1,296
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Emulsion system, demulsification and membrane technology in oil–water emulsion separation: A comprehensive review

, , &
Pages 1254-1278 | Published online: 14 Oct 2022

References

  • Abdulredha, M., Hussain, S. A., & Abdullah, L. C. (2020). Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arabian Journal of Chemistry, 13(1), 3403–3428. https://doi.org/10.1016/j.arabjc.2018.11.014
  • Abdurahman, N. H., Yunus, R. M., Azhari, N. H., Said, N., & Hassan, Z. (2017). The potential of microwave heating in separating water-in-oil (w/o) emulsions. Energy Procedia. 138, 1023–1028. https://doi.org/10.1016/j.egypro.2017.10.123
  • Abullah, M. M. S., Al-Lohedan, H. A., & Attah, A. M. (2016). Synthesis and application of amphiphilic ionic liquid based on acrylate copolymers as demulsifier and oil spill dispersant. Journal of Molecular Liquids, 219, 54–62. https://doi.org/10.1016/j.molliq.2016.03.011
  • Adewunmi, A. A., Kamal, M. S., & Solling, T. I. (2021). Application of magnetic nanoparticles in demulsification: A review on synthesis, performance, recyclability, and challenges. Journal of Petroleum Science and Engineering, 196, 107680. https://doi.org/10.1016/j.petrol.2020.107680
  • Aguiar, A., Andrade, L., Grossi, L., Pires, W., & Amaral, M. (2018). Acid mine drainage treatment by nanofiltration: A study of membrane fouling, chemical cleaning, and membrane ageing. Separation and Purification Technology, 192, 185–195. https://doi.org/10.1016/j.seppur.2017.09.043
  • Aleem, W., & Mellon, N. (2018). Model for the prediction of separation profile of oil-in-water emulsion. Journal of Dispersion Science and Technology, 39(1), 8–17. https://doi.org/10.1080/01932691.2017.1288132
  • Ali, N., Zhang, B. L., Zhang, H. P., Zaman, W., Li, X. J., Li, W., & Zhang, Q. Y. (2015). Interfacially active and magnetically responsive composite nanoparticles with raspberry like structure; synthesis and its applications for heavy crude oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 472, 38–49. https://doi.org/10.1016/j.colsurfa.2015.01.087
  • Ambaye, T. G., Vaccari, M., Prasad, S., & Rtimi, S. (2021). Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives. Environmental Technology & Innovation, 24, 102090. https://doi.org/10.1016/j.eti.2021.102090
  • Andrade, L. H., Ricci, B. C., Grossi, L. B., Pires, W. L., Aguiar, A. O., & Amaral, M. C. S. (2017). Nanofiltration applied in gold mining effluent treatment: Evaluation of chemical cleaning and membrane stability. Chemical Engineering Journal, 323, 545–556. https://doi.org/10.1016/j.cej.2017.04.116
  • Arancibia, C., Riquelme, N., Zúñiga, R., & Matiacevich, S. (2017). Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions. Innovative Food Science & Emerging Technologies, 44, 159–166. https://doi.org/10.1016/j.ifset.2017.06.009
  • Atta, A. M., Al-Lohedan, H. A., Abdullah, M. M. S., & ElSaeed, S. M. (2016). Application of new amphiphilic ionic liquid based on ethoxylated octadecylammonium tosylate as demulsifier and petroleum crude oil spill dispersant. Journal of Industrial and Engineering Chemistry, 33, 122–130. https://doi.org/10.1016/j.jiec.2015.09.028
  • Baig, U., Faizan, M., & Dastageer, M. A. (2021). Polyimide based super-wettable membranes/materials for high performance oil/water mixture and emulsion separation: A review. Advances in Colloid and Interface Science, 297, 102525. https://doi.org/10.1016/j.cis.2021.102525
  • Bernardo, P., Iulianelli, A., Macedonio, F., & Drioli, E. (2021). Membrane technologies for space engineering. Journal of Membrane Science, 626(1), 119177. https://doi.org/10.1016/j.memsci.2021.119177
  • Binks, B. P., & Lumsdon, S. O. (2000). Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir, 16(23), 8622–8631. https://doi.org/10.1021/la000189s
  • Budiman, F., Ismardi, A., Muhammad, R., Hardinah, T., Rozana, M., Ismail, S., & Lockman, Z. (2021). Thermally oxidized steel mesh for oil-water separation application and its automation device. Environmental Nanotechnology, Monitoring and Management, 16, 100538. https://doi.org/10.1016/j.enmm.2021.100538
  • Cao, J. L., Su, Y. L., Liu, Y. N., Guan, J. Y., He, M. R., Zhang, R. N., & Jiang, Z. Y. (2018). Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation. Journal of Membrane Science, 566, 268–277. https://doi.org/10.1016/j.memsci.2018.08.068
  • Chanamai, R., Horn, G., & McClements, D. J. (2002). Influence of oil polarity on droplet growth in oil-in-Water emulsions stabilized by a weakly adsorbing biopolymer or a nonionic surfactant. Journal of Colloid and Interface Science, 247(1), 167–176. http://doi.org/10.1006/jcis.2001.8110
  • Chen, C. L., Chen, L., Weng, D., Li, X., Li, Z. X., & Wang, J. D. (2020). Simulation study on the dynamic behaviors of water-in-oil emulsified droplets on coalescing fibers. Langmuir: The ACS Journal of Surfaces and Colloids, 36(48), 14872–14880. https://dx.doi.org/10.1021/acs.langmuir.0c02948
  • Chen, J., Zhang, W. P., Wan, Z., Li, S. F., Huang, T. C., & Fei, Y. J. (2019). Oil spills from global tankers: Status review and future governance. Journal of Cleaner Production, 227, 20–32. https://doi.org/10.1016/j.jclepro.2019.04.020
  • Chen, W. M., Gu, Z. P., Ran, G., & Li, Q. B. (2021). Application of membrane separation technology in the treatment of leachate in China: A review. Waste Management (New York, N.Y.), 121, 127–140. http://doi.org/10.1016/j.wasman.2020.12.002
  • Chen, W. Y., Wang, R., Wen, J., Zhang, L. H., & Zhang, H. (2021). Research progress in the application of nanoparticles in the field of demulsification. Journal of Petrochemical Universities, 34(2), 9–16.
