3,411
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies

, , , , , , , & ORCID Icon show all
Pages 1148-1172 | Published online: 30 Sep 2022

References

  • Abeysiriwardana-Arachchige, I. S. A., Delanka-Pedige, H. M. K., Munasinghe-Arachchige, S. P., & Nirmalakhandan, N. (2021). Techno-economic optimization of phosphorous recovery in an algal-based sewage treatment system. Bioresource Technology. 332, 125128. https://doi.org/10.1016/j.biortech.2021.125128
  • Adam, G., Mottet, A., Lemaigre, S., Tsachidou, B., Trouvé, E., & Delfosse, P. (2018). Fractionation of anaerobic digestates by dynamic nanofiltration and reverse osmosis: An industrial pilot case evaluation for nutrient recovery. Journal of Environmental Chemical Engineering, 6(5), 6723–6732. https://doi.org/10.1016/j.jece.2018.10.033
  • Almanassra, I. W., McKay, G., Kochkodan, V., Ali Atieh, M., & Al-Ansari, T. (2021). A state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal and the Biochemical Engineering Journal, 409, 128211. https://doi.org/10.1016/j.cej.2020.128211
  • Amann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., & Egle, L. (2018). Environmental impacts of phosphorus recovery from municipal wastewater. Resources, Conservation and Recycling, 130, 127–139. https://doi.org/10.1016/j.resconrec.2017.11.002
  • Amorim de Carvalho, C., Ferreira dos Santos, A., Tavares Ferreira, T. J., Sousa Aguiar Lira, V. N., Mendes Barros, A. R., & Bezerra dos Santos, A. (2021). Resource recovery in aerobic granular sludge systems: Is it feasible or still a long way to go? Chemosphere, 274, 129881. https://doi.org/10.1016/j.chemosphere.2021.129881
  • Ansari, A. J., Hai, F. I., Price, W. E., & Nghiem, L. D. (2016). Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis. Separation and Purification Technology, 163, 1–7. https://doi.org/10.1016/j.seppur.2016.02.031
  • Bacelo, H., Pintor, A. M., Santos, S. C., Boaventura, R. A., & Botelho, C. M. (2020). Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chemical Engineering Journal and the Biochemical Engineering Journal, 381, 122566. https://doi.org/10.1016/j.cej.2019.122566
  • Balasuriya, B. T. G., Ghose, A., Gheewala, S. H., & Prapaspongsa, T. (2022). Assessment of eutrophication potential from fertiliser application in agricultural systems in Thailand. The Science of the Total Environment, 833, 154993.
  • Bui, T. H., Hong, S. P., & Yoon, J. (2018). Development of nanoscale zirconium molybdate embedded anion exchange resin for selective removal of phosphate. Water Research, 134, 22–31.
  • Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., & Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2018.00008
  • Caroline Ricci, B., Santos Arcanjo, G., Rezende Moreira, V., Abner Rocha Lebron, Y., Koch, K., Cristina Rodrigues Costa, F., Paulinelli Ferreira, B., Luiza Costa Lisboa, F., Diniz Miranda, L., Vieira de Faria, C., Celina Lange, L., & Cristina Santos Amaral, M. (2021). A novel submerged anaerobic osmotic membrane bioreactor coupled to membrane distillation for water reclamation from municipal wastewater. Chemical Engineering Journal and the Biochemical Engineering Journal, 414, 128645. https://doi.org/10.1016/j.cej.2021.128645
  • Chen, Y., Chen, H., Zheng, X., & Mu, H. (2012). The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms. Journal of Hazardous Materials, 239–240, 88–94.
  • Chen, L., Liu, F., Wu, Y., Zhao, L., Li, Y., Zhang, X., & Qian, J. (2018). In situ formation of La (OH) 3-poly (vinylidene fluoride) composite filtration membrane with superior phosphate removal properties. Chemical Engineering Journal and the Biochemical Engineering Journal, 347, 695–702. https://doi.org/10.1016/j.cej.2018.04.086
  • Cheng, N., Wang, B., Wu, P., Lee, X., Xing, Y., Chen, M., & Gao, B. (2021). Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environmental Pollution (Barking, Essex : 1987), 273, 116448.
  • Chu, Y.-B., Li, M., Liu, J.-W., Xu, W., Cheng, S.-H., & Zhao, H.-Z. (2018). Molecular insights into the mechanism and the efficiency-structure relationship of phosphorus removal by coagulation. Water Research, 147, 195–203.
