Epting, J., Navarro-Elipe, M., Alejandre, C., & Sevilla-Alcaine, E. (2018). Decreased waterborne pathogenic bacteria in an urban aquifer related to intense shallow geothermal exploitation. The Science of the Total Environment, 633, 765–775. https://doi.org/10.1016/j.scitotenv.2018.03.245
  • García-Gil, A., Mejías Moreno, M., Garrido Schneider, E., Marazuela, M. Á., Abesser, C., Mateo Lázaro, J., & Sánchez Navarro, J. Á. (2020). Nested shallow geothermal systems. Sustainability, 12(12), 5152. https://doi.org/10.3390/su12125152
  • García-Gil, A., Schneider, E. G., Mejías, M., Barceló, D., Vázquez-Suñé, E., & Díaz-Cruz, S. (2018). Occurrence of pharmaceuticals and personal care products in the urban aquifer of Zaragoza (Spain) and its relationship with intensive shallow geothermal energy exploitation. Journal of Hydrology, 566, 629–642. https://doi.org/10.1016/j.jhydrol.2018.09.066
  • Griebler, C., Brielmann, H., Haberer, C. M., Kaschuba, S., Kellermann, C., Stumpp, C., Hegler, F., Kuntz, D., Walker-Hertkorn, S., & Lueders, T. (2016). Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environmental Earth Sciences, 75(20), 1–18. https://doi.org/10.1007/s12665-016-6207-z
  • Grillo, R. J. (2014). Energy recycling – Landfill waste heat generation and recovery. Current Sustainable/Renewable Energy Reports, 1(4), 150–156. https://doi.org/10.1007/s40518-014-0017-2
  • Gunawardhana, L. N., & Kazama, S. (2011). Climate change impacts on groundwater temperature change in the Sendai plain, Japan. Hydrological Processes, 25(17), 2665–2678. https://doi.org/10.1002/hyp.8008
  • Gunawardhana, L. N., & Kazama, S. (2012). Statistical and numerical analyses of the influence of climate variability on aquifer water levels and groundwater temperatures: The impacts of climate change on aquifer thermal regimes. Global and Planetary Change, 86-87, 66–78. https://doi.org/10.1016/j.gloplacha.2012.02.006
  • Hähnlein, S., Bayer, P., & Blum, P. (2010). International legal status of the use of shallow geothermal energy. Renewable and Sustainable Energy Reviews, 14(9), 2611–2625. https://doi.org/10.1016/j.rser.2010.07.069
  • Harris, R. N., & Chapman, D. S. (1997). Borehole temperatures and a baseline for 20th-century global warming estimates. Science (New York, N.Y.), 275(5306), 1618–1621. https://doi.org/10.1126/science.275.5306.1618
  • Hartog, N., Drijver, B., Dinkla, I., & Bonte, M. (2013). Field assessment of the impacts of Aquifer Thermal Energy Storage (ATES) systems on chemical and microbial groundwater composition. in Proceedings Proceedings of the European Geothermal Conference, p. 3–7.
  • He, X., Yang, X., Luo, Z., & Guan, T. (2020). Application of unmanned aerial vehicle (UAV) thermal infrared remote sensing to identify coal fires in the Huojitu coal mine in Shenmu city, China. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-70964-5
  • Helbig, U., & Weidlich, I. (2018). Wärme-und Kälteschutz bei Rohrleitungen, Rohrleitungen 2, p. 885–931. Springer.
  • Hemmerle, H., Hale, S., Dressel, I., Benz, S. A., Attard, G., Blum, P., & Bayer, P. (2019). Estimation of groundwater temperatures in Paris, France. Geofluids, 2019, 5246307. https://doi.org/10.1155/2019/5246307
  • Hemmerle, H., & Bayer, P. (2020). Climate change yields groundwater warming in Bavaria, Germany. Frontiers in Earth Science, 8, 523. https://doi.org/10.3389/feart.2020.575894
  • Henning, A. (2016). Untersuchung und Bewertung der Veränderung des Temperaturfeldes in Berlin im Umfeld des Fehrbelliner Platzes im Stadtteil Wilmersdorf.
  • Henning, A., & Limberg, A. (2012). Veränderung des oberflächennahen Temperaturfeldes von Berlin durch Klimawandel und Urbanisierung: Brandenburgische Geowiss. Beitr, 19(1), 81–92.