  • Chen, X. Y., Chen, D. Y., Li, N. J., Xu, Q. F., Li, H., He, J. H., & Lu, J. M. (2018). An i-doped (BiO)2CO3 nanosheets-wrapped carbon cloth for highly efficient separation of oil-in-water emulsions. Journal of Membrane Science, 567, 209–215. https://doi.org/10.1016/j.memsci.2018.09.043
  • Chen, X. Y., Zong, B. Q., Zhang, Y. Y., & Wang, C. Y. (2014). Recent advances of researches on determination of nonionic surfactants. Physical Testing and Chemical Analysis, 50(7), 916–922.
  • Chen, Y., Tian, G. W., Liang, H. B., & Liang, Y. N. (2019). Synthesis of magnetically responsive hyperbranched polyamidoamine based on the graphene oxide: Application as demulsifier for oi-in-water emulsions. International Journal of Energy Research, 43(9), 4756–4765. https://doi.org/10.1002/er.4614
  • Cheng, H., Zhang, H. X., Li, D., Duan, H. W., & Liang, L. (2020). Impact of oil type on the location, partition and chemical stability of resveratrol in oil-in-water emulsions stabilized by whey protein isolate plus gum Arabic. Food Hydrocolloids. 109, 106119. https://doi.org/10.1016/j.foodhyd.2020.106119
  • Cheng, Z. G., Wang, J. W., Lai, H., Du, Y., Hou, R., Li, C., Zhang, N. Q., & Sun, K. N. (2015). pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film. Langmuir: The ACS Journal of Surfaces and Colloids, 31(4), 1393–1399. https://doi.org/10.1021/la503676a
  • Daksa Ejeta, D., Wang, C.-F., Kuo, S.-W., Chen, J.-K., Tsai, H.-C., Hung, W.-S., Hu, C.-C., & Lai, J.-Y. (2020). Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation. Chemical Engineering Journal, 402, 126289. https://doi.org/10.1016/j.cej.2020.126289
  • Deng, Y. Y., Dai, M., Wu, Y. N., Ali, I., Zhao, J. M., Li, S., & Peng, C. S. (2022). High-efficient novel super-wetting HKUST-1 membrane for oil-water separation: Development, characterization and performance. Journal of Cleaner Production, 333, 130109. https://doi.org/10.1016/j.jclepro.2021.130109
  • Deng, Y. Y., Peng, C. S., Dai, M., Lin, D. C., Ali, I., Alhewairini, S. S., Zheng, X. L., Chen, G. Q., Li, J. Y., & Naz, I. (2020). Recent development of super-wettable materials and their applications in oil-water separation. Journal of Cleaner Production, 266, 121624. https://doi.org/10.1016/j.jclepro.2020.121624
  • Deng, Y. Y., Wu, Y. N., Chen, G. Q., Zheng, X. L., Dai, M., & Peng, C. S. (2021). Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation. Chemical Engineering Journal, 405, 127004. https://doi.org/10.1016/j.cej.2020.127004
  • Dong, H. J., & Meng, T. (2019). A Review of the determination methods of anionic surfactants. Chemical Engineering Design Communications, 45(11), 116–123.
  • Ezzat, A. O., Atta, A. M., Al-Lohedan, G. A., & Aldalbahi, A. (2020). New amphiphilic pyridinium ionic liquids for demulsification of water Arabic heavy crude oil emulsions. Journal of Molecular Liquids, 312, 113407. https://doi.org/10.1016/j.molliq.2020.113407
  • Ezzat, A. O., Tawfeek, A. M., & Al-Lohedan, H. A. (2022). Synthesis and application of novel gemini pyridinium ionic liquids as demulsifiers for arabian heavy crude oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 634, 127961. https://doi.org/10.1016/j.colsurfa.2021.127961
  • Faizullayev, S., Adilbekova, A., Kujawski, W., & Mirzaeian, M. (2022). Recent demulsification methods of crude oil emulsions -Brief review. Journal of Petroleum Science and Engineering, 215, 110643. https://doi.org/10.1016/j.petrol.2022.110643
  • Fang, S. J., Zhao, J. F., Gao, Y. L., & Yun, J. X. (2022). Polydopamine-CaCO3 modified superhydrophilic nanocomposite membrane used for highly efficient separation of oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 639, 128355. https://doi.org/10.1016/j.colsurfa.2022.128355
  • Fang, S. W., Zhu, Y., Chen, B., Xiong, Y., & Duan, M. (2016). Magnetic demulsifier prepared by using one-pot reaction and its performance for treating oily wastewater. The Canadian Journal of Chemical Engineering, 94(12), 2298–2302. https://doi.org/10.1002/cjce.22625
  • Feng, J. G., Xiang, S., Qian, K., & Zhu, F. (2015). Characterization methods for emulsion stability and their applications in the research and development for pesticide emulsions oil in water. Chinese Journal of Pesticide Science, 17(1), 15–26.