  • Dai, L., Tan, F., Li, H., Zhu, N., He, M., Zhu, Q., Hu, G., Wang, L., & Zhao, J. (2017). Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. Journal of Environmental Management, 198(Pt 1), 70–74.
  • de Sousa Rollemberg, S. L., Mendes Barros, A. R., Milen Firmino, P. I., & Bezerra dos Santos, A. (2018). Aerobic granular sludge: Cultivation parameters and removal mechanisms. Bioresource Technology, 270, 678–688.
  • de-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38(19), 4222–4246.
  • Delanka-Pedige, H. M., Cheng, X., Munasinghe-Arachchige, S. P., Abeysiriwardana-Arachchige, I. S., Xu, J., Nirmalakhandan, N., & Zhang, Y. (2020). Metagenomic insights into virus removal performance of an algal-based wastewater treatment system utilizing Galdieria sulphuraria. Algal Research, 47, 101865. https://doi.org/10.1016/j.algal.2020.101865
  • Deng, W., Zhang, D., Zheng, X., Ye, X., Niu, X., Lin, Z., Fu, M., & Zhou, S. (2021). Adsorption recovery of phosphate from waste streams by Ca/Mg-biochar synthesis from marble waste, calcium-rich sepiolite and bagasse. Journal of Cleaner Production, 288, 125638. https://doi.org/10.1016/j.jclepro.2020.125638
  • Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: A review. Critical Reviews in Environmental Science and Technology, 45(4), 336–384. https://doi.org/10.1080/10643389.2013.866531
  • Di Capua, F., de Sario, S., Ferraro, A., Petrella, A., Race, M., Pirozzi, F., Fratino, U., & Spasiano, D. (2022). Phosphorous removal and recovery from urban wastewater: Current practices and new directions. The Science of the Total Environment, 823, 153750.
  • Dong, H., Wei, L., & Tarpeh, W. A. (2020). Electro-assisted regeneration of pH-sensitive ion exchangers for sustainable phosphate removal and recovery. Water Research, 184, 116167.
  • Drenkova-Tuhtan, A., Schneider, M., Mandel, K., Meyer, C., Gellermann, C., Sextl, G., & Steinmetz, H. (2016). Influence of cation building blocks of metal hydroxide precipitates on their adsorption and desorption capacity for phosphate in wastewater—A screening study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 488, 145–153. https://doi.org/10.1016/j.colsurfa.2015.10.017
  • Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. The Science of the Total Environment, 571, 522–542.
  • Fang, L., Shi, Q., Nguyen, J., Wu, B., Wang, Z., & Lo, I. M. (2017). Removal mechanisms of phosphate by lanthanum hydroxide nanorods: Investigations using EXAFS, ATR-FTIR, DFT, and surface complexation modeling approaches. Environmental Science & Technology, 51(21), 12377–12384.
  • Fischer, F., Bastian, C., Happe, M., Mabillard, E., & Schmidt, N. (2011). Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresource Technology, 102(10), 5824–5830.
  • Galey, B., Gautier, M., Kim, B., Blanc, D., Chatain, V., Ducom, G., Dumont, N., & Gourdon, R. (2022). Trace metal elements vaporization and phosphorus recovery during sewage sludge thermochemical treatment – A review. Journal of Hazardous Materials, 424(Pt B), 127360.
  • Guida, S., Rubertelli, G., Jefferson, B., & Soares, A. (2021). Demonstration of ion exchange technology for phosphorus removal and recovery from municipal wastewater. Chemical Engineering Journal and the Biochemical Engineering Journal, 420, 129913. https://doi.org/10.1016/j.cej.2021.129913
  • Guisasola, A., Pijuan, M., Baeza, J. A., Carrera, J., Casas, C., & Lafuente, J. (2004). Aerobic phosphorus release linked to acetate uptake in bio-P sludge: Process modeling using oxygen uptake rate. Biotechnology and Bioengineering, 85(7), 722–733. https://doi.org/10.1002/bit.10868
  • Hamza, R., Rabii, A., Ezzahraoui, F-Z., Morgan, G., & Iorhemen, O. T. (2022). A review of the state of development of aerobic granular sludge technology over the last 20 years: Full-scale applications and resource recovery. Case Studies in Chemical and Environmental Engineering, 5, 100173. https://doi.org/10.1016/j.cscee.2021.100173
  • Hasan, M. N., Altaf, M. M., Khan, N. A., Khan, A. H., Khan, A. A., Ahmed, S., Kumar, P. S., Naushad, M., Rajapaksha, A. U., Iqbal, J., Tirth, V., & Islam, S. (2021). Recent technologies for nutrient removal and recovery from wastewaters: A review. Chemosphere, 277, 130328. https://doi.org/10.1016/j.chemosphere.2021.130328
  • Hirooka, K., & Ichihashi, O. (2013). Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation. Bioresource Technology, 137, 368–375.