  • Hepbasli, A. (2012). Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies. Renewable and Sustainable Energy Reviews, 16(1), 73–104. https://doi.org/10.1016/j.rser.2011.07.138
  • Janssen, H., Carmeliet, J., & Hens, H. (2004). The influence of soil moisture transfer on building heat loss via the ground. Building and Environment, 39(7), 825–836. https://doi.org/10.1016/j.buildenv.2004.01.004
  • Kammen, D. M., & Sunter, D. A. (2016). City-integrated renewable energy for urban sustainability. Science (New York, N.Y.), 352(6288), 922–928. https://doi.org/10.1126/science.aad9302
  • Koch, F., Menberg, K., Schweikert, S., Spengler, C., Hahn, H. J., & Blum, P. (2021). Groundwater fauna in an urban area: natural or affected? Hydrology and Earth System Sciences Discussions, 25, 3053–3070.
  • Korneva, I., & Lokoshchenko, M. (2015). Soil temperature in Moscow and its contemporary variations. Russian Meteorology and Hydrology, 40(1), 25–33. https://doi.org/10.3103/S1068373915010045
  • Krcmar, D., Flakova, R., Ondrejkova, I., Hodasova, K., Rusnakova, D., Zenisova, Z., & Zatlakovic, M. (2020). Assessing the impact of a heated basement on groundwater temperatures in Bratislava, Slovakia. Ground Water, 58(3), 406–412. https://doi.org/10.1111/gwat.12986
  • Kretschmer, F., Simperler, L., & Ertl, T. (2016). Analysing wastewater temperature development in a sewer system as a basis for the evaluation of wastewater heat recovery potentials. Energy and Buildings, 128, 639–648. https://doi.org/10.1016/j.enbuild.2016.07.024
  • Kroener, E., Vallati, A., & Bittelli, M. (2014). Numerical simulation of coupled heat, liquid water and water vapor in soils for heat dissipation of underground electrical power cables. Applied Thermal Engineering, 70(1), 510–523. https://doi.org/10.1016/j.applthermaleng.2014.05.033
  • Lachenbruch, A. H., & Marshall, B. V. (1986). Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science (New York, N.Y.), 234(4777), 689–696. https://doi.org/10.1126/science.234.4777.689
  • LeBleu, C., Dougherty, M., Rahn, K., Wright, A., Bowen, R., Wang, R., Orjuela, J. A., & Britton, K. (2019). Quantifying thermal characteristics of stormwater through low impact development systems. Hydrology, 6(1), 16. https://doi.org/10.3390/hydrology6010016
  • Lee, S., Park, S., Won, J., & Choi, H. (2021). Influential factors on thermal performance of energy slabs equipped with an insulation layer. Renewable Energy, 174, 823–834. https://doi.org/10.1016/j.renene.2021.04.090
  • LHW. (2021). Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt.
  • Li, D., & Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52(9), 2051–2064. https://doi.org/10.1175/JAMC-D-13-02.1
  • Li, Y., Nord, N., Huang, G., & Li, X. (2020). Swimming pool heating technology: A state-of-the-art review. In Proceedings Building Simulation, Springer, p. 1–20. https://doi.org/10.1007/s12273-020-0669-3
  • Lienen, T., Lüders, K., Halm, H., Westphal, A., Köber, R., & Würdemann, H. (2017). Effects of thermal energy storage on shallow aerobic aquifer systems: temporary increase in abundance and activity of sulfate-reducing and sulfur-oxidizing bacteria. Environmental Earth Sciences, 76(6), 261. https://doi.org/10.1007/s12665-017-6575-z
  • Lofi, W., Mehlhorn, H., & Kobus, H. (1977). Betrachtungen zum Wärmehaushalt des Untergrundes im Raum Karlsruhe: Institut für Hydromechanik. Universität Karlsruhe, 544, 1–86.