  • Feng, L. D., Gao, Y., Dai, Z. G., Dan, H. B., Xiao, F., Yue, Q. Y., Gao, B. Y., & Wang, S. G. (2021). Preparation of a rice straw-based green separation layer for efficient and persistent oil-in-water emulsion separation. Journal of Hazardous Materials, 415, 125594. https://doi.org/10.1016/j.jhazmat.2021.125594
  • Ge, J. L., Zhang, J. C., Wang, F., Wang, F., Li, Z. L., Yu, J. Y., & Ding, B. (2017). Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. Journal of Materials Chemistry A, 5(2), 497–502. https://doi.org/10.1039/C6TA07652A
  • Guo, H. S., Yang, J., Xu, T., Zhao, W. Q., Zhang, J. M., Zhu, Y. N., Wen, C. Y., Li, Q. S., Sui, X. J., & Zhang, L. (2019). A robust cotton textile-based material for high-flux oil–water separation. ACS Applied Materials & Interfaces, 11(14), 13704–13713. https://doi.org/10.1021/acsami.9b01108
  • Gupta, R. K., Dunderdale, G. J., England, M. W., & Hozumi, A. (2017). Oil/water separation techniques: A review of recent progresses and future directions. Journal of Materials Chemistry A, 5(31), 16025–16058. https://doi.org/10.1039/C7TA02070H
  • Hao, L., Jiang, B., Zhang, L. H., Yang, H. W., Sun, Y. L., Wang, B. Y., & Yang, N. (2016). Efficient demulsification of diesel-in-water emulsions by different structural dendrimer-based demulsifiers. Industrial & Engineering Chemistry Research, 55(6), 1748–1759. https://doi.org/10.1021/acs.iecr.5b04401
  • Hassanshahi, N., Hu, G., & Li, J. B. (2020). Application of ionic liquids for chemical demulsification: A review. Molecules, 25(21), 4915. https://doi.org/10.3390/molecules25214915
  • He, B., Ding, Y. J., Wang, J. Q., Yao, Z. K., Qing, W. H., Zhang, Y. J., Liu, F., & Tang, C. Y. (2019). Sustaining fouling resistant membranes: Membrane fabrication, characterization and mechanism understanding of demulsification and fouling-resistance. Journal of Membrane Science, 581, 105–113. https://doi.org/10.1016/j.memsci.2019.03.045
  • He, H. Q., Liu, Y. J., Zhu, Y. M., Zhang, T. C., & Yuan, S. J. (2022). Underoil superhydrophilic CuC2O4@Cu-MOFs core-shell nanosheets-coated copper mesh membrane for on-demand emulsion separation and simultaneous removal of soluble dye. Separation and Purification Technology, 293, 121089. https://doi.org/10.1016/j.seppur.2022.121089
  • Helle, I., Mäkinen, J., Nevalainen, M., Afenyo, M., & Vanhatalo, J. (2020). Impacts of oil spills on arctic marine ecosystems: A quantitative and probabilistic risk assessment perspective. Environmental Science & Technology, 54(4), 2112–2121. http://doi.org/10.1021/acs.est.9b07086
  • Ho, C.-H., Tsai, C.-P., Chung, C.-C., Tsai, C.-Y., Chen, F.-R., Lin, H.-J., & Lai, C.-H. (2011). Shape-controlled growth and shape-dependent cation site occupancy of monodisperse Fe3O4 nanoparticles. Chemistry of Materials, 23(7), 1753–1760. https://doi.org/10.1021/cm102758u
  • Hou, N., Yang, J. X., Ma, F., Li, D. P., Wen, Q. X., & Guo, J. B. (2009). Properties study and phylogenetic analysis of a bacterial strain with high de-emulsification efficiency. Journal of Harbin Institute of Technology, 16 , 350–354.