  • Hou, D., Lu, L., Sun, D., Ge, Z., Huang, X., Cath, T. Y., & Ren, Z. J. (2017). Microbial electrochemical nutrient recovery in anaerobic osmotic membrane bioreactors. Water Research. 114, 181–188. https://doi.org/10.1016/j.watres.2017.02.034
  • Huang, H., Zhang, D., Zhao, Z., Zhang, P., & Gao, F. (2017). Comparison investigation on phosphate recovery from sludge anaerobic supernatant using the electrocoagulation process and chemical precipitation. Journal of Cleaner Production, 141, 429–438. https://doi.org/10.1016/j.jclepro.2016.09.127
  • Izadi, P., Izadi, P., & Eldyasti, A. (2021). A review of biochemical diversity and metabolic modeling of EBPR process under specific environmental conditions and carbon source availability. Journal of Environmental Management, 288, 112362. https://doi.org/10.1016/j.jenvman.2021.112362
  • Jafarinejad, S. (2021). Forward osmosis membrane technology for nutrient removal/recovery from wastewater: Recent advances, proposed designs, and future directions. Chemosphere, 263, 128116. https://doi.org/10.1016/j.chemosphere.2020.128116
  • Jerauld, M., Juston, J., DeBusk, T., Ivanoff, D., & King, J. (2020). Internal phosphorus loading rate (iPLR) in a low-P stormwater treatment wetland. Ecological Engineering, 156, 105944. https://doi.org/10.1016/j.ecoleng.2020.105944
  • Jiang, L., Liu, Y., Guo, F., Zhou, Z., Jiang, J., You, Z., Wang, Q., Wang, Z., & Wu, Z. (2021). Evaluation of nutrient removal performance and resource recovery potential of anaerobic/anoxic/aerobic membrane bioreactor with limited aeration. Bioresource Technology, 340, 125728.
  • Jingqian, Z., Yongzhen, P., & Xuguang, T. (2011, February 19–20). Effect of COD on EBPR System and Variation of OUR. In 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (pp. 1120–1123).
  • Jung, K.-W., Hwang, M.-J., Ahn, K.-H., & Ok, Y.-S. (2015). Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. International Journal of Environmental Science and Technology, 12(10), 3363–3372. https://doi.org/10.1007/s13762-015-0766-5
  • Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W., & Slootweg, J. C. (2021). Phosphorus recovery and recycling–closing the loop. Chemical Society Reviews, 50(1), 87–101. 10.1039/D0CS01150A
  • Karthikeyan, P., Banu, H. A. T., & Meenakshi, S. (2019). Synthesis and characterization of metal loaded chitosan-alginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution. International Journal of Biological Macromolecules, 130, 407–418. https://doi.org/10.1016/j.ijbiomac.2019.02.059
  • Kasprzyk, M., & Gajewska, M. (2019). Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. The Science of the Total Environment, 650(Pt 1), 249–256.
  • Kumar, P. S., Korving, L., van Loosdrecht, M. C. M., & Witkamp, G.-J. (2019). Adsorption as a technology to achieve ultra-low concentrations of phosphate: Research gaps and economic analysis. Water Research X, 4, 100029.
  • Kuokkanen, V., Kuokkanen, T., Rämö, J., Lassi, U., & Roininen, J. (2015). Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes – Techno-economic studies. Journal of Water Process Engineering, 8, e50–e57. https://doi.org/10.1016/j.jwpe.2014.11.008
  • Lei, Y., Hidayat, I., Saakes, M., van der Weijden, R., & Buisman, C. J. N. (2019a). Fate of calcium, magnesium and inorganic carbon in electrochemical phosphorus recovery from domestic wastewater. Chemical Engineering Journal and the Biochemical Engineering Journal, 362, 453–459. https://doi.org/10.1016/j.cej.2019.01.056
  • Lei, Y., Narsing, S., Saakes, M., van der Weijden, R. D., & Buisman, C. J. N. (2019b). Calcium carbonate packed electrochemical precipitation column: New concept of phosphate removal and recovery. Environmental Science & Technology, 53(18), 10774–10780. https://doi.org/10.1021/acs.est.9b03795
  • Lei, Y., Saakes, M., van der Weijden, R. D., & Buisman, C. J. (2020). Electrochemically mediated calcium phosphate precipitation from phosphonates: Implications on phosphorus recovery from non-orthophosphate. Water Research, 169, 115206. https://doi.org/10.1016/j.watres.2019.115206
  • Lei, Y., Zhan, Z., Saakes, M., Van Der Weijden, R. D., & Buisman, C. J. (2021). Electrochemical recovery of phosphorus from acidic cheese wastewater: Feasibility, quality of products, and comparison with chemical precipitation. ACS ES&T Water, 1(4), 1002–1013.