  • Loveridge, F., McCartney, J. S., Narsilio, G. A., & Sanchez, M. (2020). Energy geostructures: a review of analysis approaches, in situ testing and model scale experiments. Geomechanics for Energy and the Environment, 22, 100173. https://doi.org/10.1016/j.gete.2019.100173
  • Luo, Z., & Asproudi, C. (2015). Subsurface urban heat island and its effects on horizontal ground-source heat pump potential under climate change. Applied Thermal Engineering, 90, 530–537. https://doi.org/10.1016/j.applthermaleng.2015.07.025
  • Mahmood, K., Batool, S. A., & Chaudhry, M. N. (2016). Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS. Waste Management (New York, N.Y.), 55, 118–128. https://doi.org/10.1016/j.wasman.2016.04.020
  • Medved, S., & Černe, B. (2002). A simplified method for calculating heat losses to the ground according to the EN ISO 13370 standard. Energy and Buildings, 34(5), 523–528. https://doi.org/10.1016/S0378-7788(01)00138-4
  • Menberg, K., Bayer, P., Zosseder, K., Rumohr, S., & Blum, P. (2013). Subsurface urban heat islands in German cities. The Science of the Total Environment, 442, 123–133. https://doi.org/10.1016/j.scitotenv.2012.10.043
  • Menberg, K., Blum, P., Kurylyk, B. L., & Bayer, P. (2014). Observed groundwater temperature response to recent climate change. Hydrology and Earth System Sciences, 18(11), 4453–4466. https://doi.org/10.5194/hess-18-4453-2014
  • Menberg, K., Blum, P., Schaffitel, A., & Bayer, P. (2013). Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island. Environmental Science & Technology, 47(17), 9747–9755. https://doi.org/10.1021/es401546u
  • Mielke, P., Bauer, D., Homuth, S., Götz, A. E., & Sass, I. (2014). Thermal effect of a borehole thermal energy store on the subsurface. Geothermal Energy, 2(1), 1–15. https://doi.org/10.1186/s40517-014-0005-1
  • Mortada, A. (2019). Energy efficient passenger comfort in underground subway environments. University of Cambridge.
  • Mortada, A., Choudhary, R., & Soga, K. (2015). Thermal modeling and parametric analysis of underground rail systems. Energy Procedia, 78, 2262–2267. https://doi.org/10.1016/j.egypro.2015.11.362
  • Mueller, M. H., Huggenberger, P., & Epting, J. (2018). Combining monitoring and modelling tools as a basis for city-scale concepts for a sustainable thermal management of urban groundwater resources. The Science of the Total Environment, 627, 1121–1136. https://doi.org/10.1016/j.scitotenv.2018.01.250
  • Müller, N., Kuttler, W., & Barlag, A.-B. (2014). Analysis of the subsurface urban heat island in Oberhausen, Germany. Climate Research, 58(3), 247–256. https://doi.org/10.3354/cr01195
  • Murata, T., & Kawai, N. (2018). Degradation of the urban ecosystem function due to soil sealing: involvement in the heat island phenomenon and hydrologic cycle in the Tokyo metropolitan area. Soil Science and Plant Nutrition, 64(2), 145–155. https://doi.org/10.1080/00380768.2018.1439342
  • O’Malley, C., Piroozfar, P., Farr, E. R., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society, 19, 222–235. https://doi.org/10.1016/j.scs.2015.05.009
  • Ocłoń, P., Cisek, P., Pilarczyk, M., & Taler, D. (2015). Numerical simulation of heat dissipation processes in underground power cable system situated in thermal backfill and buried in a multilayered soil. Energy Conversion and Management, 95, 352–370. https://doi.org/10.1016/j.enconman.2015.01.092
  • Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967) 7(8), 769–779. https://doi.org/10.1016/0004-6981(73)90140-6
  • Osborn, T. J., Jones, P. D., Lister, D. H., Morice, C. P., Simpson, I. R., Winn, J., Hogan, E., & Harris, I. C. (2021). Land surface air temperature variations across the globe updated to 2019: The CRUTEM5 data set. Journal of Geophysical Research: Atmospheres, 126(2), e2019JD032352. https://doi.org/10.1029/2019JD032352
  • Page, D., Peeters, L., Vanderzalm, J., Barry, K., & Gonzalez, D. (2017). Effect of aquifer storage and recovery (ASR) on recovered stormwater quality variability. Water Research, 117, 1–8. https://doi.org/10.1016/j.watres.2017.03.049
  • Park, Y.-C., Jo, Y.-J., & Lee, J.-Y. (2011). Trends of groundwater data from the Korean National Groundwater Monitoring Stations: indication of any change? Geosciences Journal, 15(1), 105–114. https://doi.org/10.1007/s12303-011-0006-z
  • Peche, A. (2019). Numerical modeling of pipe leakage in variably saturated soil: Gottfried Wilhelm Leibniz Universität Hannover.