  • Hou, X. B., Zhang, R. B., & Fang, D. N. (2021). Flexible and robust polyimide membranes with adjustable surface structure and hierarchical pore distribution for oil/water emulsion and heavy oil separation. Journal of Membrane Science, 640, 119769. https://doi.org/10.1016/j.memsci.2021.119769
  • Huang, J. C., Luo, J. Q., Chen, X. R., Feng, S. C., & Wan, Y. H. (2021). New insights into effect of alkaline cleaning on fouling behavior of polyamide nanofiltration membrane for wastewater treatment. The Science of the Total Environment, 780, 146632. https://doi.org/10.1016/j.scitotenv.2021.146632
  • Huang, X., Wang, W. P., Liu, Y. D., Wang, H., Zhang, Z. B., Fan, W. L., & Li, L. (2015). Treatment of oily waste water by PVP grafted PVDF ultrafiltration membranes. Chemical Engineering Journal, 273, 421–429. https://doi.org/10.1016/j.cej.2015.03.086
  • Huang, Y., Huang, Q. L., Liu, H. L., Xiao, C. F., & Sun, K. X. (2020). A facile and environmental-friendly strategy for preparation of poly (tetrafluoroethylene-co-hexafluoropropylene) hollow fiber membrane and its membrane emulsification performance. Chemical Engineering Journal, 384, 123345. https://doi.org/10.1016/j.cej.2019.123345
  • Ismail, N. H., Salleh, W. N. W., Ismail, A. F., Hasbullah, H., Yusof, N., Aziz, F., & Jaafar, J. (2020). Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Separation and Purification Technology, 233, 116007. https://doi.org/10.1016/j.seppur.2019.116007
  • Jabbari, M., Izadmanesh, Y., & Ghavidel, H. (2019). Synthesis of ionic liquids as novel emulsifier and demulsifiers. Journal of Molecular Liquids, 293, 111512. https://doi.org/10.1016/j.molliq.2019.111512
  • Jamaly, S., Giwa, A., & Hasan, S. (2015). Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities. Journal of Environmental Sciences (China), 37, 15–30. http://doi.org/10.1016/j.jes.2015.04.011
  • Javadian, S., & Sadrpoor, S. M. (2020). Demulsification of water in oil emulsion by surface modified SiO2 nanoparticle. Journal of Petroleum Science and Engineering, 184, 106547. https://doi.org/10.1016/j.petrol.2019.106547
  • Ji, D. W., Xiao, C. F., An, S. L., Liu, H. L., Chen, K. K., Hao, J. Q., & Zhang, T. (2018). Preparation of PSF/FEP mixed matrix membrane with super hydrophobic surface for efficient water-in-oil emulsion separation. RSC Advances, 8(18), 10097–10106. https://doi.org/10.1039/c8ra00055g
  • Kim, S., Cho, H., & Hwang, W. (2021). Robust superhydrophilic depth filter and oil/water separation device with pressure control system for continuous oily water treatment on a large scale. Separation and Purification Technology, 256, 117779. https://doi.org/10.1016/j.seppur.2020.117779
  • Kuang, J. Z., Mi, Y. Z., Zhang, Z. J., Ye, F., Yuan, H. K., Liu, W. F., Jiang, X., & Luo, Y. (2020). A hyperbranched Poly(amido amine) demulsifier with trimethyl citrate as initial cores and its demulsification performance at ambient temperature. Journal of Water Process Engineering, 38, 101542. https://doi.org/10.1016/j.jwpe.2020.101542
  • Kuroiwa, T., Takada, H., Shogen, A., Saito, K., Kobayashi, I., Uemura, K., & Kanazawa, A. (2017). Cross-linkable chitosan-based hydrogel microbeads with pH-responsive adsorption properties for organic dyes prepared using size-tunable microchannel emulsification technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 514, 69–78. https://doi.org/10.1016/j.colsurfa.2016.11.046
  • Lei, J., & Guo, Z. G. (2021). Superamphiphilic stainless steel mesh for oil/water emulsion separation on-demand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 127574. https://doi.org/10.1016/j.colsurfa.2021.127574
  • Li, H. Y., Mu, P., Li, J., & Wang, Q. T. (2021). Inverse desert beetle-like ZIF-8/PAN composite nanofibrous membrane for highly efficient separation of oil-in-water emulsions. Journal of Materials Chemistry A, 9(7), 4167–4175. https://doi.org/10.1039/D0TA08469G
  • Li, H., Zhu, L., Zhang, J., Guo, T., Li, X., Xing, W., & Xue, Q. (2019). High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks. Applied Surface Science, 476, 61–69. https://doi.org/10.1016/j.apsusc.2019.01.064
  • Li, J., Wang, C. Y., Tang, Q., Zhai, M. J., Wang, Q. Q., Shi, M., & Li, X. B. (2020). Preparation and application of supported demulsifier PPA@SiO2 for oil removal of oil-in-water emulsion. Separation Science and Technology, 55(14), 2538–2549. https://doi.org/10.1080/01496395.2019.1634733
  • Li, J., Xu, C. C., Tian, H. F., Zha, F., Qi, W., & Wang, Q. (2018). Blend-electrospun poly(vinylidene fluoride)/stearic acid membranes for efficient separation of water-in-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 494–499. https://doi.org/10.1016/j.colsurfa.2017.11.043
  • Li, X. H., Kersten, S. R. A., & Schuur, B. (2016). Efficiency and mechanism of demulsification of oil-in-water emulsions using ionic liquids. Energy & Fuels, 30(9), 7622–7628. https://doi.org/10.1021/acs.energyfuels.6b01415
  • Liang, J. L., Du, N., Song, S., & Hou, W. G. (2015). Magnetic demulsification of diluted crude oil-in-water nanoemulsions using oleic acid-coated magnetite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 466, 197–202. https://doi.org/10.1016/j.colsurfa.2014.11.050
  • Liu, J., Wang, H. J., Li, X. C., Jia, W. H., Zhao, Y. P., & Ren, S. L. (2017). Recyclable magnetic graphene oxide for rapid and efficient demulsification of crude oil-in-water emulsion. Fuel, 189, 79–87. https://doi.org/10.1016/j.fuel.2016.10.066
  • Liu, M. M., Li, J., & Guo, Z. G. (2016a). Polyaniline coated membranes for effective separation of oil-in-water emulsions. Journal of Colloid and Interface Science, 467, 261–270. http://doi.org/10.1016/j.jcis.2016.01.024
  • Liu, M. M., Li, J., & Guo, Z. G. (2016b). Electrochemical route to prepare polyaniline-coated meshes with controllable pore size for switchable emulsion separation. Chemical Engineering Journal, 304, 115–120. https://doi.org/10.1016/j.cej.2016.06.073
  • Low, L. E., Siva, S. P., Ho, Y. K., Chan, E. S., & Tey, B. T. (2020). Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Advances in Colloid and Interface Science, 277, 102117. https://doi.org/10.1016/j.cis.2020.102117
  • Lü, P., Zuo, Q. Q., Li, Q., Wu, X. Y., Wang, C. S., & Zhang, R. F. (2015). Review of various measurement methods for surfactants. China Surfactant Detergent and Cosmetics, 45(11), 643–647.