  • Leyva-Díaz, J. C., Muñío, M. M., González-López, J., & Poyatos, J. M. (2016). Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater. Ecological Engineering, 91, 449–458. https://doi.org/10.1016/j.ecoleng.2016.03.006
  • Li, C., Liu, S., Ma, T., Zheng, M., & Ni, J. (2019). Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature. Chemosphere, 229, 132–141. https://doi.org/10.1016/j.chemosphere.2019.04.185
  • Li, X., Shen, S., Xu, Y., Guo, T., Dai, H., & Lu, X. (2021). Application of membrane separation processes in phosphorus recovery: A review. The Science of the Total Environment, 767, 144346.
  • Li, J.-S., Tsang, D. C. W., Wang, Q.-M., Fang, L., Xue, Q., & Poon, C. S. (2017a). Fate of metals before and after chemical extraction of incinerated sewage sludge ash. Chemosphere, 186, 350–359.
  • Li, R., Wang, J. J., Zhou, B., Zhang, Z., Liu, S., Lei, S., & Xiao, R. (2017b). Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. Journal of Cleaner Production, 147, 96–107. https://doi.org/10.1016/j.jclepro.2017.01.069
  • Li, M., Zhang, B., Zou, S., Liu, Q., & Yang, M. (2020a). Highly selective adsorption of vanadium (V) by nano-hydrous zirconium oxide-modified anion exchange resin. Journal of Hazardous Materials, 384, 121386.
  • Li, Y. F., Zimmerman, A. R., He, F., Chen, J. J., Han, L. J., Chen, H., Hu, X., & Gao, B. (2020b). Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. The Science of the Total Environment, 722, 137972. https://doi.org/10.1016/j.scitotenv.2020.137972
  • Liu, J., Cheng, X., Qi, X., Li, N., Tian, J., Qiu, B., Xu, K., & Qu, D. (2018). Recovery of phosphate from aqueous solutions via vivianite crystallization: Thermodynamics and influence of pH. Chemical Engineering Journal, 349, 37–46. https://doi.org/10.1016/j.cej.2018.05.064
  • Liu, R., Hao, X., Chen, Q., & Li, J. (2019). Research advances of Tetrasphaera in enhanced biological phosphorus removal: A review. Water Research, 166, 115003.
  • Liu, H., Hu, G., Basar, I. A., Li, J., Lyczko, N., Nzihou, A., & Eskicioglu, C. (2021). Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: A review towards sustainable waste management. Chemical Engineering Journal, 417, 129300. https://doi.org/10.1016/j.cej.2021.129300
  • Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. S. (2014). Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44(8), 847–907. https://doi.org/10.1080/10643389.2012.741311
  • Luecke, H., & Quiocho, F. A. (1990). High specificity of a phosphate transport protein determined by hydrogen bonds. Nature, 347(6291), 402–406. https://doi.org/10.1038/347402a0
  • Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., Yamamoto, K., & Nghiem, L. D. (2016). Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system. Bioresource Technology, 200, 297–304.
  • Luo, W., Qian, L., Liu, W., Zhang, X., Wang, Q., Jiang, H., Cheng, B., Ma, H., & Wu, Z. (2021). A potential Mg-enriched biochar fertilizer: Excellent slow-release performance and release mechanism of nutrients. The Science of the Total Environment, 768, 144454.
  • Luyckx, L., Geerts, S., & Van Caneghem, J. (2020). Closing the phosphorus cycle: Multi-criteria techno-economic optimization of phosphorus extraction from wastewater treatment sludge ash. Science of the Total Environment, 713, 135543. https://doi.org/10.1016/j.scitotenv.2019.135543
  • Ma, P., & Rosen, C. (2021). Land application of sewage sludge incinerator ash for phosphorus recovery: A review. Chemosphere, 274, 129609. https://doi.org/10.1016/j.chemosphere.2021.129609
  • Marques, R., Santos, J., Nguyen, H., Carvalho, G., Noronha, J. P., Nielsen, P. H., Reis, M. A. M., & Oehmen, A. (2017). Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. Water Research, 122, 159–171.