  • Pollack, H. N., Huang, S., & Shen, P.-Y. (1998). Climate change record in subsurface temperatures: A global perspective. Science (New York, N.Y.), 282(5387), 279–281. https://doi.org/10.1126/science.282.5387.279
  • Popiel, C., & Wojtkowiak, J. (2013). Temperature distributions of ground in the urban region of Poznan City. Experimental Thermal and Fluid Science, 51, 135–148. https://doi.org/10.1016/j.expthermflusci.2013.07.009
  • Qian, B., Gregorich, E. G., Gameda, S., Hopkins, D. W., & Wang, X. L. (2011). Observed soil temperature trends associated with climate change in Canada. Journal of Geophysical Research, 116(D2), 1–16. https://doi.org/10.1029/2010JD015012
  • Rammal, D., Mroueh, H., & Burlon, S. (2020). Thermal behaviour of geothermal diaphragm walls: Evaluation of exchanged thermal power. Renewable Energy., 147, 2643–2653. https://doi.org/10.1016/j.renene.2018.11.068
  • Rees, S., Adjali, M., Zhou, Z., Davies, M., & Thomas, H. (2000). Ground heat transfer effects on the thermal performance of earth-contact structures. Renewable and Sustainable Energy Reviews, 4(3), 213–265. https://doi.org/10.1016/S1364-0321(99)00018-0
  • Retter, A., Karwautz, C., & Griebler, C. (2021). Groundwater microbial communities in times of climate change. Current Issues in Molecular Biology, 41(1), 509–538. https://doi.org/10.21775/cimb.041.509
  • Riedel, T. (2019). Temperature-associated changes in groundwater quality. Journal of Hydrology, 572, 206–212. https://doi.org/10.1016/j.jhydrol.2019.02.059
  • Rivera, J. A., Blum, P., & Bayer, P. (2015). Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers. Applied Energy, 146, 421–433. https://doi.org/10.1016/j.apenergy.2015.02.035
  • Rivera, J. A., Blum, P., & Bayer, P. (2017). Increased ground temperatures in urban areas: Estimation of the technical geothermal potential. Renewable Energy, 103, 388–400. https://doi.org/10.1016/j.renene.2016.11.005
  • Sani, A. K., Singh, R. M., Amis, T., & Cavarretta, I. (2019). A review on the performance of geothermal energy pile foundation, its design process and applications. Renewable and Sustainable Energy Reviews, 106, 54–78. https://doi.org/10.1016/j.rser.2019.02.008
  • Sartirana, D., Rotiroti, M., Zanotti, C., Bonomi, T., Fumagalli, L., & De Amicis, M. (2020). A 3D Geodatabase for Urban Underground Infrastructures: Implementation and Application to Groundwater Management in Milan Metropolitan Area. ISPRS International Journal of Geo-Information, 9(10), 609. https://doi.org/10.3390/ijgi9100609
  • Scalenghe, R., & Marsan, F. A. (2009). The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 90(1-2), 1–10. https://doi.org/10.1016/j.landurbplan.2008.10.011
  • Schmid F., (2008). Sewage water: interesting heat source for heat pumps and chillers, in Proceedings of the 9th International IEA Heat Pump Conference. Zürich, Switzerland, p. 20–22.
  • Schmidt, D., Kallert, A., Blesl, M., Svendsen, S., Li, H., Nord, N., & Sipilä, K. (2017). Low temperature district heating for future energy systems. Energy Procedia, 116, 26–38. https://doi.org/10.1016/j.egypro.2017.05.052
  • Spengler, C., & Hahn, H. (2018). Thermostress: Ökologisch gegründete, thermische Schwellenwerte und Bewertungsansätze für das Grundwasser (Ecological based temperature thresholds and ecosystem assessment schemes for groundwater). Korrespondenz Wasserwirtschaft, 9, 521–525.
  • Stegner, J. (2016). Bestimmung thermischer Materialkennwerte von Erdkabelbettungen.