  • Luo, X. M., Cao, J. H., Gong, H. Y., Yan, H. P., & He, L. M. (2018a). Phase separation technology based on ultrasonic standing waves: A review. Ultrasonics Sonochemistry, 48, 287–298. https://doi.org/10.1016/j.ultsonch.2018.06.006
  • Luo, X. M., Cao, J. H., Yan, H. P., Gong, H. Y., Yin, H. R., & He, L. M. (2018b). Study on separation characteristics of water in oil (W/O) emulsion under ultrasonic standing wave field. Chemical Engineering and Processing - Process Intensification, 123, 214–220. https://doi.org/10.1016/j.cep.2017.11.014
  • Ma, Z., Zhao, Y., Khalid, N., Shu, G., Neves, M. A., Kobayashi, I., & Nakajima, M. (2020). Comparative study of oil-in-water emulsions encapsulating fucoxanthin formulated by microchannel emulsification and high-pressure homogenization. Food Hydrocolloids. 108, 105977. https://doi.org/10.1016/j.foodhyd.2020.105977
  • Marhamati, M., Ranjbar, G., & Rezaie, M. (2021). Effects of emulsifiers on the physicochemical stability of oil-in-water nanoemulsions: A critical review. Journal of Molecular Liquids, 340, 117218. https://doi.org/10.1016/j.molliq.2021.117218
  • Mcclements, D. J. (2004). Protein-stabilized emulsions. Current Opinion in Colloid & Interface Science, 9(5), 305–313. https://doi.org/10.1016/j.cocis.2004.09.003
  • Mokoba, T., Li, Z. K., Zhang, T. C., & Yuan, S. J. (2022). Superwetting sea urchin-like BiOBr@Co3O4 nanowire clusters-coated copper mesh with efficient emulsion separation and photo-Fenton-like degradation of soluble dye. Applied Surface Science, 594, 153497. https://doi.org/10.1016/j.apsusc.2022.153497
  • Mugabi, J., Jeong, J. H., Igura, N., & Shimoda, M. (2021). Preparation of monodispersed emulsions by premix membrane emulsification without repetitive permeation: Influence of membrane permeation rate (flux) and emulsion viscosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 127560. https://doi.org/10.1016/j.colsurfa.2021.127560
  • Nanda, D., Sahoo, A., Kumar, A., & Bhushan, B. (2019). Facile approach to develop durable and reusable superhydrophobic/superoleophilic coatings for steel mesh surfaces. Journal of Colloid and Interface Science, 535, 50–57. https://doi.org/10.1016/j.jcis.2018.09.088
  • Nasir, A. M., Adam, M. R., Mohamad Kamal, S. N. E. A., Jaafar, J., Othman, M. H. D., Ismail, A. F., Aziz, F., Yusof, N., Bilad, M. R., Mohamud, R., A Rahman, M., & Wan Salleh, W. N. (2022). A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Separation and Purification Technology, 286, 120454. https://doi.org/10.1016/j.seppur.2022.120454
  • Ostertag, F., Weiss, J., & Mcclements, D. J. (2012). Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. Journal of Colloid and Interface Science, 388(1), 95–102. https://doi.org/10.1016/j.jcis.2012.07.089
  • Padaki, M., Murali, R. S., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A., Hilal, N., & Ismail, A. F. (2015). Membrane technology enhancement in oil-water separation. A review. Desalination, 357, 197–207. https://doi.org/10.1016/j.desal.2014.11.023
  • Peng, X., Jin, J., Nakamura, Y., Ohno, T., & Ichinose, I. (2009). Ultrafast permeation of water through protein-based membranes. Nature Nanotechnology, 4(6), 353–357. http://doi.org/10.1038/nnano.2009.90
  • Pensini, E., Harbottle, D., Yang, F., Harbottle, P., Li, Z. F., Kailey, I., Behles, J., Masliyah, J., & Xu, Z. H. (2014). Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide - propylene oxide demulsifier. Energy & Fuels, 28(11), 6760–6771. https://doi.org/10.1021/ef501387k
  • Qu, J. H., Wang, H. C., Wang, K. J., Yu, G., Ke, G., Ke, B., Yu, H. Q., Ren, H. Q., Zheng, X. C., Li, J., Li, W. W., Gao, S., & Gong, H. (2019). Municipal wastewater treatment in China: Development history and future perspectives. Frontiers of Environmental Science and Engineering, 13(6), 88. https://doi.org/10.1007/s11783-019-1172-x
  • Rasouli, S., Rezaei, N., Hamedi, H., Zendehboud, S., & Duan, X. L. (2021). Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review. Materials & Design, 204, 109599. https://doi.org/10.1016/j.matdes.2021.109599
  • Ravera, F., Dziza, K., Santini, E., Cristofolini, L., & Liggieri, L. (2021). Emulsification and emulsion stability: The role of the interfacial properties. Advances in Colloid and Interface Science, 288, 102344. https://doi.org/10.1016/j.cis.2020.102344
  • Raya, S. A., Mohd Saaid, I., Abbas Ahmed, A., & Abubakar Umar, A. (2020). A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. Journal of Petroleum Exploration and Production Technology, 10(4), 1711–1728. https://doi.org/10.1007/s13202-020-00830-7