  • Mayer, B. K., Baker, L. A., Boyer, T. H., Drechsel, P., Gifford, M., Hanjra, M. A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., & Rittmann, B. E. (2016). Total value of phosphorus recovery. Environmental Science & Technology, 50(13), 6606–6620.
  • Mehta, C. M., Khunjar, W. O., Nguyen, V., Tait, S., & Batstone, D. J. (2015). Technologies to recover nutrients from waste streams: A critical review. Critical Reviews in Environmental Science and Technology, 45(4), 385–427. https://doi.org/10.1080/10643389.2013.866621
  • Nakarmi, A., Kanel, S., Nadagouda, M. N., & Viswanathan, T. (2022). Applications of conventional and advanced technologies for phosphorus remediation from contaminated water. In U. Shanker, C. Hussain, & M. Rani (Eds.), Green functionalized nanomaterials for environmental applications (pp. 181–213). Elsevier.
  • Nancharaiah, Y., Mohan, S. V., & Lens, P. (2016). Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresource Technology, 215, 173–185.
  • Omwene, P. I., Kobya, M., & Can, O. T. (2018). Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecological Engineering, 123, 65–73. https://doi.org/10.1016/j.ecoleng.2018.08.025
  • O'Neal, J. A., & Boyer, T. H. (2013). Phosphate recovery using hybrid anion exchange: Applications to source-separated urine and combined wastewater streams. Water Research, 47(14), 5003–5017. https://doi.org/10.1016/j.watres.2013.05.037
  • Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89–104. https://doi.org/10.1016/j.seppur.2013.06.036
  • Paucar, N. E., & Sato, C. (2021). Microbial fuel cell for energy production, nutrient removal and recovery from wastewater: A review. Processes, 9(8), 1318. https://doi.org/10.3390/pr9081318
  • Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768–781.
  • Pinelli, D., Bovina, S., Rubertelli, G., Martinelli, A., Guida, S., Soares, A., & Frascari, D. (2022). Regeneration and modelling of a phosphorous removal and recovery hybrid ion exchange resin after long term operation with municipal wastewater. Chemosphere, 286(Pt 1), 131581. https://doi.org/10.1016/j.chemosphere.2021.131581
  • Qiu, G., Law, Y.-M., Das, S., & Ting, Y.-P. (2015). Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution. Environmental Science & Technology, 49(10), 6156–6163. https://doi.org/10.1021/es504554f
  • Qiu, G., Zhang, S., Srinivasa Raghavan, D. S., Das, S., & Ting, Y. P. (2016). The potential of hybrid forward osmosis membrane bioreactor (FOMBR) processes in achieving high throughput treatment of municipal wastewater with enhanced phosphorus recovery. Water Research, 105, 370–382. https://doi.org/10.1016/j.watres.2016.09.017
  • Rahman, M. M., Salleh, M., A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization–A review. Arabian Journal of Chemistry, 7(1), 139–155. https://doi.org/10.1016/j.arabjc.2013.10.007
  • Rout, P. R., Shahid, M. K., Dash, R. R., Bhunia, P., Liu, D., Varjani, S., Zhang, T. C., & Surampalli, R. Y. (2021). Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. Journal of Environmental Management, 296, 113246.
  • Roy, S., Guanglei, Q., Zuniga-Montanez, R., Williams, R. B., & Wuertz, S. (2021). Recent advances in understanding the ecophysiology of enhanced biological phosphorus removal. Current Opinion in Biotechnology, 67, 166–174.
  • Saidulu, D., Majumder, A., & Gupta, A. K. (2021). A systematic review of moving bed biofilm reactor, membrane bioreactor, and moving bed membrane bioreactor for wastewater treatment: Comparison of research trends, removal mechanisms, and performance. Journal of Environmental Chemical Engineering, 9(5), 106112. https://doi.org/10.1016/j.jece.2021.106112
  • Saleh Bairq, Z. A., Li, R., Li, Y., Gao, H., Sema, T., Teng, W., Kumar, S., & Liang, Z. (2018). New advancement perspectives of chloride additives on enhanced heavy metals removal and phosphorus fixation during thermal processing of sewage sludge. Journal of Cleaner Production, 188, 185–194. https://doi.org/10.1016/j.jclepro.2018.03.276
  • Sendrowski, A., & Boyer, T. H. (2013). Phosphate removal from urine using hybrid anion exchange resin. Desalination, 322, 104–112. https://doi.org/10.1016/j.desal.2013.05.014
  • Sikosana, M. K., Randall, D. G., & von Blottnitz, H. (2017). A technological and economic exploration of phosphate recovery from centralised sewage treatment in a transitioning economy context. Water SA, 43(2), 343–353. https://doi.org/10.4314/wsa.v43i2.17
  • Song, X., Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2018a). Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresource Technology, 270, 669–677.