  • Stegner, J., Drefke, C., Hailemariam, H., Anbergen, H., Wuttke, F., & Sass, I. (2017). Messtechnik für den Erdkabeltrassenbau – Ermittlung der Wärmeleitfähigkeit von Bettungsmaterialien. Bauphysik, 39(1), 41–48. https://doi.org/10.1002/bapi.201710003
  • Taniguchi, M., & Uemura, T. (2005). Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan. Physics of the Earth and Planetary Interiors, 152(4), 305–313. https://doi.org/10.1016/j.pepi.2005.04.006
  • Taylor, C. A., & Stefan, H. G. (2009). Shallow groundwater temperature response to climate change and urbanization. Journal of Hydrology, 375(3-4), 601–612. https://doi.org/10.1016/j.jhydrol.2009.07.009
  • Thomas, H., & Rees, S. (1998). The thermal performance of ground floor slabs: A full scale in-situ experiment. Building and Environment, 34(2), 139–164. https://doi.org/10.1016/S0360-1323(98)00001-8
  • Tidden, F., & Scharrer, K. (2017). Depothermie – Ein neuer Ansatz zur Wärmegewinnung aus Deponien und Altablagerungen.
  • Tissen, C., Benz, S. A., Menberg, K., Bayer, P., & Blum, P. (2019). Groundwater temperature anomalies in central Europe. Environmental Research Letters, 14(10), 104012. https://doi.org/10.1088/1748-9326/ab4240
  • Tissen, C., Menberg, K., Benz, S. A., Bayer, P., Steiner, C., Götzl, G., & Blum, P. (2021). Identifying key locations for shallow geothermal use in Vienna. Renewable Energy, 167, 1–19. https://doi.org/10.1016/j.renene.2020.11.024
  • Tuxen, N., Albrechtsen, H.-J., & Bjerg, P. L. (2006). Identification of a reactive degradation zone at a landfill leachate plume fringe using high resolution sampling and incubation techniques. Journal of Contaminant Hydrology, 85(3-4), 179–194. https://doi.org/10.1016/j.jconhyd.2006.01.004
  • van den Bos, L. (2020). Quantifying the effects of anthropogenic heat sources on the water temperature in the drinking water distribution system: TU Delft.
  • Vienken, T., Kreck, M., & Dietrich, P. (2019). Monitoring the impact of intensive shallow geothermal energy use on groundwater temperatures in a residential neighborhood. Geothermal Energy, 7(1), 1–14. https://doi.org/10.1186/s40517-019-0123-x
  • von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., … Wijffels, S. E. (2020). Heat stored in the Earth system: Where does the energy go? Earth System Science Data, 12(3), 2013–2041. https://doi.org/10.5194/essd-12-2013-2020
  • Warren, E., & Bekins, B. A. (2018). Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site. Journal of Contaminant Hydrology, 211, 94–103. https://doi.org/10.1016/j.jconhyd.2018.03.011
  • Westaway, R., Scotney, P. M., Younger, P. L., & Boyce, A. J. (2015). Subsurface absorption of anthropogenic warming of the land surface: the case of the world's largest brickworks (Stewartby, Bedfordshire, UK). The Science of the Total Environment, 508, 585–603. https://doi.org/10.1016/j.scitotenv.2014.09.109
  • Wiemer, K. (1982). Messungen des Wasserhaushaltes und der Dichte von ungestörten Müllproben. Veröffentlichung des Instituts für Stadtbauwesen, 33, 289–300.
  • Willscher, S., Hertwig, T., Frenzel, M., Felix, M., & Starke, S. (2010). Results of remediation of hard coal overburden and tailing dumps after a few decades: Insights and conclusions. Hydrometallurgy, 104(3-4), 506–517. https://doi.org/10.1016/j.hydromet.2010.03.031
  • Yeşiller, N., & Hanson, J. L. (2003). Analysis of Temperatures at a Municipal Solid Waste Landfill: Ninth International Waste Management and Landfill Symposium, p. 1–10.
  • Yeşiller, N., Hanson, J. L., & Liu, W.-L. (2005). Heat generation in municipal solid waste landfills. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1330–1344. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1330)
  • Zhou, S., O'Neill, Z., & O'Neill, C. (2018). A review of leakage detection methods for district heating networks. Applied Thermal Engineering, 137, 567–574. https://doi.org/10.1016/j.applthermaleng.2018.04.010
  • Zhu, K. (2013). Urban heat island in the subsurface and geothermal potential in urban areas: Universitätsbibliothek Tübingen.
  • Zito, M., Freitas, T. M. B., Bourne-Webb, P. J., & Sterpi, D. (2021). Effect of domain size in the modelled response of thermally-activated piles, in Proceedings International Conference of the International Association for Computer Methods and Advances in Geomechanics, Springer, p. 1110–1118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.