  • Reyes, Y., Hamzehlou, S., & Leiza, J. R. (2021). Ostwald ripening in nano/miniemulsions in the presence of two costabilizers as revealed by molecular dynamics simulations. Journal of Molecular Liquids, 335, 116152. https://doi.org/10.1016/j.molliq.2021.116152
  • Santos, D., da Rocha, E. C., Santos, R. L., Cancelas, A. J., Franceschi, E., Santos, A. F., Fortuny, M., & Dariva, C. (2017). Demulsification of water-in-crude oil emulsions using single mode and multimode microwave irradiation. Separation and Purification Technology, 189, 347–356. https://doi.org/10.1016/j.seppur.2017.08.028
  • Shao, L. Y., Yu, Z. X., Li, X. H., Zeng, H. J., & Liu, Y. C. (2019). One-step preparation of sepiolite/graphene oxide membrane for multifunctional oil-in-water emulsions separation. Applied Clay Science, 181, 105208. https://doi.org/10.1016/j.clay.2019.105208
  • Sheth, T., Seshadri, S., Prileszky, T., & Helgeson, M. E. (2020). Multiple nanoemulsions. Nature Reviews Materials, 5(3), 214–228. https://doi.org/10.1038/s41578-019-0161-9
  • Shi, Z., Zhang, W., Zhang, F., Liu, X., Wang, D., Jin, J., & Jiang, L. (2013). Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Advanced Materials (Deerfield Beach, Fla.), 25(17), 2422–2427. https://doi.org/10.1002/adma.201204873
  • Singh, P., Patil, Y., & Rale, V. (2019). Biosurfactant production: Emerging trends and promising strategies. Journal of Applied Microbiology, 126(1), 2–13. https://doi.org/10.1111/jam.14057
  • Srijaroonrat, P., Julien, E., & Aurelle, Y. (1999). Unstable secondary oil/water emulsion treatment using ultrafiltration: Fouling control by backflushing. Journal of Membrane Science, 159(1-2), 11–20. https://doi.org/10.1016/S0376-7388(99)00044-7
  • Sun, Q. C., Yang, Z. S., Wang, Z. Y., & Wu, L. Y. (2022). Anti-fouling performance investigation of micron-submicron hierarchical structure PVDF membranes in water-in-oil emulsion separation. Journal of Environmental Chemical Engineering, 10(3), 107497. https://doi.org/10.1016/j.jece.2022.107497
  • Sun, W. S., Xu, M., Gao, Y., Xue, J. L., & Ma, Z. (2020). Research progress in biosurfactants and their application in the remediation of petroleum pollution. Contemporary Chemical Industry, 49(4), 728–731.
  • Tanudjaja, H. J., Hejase, C. A., Tarabara, V. V., Fane, A. G., & Chew, J. W. (2019). Membrane-based separation for oily wastewater: A practical perspective. Water Research, 156, 347–365. https://doi.org/10.1016/j.watres.2019.03.021
  • Tian, G. W., Chen, Y., Wang, Y. L., & Zhang, H. Y. (2018). Chemical demulsification mechanism and its research progress. Bulletin of the Chinese Ceramic Society, 37(1), 155–159.
  • Tummons, E., Han, Q., Tanudjaja, H. J., Hejase, C. A., Chew, J. W., & Tarabara, V. V. (2020). Membrane fouling by emulsified oil: A review. Separation and Purification Technology, 248, 116919. https://doi.org/10.1016/j.seppur.2020.116919
  • Ullah, A., Tanudjaja, H. J., Ouda, M., Hasan, S. W., & Chew, J. W. (2021). Membrane fouling mitigation techniques for oily wastewater: A short review. Journal of Water Process Engineering, 43, 102293. https://doi.org/10.1016/j.jwpe.2021.102293
  • Valappil, R., Ghasem, N., & Al-Marzouqi, M. (2021). Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry, 98, 103–129. https://doi.org/10.1016/j.jiec.2021.03.030
  • Vieira, I. M. M., Santos, B. L. P., Ruzene, D. S., & Silva, D. P. (2021). An overview of current research and developments in biosurfactants. Journal of Industrial and Engineering Chemistry, 100, 1–18. https://doi.org/10.1016/j.jiec.2021.05.017
  • Wang, D., Yang, D., Huang, C., Huang, Y., Yang, D., Zhang, H., Liu, Q., Tang, T., Gamal El-Din, M., Kemppi, T., Perdicakis, B., & Zeng, H. (2021). Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review. Fuel, 286, 119390. https://doi.org/10.1016/j.fuel.2020.119390
  • Wang, J. Q., He, B., Ding, Y. J., Li, T. T., Zhang, W. L., Zhang, Y. J., Liu, F., & Tang, C. Y. (2021). Beyond superwetting surfaces: Dual-scale hyperporous membrane with rational wettability for "nonfouling" emulsion separation via coalescence demulsification. ACS Applied Materials & Interfaces, 13(3), 4731–4739. https://doi.org/10.1021/acsami.0c19561
  • Wei, L. E., Yin, X., Liu, J. T., & Zhong, J. Y. (2017). Review of bio-surfactant application in oil spill pollution treatment. Jiangxi Institute of Water Sciences, 43(4), 263–266.