  • Song, X., Luo, W., McDonald, J., Khan, S. J., Hai, F. I., Price, W. E., & Nghiem, L. D. (2018b). An anaerobic membrane bioreactor – membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants. The Science of the Total Environment, 628–629, 358–365. https://doi.org/10.1016/j.scitotenv.2018.02.057
  • Stávková, J., & Maroušek, J. (2021). Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere, 276, 130097. https://doi.org/10.1016/j.chemosphere.2021.130097
  • Tan, X. F., Liu, Y. G., Gu, Y. L., Xu, Y., Zeng, G. M., Hu, X. J., Liu, S. B., Wang, X., Liu, S. M., & Li, J. (2016). Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333.
  • Tao, W., Fattah, K. P., & Huchzermeier, M. P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. Journal of Environmental Management, 169, 46–57.
  • Tegladza, I. D., Xu, Q., Xu, K., Lv, G., & Lu, J. (2021). Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal. Process Safety and Environmental Protection, 146, 169–189. https://doi.org/10.1016/j.psep.2020.08.048
  • Tian, Y., He, W., Liang, D., Yang, W., Logan, B. E., & Ren, N. (2018). Effective phosphate removal for advanced water treatment using low energy, migration electric–field assisted electrocoagulation. Water Research, 138, 129–136. https://doi.org/10.1016/j.watres.2018.03.037
  • Venkiteshwaran, K., Pokhrel, N., Hussein, F., Antony, E., & Mayer, B. K. (2018). Phosphate removal and recovery using immobilized phosphate binding proteins. Water Research X, 1, 100003. https://doi.org/10.1016/j.wroa.2018.09.003
  • Venkiteshwaran, K., Wells, E., & Mayer, B. K. (2021). Immobilized phosphate‐binding protein can effectively discriminate against arsenate during phosphate adsorption and recovery. Water Environment Research : A Research Publication of the Water Environment Federation, 93(8), 1173–1178.
  • Vikrant, K., Kim, K.-H., Ok, Y. S., Tsang, D. C. W., Tsang, Y. F., Giri, B. S., & Singh, R. S. (2018). Engineered/designer biochar for the removal of phosphate in water and wastewater. The Science of the Total Environment, 616–617, 1242–1260.
  • Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecological Engineering, 37(1), 70–89. https://doi.org/10.1016/j.ecoleng.2009.08.003
  • Wan, S., Wang, S., Li, Y., & Gao, B. (2017). Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions. Journal of Industrial and Engineering Chemistry, 47, 246–253. https://doi.org/10.1016/j.jiec.2016.11.039
  • Wang, B., Gao, B., & Fang, J. (2017). Recent advances in engineered biochar productions and applications. Critical Reviews in Environmental Science and Technology, 47(22), 2158–2207. https://doi.org/10.1080/10643389.2017.1418580
  • Wang, B., Lian, G., Lee, X., Gao, B., Li, L., Liu, T., Zhang, X., & Zheng, Y. (2020a). Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water. Chemosphere, 238, 124684.
  • Wang, Q., Li, J.-S., Tang, P., Fang, L., & Poon, C. S. (2018). Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. Journal of Cleaner Production, 181, 717–725. https://doi.org/10.1016/j.jclepro.2018.01.254
  • Wang, R., Lou, J., Fang, J., Cai, J., Hu, Z., & Sun, P. (2020b). Effects of heavy metals and metal (oxide) nanoparticles on enhanced biological phosphorus removal. Reviews in Chemical Engineering, 36(8), 947–970. https://doi.org/10.1515/revce-2018-0076
  • Wang, S., Zou, L., Li, H., Zheng, K., Wang, Y., Zheng, G., & Li, J. (2020c). Full-scale membrane bioreactor process WWTPs in East Taihu basin: Wastewater characteristics, energy consumption and sustainability. The Science of the Total Environment, 723, 137983.