  • Wei, W., Sun, M. Y., Zhang, L., Zhao, S. F., Wu, J. D., & Wang, J. P. (2017). Underwater oleophobic PTFE membrane for efficient and reusable emulsion separation and the influence of surface wettability and pore size. Separation and Purification Technology, 189, 32–39. https://doi.org/10.1016/j.seppur.2017.07.074
  • Wu, J. D., Wei, W., Li, S. H., Zhong, Q., Liu, F., Zheng, J. H., & Wang, J. P. (2018). The effect of membrane surface charges on demulsification and fouling resistance during emulsion separation. Journal of Membrane Science, 563, 126–133. https://doi.org/10.1016/j.memsci.2018.05.065
  • Xiang, X., Chen, D. Y., Li, N. J., Xu, Q. F., Li, H., He, J. H., & Lu, J. M. (2022). Mil-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation. Separation and Purification Technology, 282, 119910. https://doi.org/10.1016/j.seppur.2021.119910
  • Xie, A. T., Cui, J. Y., Yang, J., Chen, Y. Y., Lang, J. H., Li, C. X., Yan, Y. S., & Dai, J. D. (2020a). Dual superlyophobic zeolitic imidazolate framework-8 modified membrane for controllable oil/water emulsion separation. Separation and Purification Technology, 236, 116273. https://doi.org/10.1016/j.seppur.2019.116273
  • Xie, A. T., Cui, J. Y., Yang, J., Chen, Y. Y., Lang, J. H., Li, C. X., Yan, Y. S., & Dai, J. D. (2020b). Photo-Fenton self-cleaning PVDF/NH2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation. Journal of Membrane Science, 595, 117499. https://doi.org/10.1016/j.memsci.2019.117499
  • Xu, C., Yan, F., Wang, M., Yan, H., Cui, Z., Li, J., & He, B. (2020). Fabrication of hyperbranched polyether demulsifier modified PVDF membrane for demulsification and separation of oil-in-water emulsion. Journal of Membrane Science, 602, 117974. https://doi.org/10.1016/j.memsci.2020.117974
  • Xu, X., Liu, B. J., Zhang, M. G., Liu, S., Zhu, F. P., & Wang, J. (2016). Electrolytes on governing particle coagulation and size distribution in the emulsion polymerization of butyl acrylate. Journal of Polymer Research, 23(1), 9. https://doi.org/10.1007/s10965-015-0900-6
  • Yan, J. J., Xiao, C. F., & Wang, C. (2022). Robust preparation of braid-reinforced hollow fiber membrane covered by PVDF nanofibers and PVDF/SiO2 micro/nanospheres for highly efficient emulsion separation. Separation and Purification Technology, 298, 121593. https://doi.org/10.1016/j.seppur.2022.121593
  • Yang, Y. J., Guo, Z. W., Li, Y. X., Qing, Y. S., Dansawad, R. C., Wu, H., Liang, J. L., & Li, W. L. (2022). Electrospun rough PVDF nanofibrous membranes via introducing fluorinated SiO2 for efficient oil-water emulsions coalescence separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129646. https://doi.org/10.1016/j.colsurfa.2022.129646
  • Ye, F., Wang, Z. H., Mi, Y. Z., Kuang, J. Z., Jiang, X., Huang, Z. M., Luo, Y., Shen, L. W., Yuan, H. K., & Zhang, Z. J. (2020). Preparation of reduced graphene oxide/titanium dioxide composite materials and its application in the treatment of oily wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124251. https://doi.org/10.1016/j.colsurfa.2019.124251
  • Yu, L., Han, M., & He, F. (2017). A review of treating oily wastewater. Arabian Journal of Chemistry, 10, S1913–S1922. https://doi.org/10.1016/j.arabjc.2013.07.020
  • Yuan, H. K., Zhang, Z. J., Mi, Y. Z., Ye, F., Liu, W. F., Kuan, J. Z., Jiang, X., & Luo, Y. (2020). Demulsification of water-containing crude oil driven by environmentally friendly SiO2@CS composite materials. Energy & Fuels, 34(7), 8316–8324. https://doi.org/10.1021/acs.energyfuels.0c01660
  • Zarghami, S., Mohammadi, T., Sadrzadeh, M., & Van der Bruggen, B. (2019). Superhydrophilic and underwater superoleophobic membranes - review of synthesis methods. Progress in Polymer Science, 98, 101166. https://doi.org/10.1016/j.progpolymsci.2019.101166
  • Zhai, M. J., Wu, M., Wang, C. Y., & Li, X. B. (2020). A novel silica-supported polyether polysiloxane quaternary ammonium demulsifier for highly efficient fine-sized oil droplet removal of oil-in-water emulsions. RSC Advances, 10(32), 18918–18926. https://doi.org/10.1039/d0ra01679a
  • Zhang, J. Q., Xue, Q. Z., Pan, X. L., Jin, Y. K., Lu, W. B., Ding, D. G., & Guo, Q. K. (2017). Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chemical Engineering Journal, 307, 643–649. https://doi.org/10.1016/j.cej.2016.08.124
  • Zhang, L. Y., He, Y., Luo, P. Y., Ma, L., Li, S. S., Nie, Y. L., Zhong, F., Wang, Y. Q., & Chen, L. (2022). Photocatalytic GO/M88A “interceptor plate” assembled nanofibrous membrane with photo-Fenton self-cleaning performance for oil/water emulsion separation. Chemical Engineering Journal, 427, 130948. https://doi.org/10.1016/j.cej.2021.130948
  • Zhang, N., Yang, X. W., Wang, Y. L., Qi, Y. F., Zhang, Y. N., Luo, J. L., Cui, P., & Jiang, W. (2022). A review on oil/water emulsion separation membrane material. Journal of Environmental Chemical Engineering, 10(2), 107257. https://doi.org/10.1016/j.jece.2022.107257
  • Zhang, R. J., Yu, S. L., Shi, W. X., Tian, J. Y., Jin, L., M., Zhang, B., Li, L., & Zhang, Z. Q. (2016). Optimization of a membrane cleaning strategy for advanced treatment of polymer flooding produced water by nanofiltration. RSC Advances, 6(34), 28844–28853. https://doi.org/10.1039/c6ra01832g
  • Zhang, R. N., Liu, Y. N., He, M. R., Su, Y. L., Zhao, X. T., Elimelech, M., & Jiang, Z. Y. (2016). Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chemical Society Reviews, 45(21), 5888–5924.