  • Wei, X. Q., Wang, X., Gao, B., Zou, W. X., & Dong, L. (2020). Facile ball-milling synthesis of CuO/biochar nanocomposites for efficient removal of reactive red 120. ACS Omega, 5(11), 5748–5755. https://doi.org/10.1021/acsomega.9b03787
  • Wilfert, P., Dugulan, A. I., Goubitz, K., Korving, L., Witkamp, G. J., & Van Loosdrecht, M. C. M. (2018). Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water Research, 144, 312–321.
  • Wilfert, P., Meerdink, J., Degaga, B., Temmink, H., Korving, L., Witkamp, G. J., Goubitz, K., van Loosdrecht,., & M. C., M. (2020). Sulfide induced phosphate release from iron phosphates and its potential for phosphate recovery. Water Research, 171, 115389.
  • Williams, A. T., Zitomer, D. H., & Mayer, B. K. (2015). Ion exchange-precipitation for nutrient recovery from dilute wastewater. Environ. Sci. Wat. Res, 1(6), 832–838.
  • Wu, D., Ekama, G. A., Wang, H.-G., Wei, L., Lu, H., Chui, H.-K., Liu, W.-T., Brdjanovic, D., Van Loosdrecht, M. C., & Chen, G.-H. (2014). Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process. Water Research, 49, 251–264.
  • Wu, B., & Lo, I. M. (2020). Surface functional group engineering of CeO2 particles for enhanced phosphate adsorption. Environmental Science & Technology, 54(7), 4601–4608.
  • Wu, Y., Luo, J., Zhang, Q., Aleem, M., Fang, F., Xue, Z., & Cao, J. (2019). Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review. Chemosphere, 226, 246–258.
  • Wu, B., Wan, J., Zhang, Y., Pan, B., & Lo, I. M. C. (2020). Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms. Environmental Science & Technology, 54(1), 50–66.
  • Wu, Z., Zou, S., Zhang, B., Wang, L., & He, Z. (2018). Forward osmosis promoted in-situ formation of struvite with simultaneous water recovery from digested swine wastewater. Chemical Engineering Journal and the Biochemical Engineering Journal, 342, 274–280. https://doi.org/10.1016/j.cej.2018.02.082
  • Xia, Y., Tang, Y., Shih, K., & Li, B. (2020). Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis. Journal of Hazardous Materials, 382, 121110.
  • Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D. C. W., Ok, Y. S., & Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, 126539.
  • Xie, M., Nghiem, L. D., Price, W. E., & Elimelech, M. (2014). Toward resource recovery from wastewater: Extraction of phosphorus from digested sludge using a hybrid forward osmosis–membrane distillation process. Environmental Science & Technology Letters, 1(2), 191–195. https://doi.org/10.1021/ez400189z
  • Xie, M., Shon, H. K., Gray, S. R., & Elimelech, M. (2016). Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Research, 89, 210–221. https://doi.org/10.1016/j.watres.2015.11.045
  • Xue, J., Wang, H., Li, P., Zhang, M., Yang, J., & Lv, Q. (2021). Efficient reclaiming phosphate from aqueous solution using waste limestone modified sludge biochar: Mechanism and application as soil amendments. Science of the Total Environment. 799, 149454. https://doi.org/10.1016/j.scitotenv.2021.149454
  • Yan, T., Ye, Y., Ma, H., Zhang, Y., Guo, W., Du, B., Wei, Q., Wei, D., & Ngo, H. H. (2018). A critical review on membrane hybrid system for nutrient recovery from wastewater. Chemical Engineering Journal and the Biochemical Engineering Journal, 348, 143–156. https://doi.org/10.1016/j.cej.2018.04.166
  • Yang, Z., Pei, H., Hou, Q., Jiang, L., Zhang, L., & Nie, C. (2018). Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: Nutrient, organics removal and bioenergy production. Chemical Engineering Journal and the Biochemical Engineering Journal, 332, 277–285. https://doi.org/10.1016/j.cej.2017.09.096
  • Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y. S., Jiang, Y., & Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal (Lausanne, Switzerland : 1996), 366, 608–621.
  • Yao, Y., Gao, B., Chen, J., & Yang, L. (2013). Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environmental Science & Technology, 47(15), 8700–8708.
  • Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Chang, S. W., Nguyen, D. D., Ren, J., Liu, Y., & Zhang, X. (2019). Feasibility study on a double chamber microbial fuel cell for nutrient recovery from municipal wastewater. Chemical Engineering Journal and the Biochemical Engineering Journal, 358, 236–242. https://doi.org/10.1016/j.cej.2018.09.215
  • Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Li, J., Liu, Y., Zhang, X., & Jia, H. (2017). Insight into chemical phosphate recovery from municipal wastewater. The Science of the Total Environment, 576, 159–171.