  • Zhang, W. B., Zhu, Y. Z., Liu, X., Wang, D., Li, J. Y., Jiang, L., & Jin, J. (2014). Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angewandte Chemie, 126(3), 875–879. https://doi.org/10.1002/ange.201308183
  • Zhang, W. P., Qin, Y. B., Chang, S. N., Zhu, H. Y., & Zhang, Q. J. (2021). Influence of oil types on the formation and stability of nano-emulsions by D phase emulsification. Journal of Dispersion Science and Technology, 42(8), 1225–1232. https://doi.org/10.1080/01932691.2020.1737538
  • Zhao, J. M., Deng, Y. Y., Dai, M., Wu, Y. N., Ali, I., & Peng, C. S. (2022). Preparation of super-hydrophobic/super-oleophilic quartz sand filter for the application in oil-water separation. Journal of Water Process Engineering, 46, 102561. https://doi.org/10.1016/j.jwpe.2022.102561
  • Zheng, X., Guo, Z. Y., Tian, D. L., Zhang, X. F., & Jiang, L. (2016). Electric field induced switchable wettability to water on the polyaniline membrane and oil/water separation. Advanced Materials Interfaces, 3(18), 1600461. https://doi.org/10.1002/admi.201600461
  • Zhong, J., Sun, X. J., & Wang, C. L. (2003). Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Separation and Purification Technology, 32(1-3), 93–98. https://doi.org/10.1016/s1383-5866(03)00067-4
  • Zhou, C. L., Feng, J. X., Chen, J., Zhang, H., Lin, J., Zeng, X. J., & Pi, P. H. (2018). Opposite superwetting nickel meshes for on-demand and continuous oil/water separation. Industrial & Engineering Chemistry Research, 57(3), 1059–1070. https://doi.org/10.1021/acs.iecr.7b04517
  • Zhu, M., Liu, Y. C., Chen, M. Y., Xu, Z. H., Li, L. L., & Zhou, Y. (2021). Metal mesh-based special wettability materials for oil-water separation: A review of the recent development. Journal of Petroleum Science and Engineering, 205, 108889. https://doi.org/10.1016/j.petrol.2021.108889
  • Zhu, X. M., Yu, Z. X., Wang, J., Wang, P. Q., Li, X. Y., Long, R. X., & Wang, Q. X. (2022). Chemically stable NH2-MIL-125(Ti)/Sep/PDA composite membranes with high-efficiency for oil/water emulsions separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 646, 128899. https://doi.org/10.1016/j.colsurfa.2022.128899
  • Zhu, X., Zhu, L., Li, H., Zhang, C. Y., Xue, J. W., Wang, R., Qiao, X. R., & Xue, Q. Z. (2021). Enhancing oil-in-water emulsion separation performance of polyvinyl alcohol hydrogel nanofibrous membrane by squeezing coalescence demulsification. Journal of Membrane Science, 630, 119324. https://doi.org/10.1016/j.memsci.2021.119324
  • Zhu, X., Zhu, L., Zhang, J. Q., Li, H., Yu, S. F., Wang, R., Yan, Z. C., Xue, J. W., & Xue, Q. Z. (2022). Robust modified nylon mesh for the separation of crude-oil/water emulsion based on the coupling of squeezing coalescence demulsification and sieving separation. Separation and Purification Technology, 295, 121319. https://doi.org/10.1016/j.seppur.2022.121319
  • Zhu, Y. Z., Wang, D., Jiang, L., & Jin, J. (2014). Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Materials, 6(5), e101–e101. https://doi.org/10.1038/am.2014.23
  • Zolfaghari, R., Fakhru’l-Razi, A., Abdullah, L. C., Elnashaie, S. S., & Pendashteh, A. (2016). Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Separation and Purification Technology, 170, 377–407. https://doi.org/10.1016/j.seppur.2016.06.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.