  • Yee, R. A., Leifels, M., Scott, C., Ashbolt, N. J., & Liu, Y. (2019). Evaluating microbial and chemical hazards in commercial struvite recovered from wastewater. Environmental Science & Technology, 53(9), 5378–5386.
  • Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E. P., Cheng, W., Fang, J., & Fang, Z. (2020). Magnetic biochar for environmental remediation: A review. Bioresource Technology, 298, 122468.
  • Yu, B., Luo, J., Xie, H., Yang, H., Chen, S., Liu, J., Zhang, R., & Li, Y.-Y. (2021a). Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. The Science of the Total Environment, 786, 147437.
  • Yu, F., Tian, F. Y., Zou, H. W., Ye, Z. H., Peng, C., Huang, J. S., Zheng, Y. L., Zhang, Y., Yang, Y. C., Wei, X. Q., & Gao, B. (2021b). ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. Journal of Hazardous Materials, 415, 125511. https://doi.org/10.1016/j.jhazmat.2021.125511
  • Zhang, M., & Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 226, 286–292. https://doi.org/10.1016/j.cej.2013.04.077
  • Zhang, X., Gao, B., Creamer, A. E., Cao, C., & Li, Y. (2017b). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials 338, 102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013
  • Zhang, C., Li, Y., Wang, F., Yu, Z., Wei, J., Yang, Z., Ma, C., Li, Z., Xu, Z., & Zeng, G. (2017a). Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution. Applied Surface Science. 396, 1783–1792. https://doi.org/10.1016/j.apsusc.2016.11.214
  • Zhang, J., She, Q., Chang, V. W. C., Tang, C. Y., & Webster, R. D. (2014). Mining nutrients (N, K, P) from urban source-separated urine by forward osmosis dewatering. Environmental Science & Technology, 48(6), 3386–3394.
  • Zhang, M., Song, G., Gelardi, D. L., Huang, L., Khan, E., Mašek, O., Parikh, S. J., & Ok, Y. S. (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, 116303. https://doi.org/10.1016/j.watres.2020.116303
  • Zhang, M., Zheng, K., Jin, J., Yu, X., Qiu, L., Ding, S., Lu, H., Cai, J., & Zheng, P. (2013). Effects of Fe(II)/P ratio and pH on phosphorus removal by ferrous salt and approach to mechanisms. Separation and Purification Technology, 118, 801–805. https://doi.org/10.1016/j.seppur.2013.08.034
  • Zheng, X., Sun, P., Han, J., Song, Y., Hu, Z., Fan, H., & Lv, S. (2014). Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR) – A mini-review. Process Biochemistry, 49(12), 2207–2213. https://doi.org/10.1016/j.procbio.2014.10.008
  • Zheng, X., Sun, P., Lou, J., Fang, Z., Guo, M., Song, Y., Tang, X., & Jiang, T. (2013). The long-term effect of nitrite on the granule-based enhanced biological phosphorus removal system and the reversibility. Bioresource Technology, 132, 333–341.
  • Zheng, Y., Wan, Y., Chen, J., Chen, H., & Gao, B. (2020a). MgO modified biochar produced through ball milling: A dual-functional adsorbent for removal of different contaminants. Chemosphere, 243, 125344. https://doi.org/10.1016/j.chemosphere.2019.125344
  • Zheng, Y., Wang, B., Wester, A. E., Chen, J., He, F., Chen, H., & Gao, B. (2019a). Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar. Chemical Engineering Journal, 362, 460–468. https://doi.org/10.1016/j.cej.2019.01.036
  • Zheng, Y., Yang, Y., Zhang, Y., Zou, W., Luo, Y., Dong, L., & Gao, B. (2019b). Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation. Biochar, 1(1), 89–96. https://doi.org/10.1007/s42773-019-00007-4
  • Zheng, Y., Zimmerman, A. R., & Gao, B. (2020b). Comparative investigation of characteristics and phosphate removal by engineered biochars with different loadings of magnesium, aluminum, or iron. The Science of the Total Environment, 747, 141277. https://doi.org/10.1016/j.scitotenv.2020.141277
  • Zou, H. W., Zhao, J. W., He, F., Zhong, Z., Huang, J. S., Zheng, Y. L., Zhang, Y., Yang, Y. C., Yu, F., Bashir, M. A., & Gao, B. (2021). Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms. Journal of Hazardous Materials, 413, 125252. https://doi.org/10.1016/j.jhazmat.2021.125252

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.