1,323
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Roles of phytohormones in mitigating abiotic stress in plants induced by metal(loid)s As, Cd, Cr, Hg, and Pb

, , & ORCID Icon
Pages 1310-1330 | Published online: 25 Oct 2022

References

  • Ahanger, M. A., Aziz, U., Alsahli, A. A., Alyemeni, M. N., & Ahmad, P. (2020). Combined kinetin and spermidine treatments ameliorate growth and photosynthetic inhibition in Vigna angularis by up-regulating antioxidant and nitrogen metabolism under Cadmium stress. Biomolecules, 10(1), 147–168. https://doi.org/10.3390/biom10010147
  • Ahmad, B., Jaleel, H., Sadiq, Y., Khan, M. M. A., & Shabbir, A. (2018). Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regulation, 86(2), 273–286. https://doi.org/10.1007/s10725-018-0427-z
  • Ahmad, H., & Li, J. M. (2021). Impact of water deficit on the development and senescence of tomato roots grown under various soil textures of Shaanxi, China. BMC Plant Biology, 21(1), 241. https://doi.org/10.1186/s12870-021-03018-1
  • Ali, W., Zhang, H., Junaid, M., Mao, K., Xu, N., Chang, C., Rasool, A., Wajahat Aslam, M., Ali, J., & Yang, Z. (2021). Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: A critical review. Critical Reviews in Environmental Science and Technology, 51(7), 704–750. https://doi.org/10.1080/10643389.2020.1740042
  • Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Martynenko, E. V., & Kudoyarova, G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil, 272(1–2), 201–209. https://doi.org/10.1007/s11104-004-5047-x
  • Bajguz, A., & Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62(7), 1027–1046. https://doi.org/10.1016/S0031-9422(02)00656-8
  • Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in Phamacology,12, 643972. https://doi.org/10.3389/fphar.2021.643972
  • Bali, S., Kaur, P., Kohli, S. K., Ohri, P., Thukral, A. K., Bhardwaj, R., Wijaya, L., Alyemeni, M. N., & Ahmad, P. (2018). Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. The Science of the Total Environment, 645, 1344–1360. https://doi.org/10.1016/j.scitotenv.2018.07.164
  • Bandara, T., Franks, A., Xu, J., Bolan, N., Wang, H., & Tang, C. (2020). Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Critical Reviews in Environmental Science and Technology, 50(9), 903–978. https://doi.org/10.1080/10643389.2019.1642832
  • Basit, F., Bhat, J. A., Dong, Z., Mou, Q. S., Zhu, X. B., Wang, Y., Hu, J., Jan, B. L., Shakoor, A., Guan, Y. J., & Ahmad, P. (2022). Chromium toxicity induced oxidative damage in two rice cultivars and its mitigation through external supplementation of brassinosteroids and spermine. Chemosphere, 302, 134423. https://doi.org/10.1016/j.chemosphere.2022.134423
  • Ben-Ari, G., & Lavi, U. (2012). 11-Marker-assisted selection in plant breeding. Plant Biotechnology and Agriculture,15(6), 163–184. https://doi.org/10.1016/B978-0-12-381466-1.00011-0
  • Betti, C., Della Rovere, F., Piacentini, D., Fattorini, L., Falasca, G., & Altamura, M. M. (2021). Jasmonates, ethylene and brassinosteroids control adventitious and lateral rooting as stress avoidance responses to heavy metals and metalloids. Biomolecules, 11(1), 77–98. https://doi.org/10.3390/biom11010077
  • Bovet, L., Feller, U., & Martinoia, E. (2005). Possible involvement of plant ABC transporters in cadmium detoxification: A cDNA sub-microarray approach. Environment International, 31(2), 263–267. https://doi.org/10.1016/j.envint.2004.10.011
  • Buanafina, M. M. D. (2009). Feruloylation in grasses: Current and future perspectives. Molecular Plant,2(5), 861–872. https://doi.org/10.1093/mp/ssp067
  • Carrasco-Gil, S., Alvarez-Fernandez, A., Sobrino-Plata, J., Millan, R., Carpena-Ruiz, R. O., Leduc, D. L., Andrews, J. C., Abadia, J., & Hernandez, L. E. (2011). Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant, Cell & Environment, 34(5), 778–791. https://doi.org/10.1111/j.1365-3040.2011.02281.x
  • Carvalho, M. E. A., Castro, P. R. C., & Azevedo, R. A. (2020). Hormesis in plants under Cd exposure: from toxic to beneficial element?Journal of Hazardous Materials, 384, 121434. https://doi.org/10.1016/j.jhazmat.2019.121434
  • Chandrakar, V., Yadu, B., Meena, R. K., Dubey, A., & Keshavkant, S. (2017). Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiology and Biochemistry : PPB, 112, 74–86. https://doi.org/10.1016/j.plaphy.2016.12.023
  • Choudhary, S. P., Kanwar, M., Bhardwaj, R., Yu, J.-Q., & Lam-Son Phan, T. (2012). Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PloS One, 7(3), e33210. https://doi.org/10.1371/journal.pone.0033210
  • Christmann, A., Moes, D., Himmelbach, A., Yang, Y., Tang, Y., & Grill, E. (2006). Integration of abscisic acid signalling into plant responses. Plant Biology (Stuttgart, Germany), 8(3), 314–325. https://doi.org/10.1055/s-2006-924120
  • da Silva, E. B., Gao, P., Xu, M., Guan, D. X., Tang, X. J., & Ma, L. Q. (2020). Background concentrations of trace metals As, Ba, Cd, Co, Cu, Ni, Pb, Se, and Zn in 214 Florida urban soils: Different cities and land uses. Environmental Pollution (Barking, Essex : 1987), 264, 114737. https://doi.org/10.1016/j.envpol.2020.114737
  • David-Assael, O., Berezin, I., Shoshani-Knaani, N., Saul, H., Mizrachy-Dagri, T., Chen, J. X., Brook, E., & Shaul, O. (2006). AtMHX is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential. Functional Plant Biology : FPB, 33(7), 661–672. https://doi.org/10.1071/FP05295
  • de Oliveira, L. M., Lessl, J. T., Gress, J., Tisarum, R., Guilherme, L. R. G., & Ma, L. Q. (2015). Chromate and phosphate inhibited each other’s uptake and translocation in arsenic hyperaccumulator Pteris vittata L. Environmental Pollution (Barking, Essex : 1987), 197, 240–246. https://doi.org/10.1016/j.envpol.2014.11.009
  • de Oliveira, L. M., Suchismita, D., da Silva, E. B., Gao, P., Vardanyan, L., Liu, Y. G., & Ma, L. Q. (2018). Interactive effects of chromate and arsenate on their uptake and speciation in Pteris ensiformis. Plant and Soil, 422(1–2), 515–526. https://doi.org/10.1007/s11104-017-3480-x
  • Deng, F., Liu, X., Chen, Y., Rathinasabapathi, B., Rensing, C., Chen, J., Bi, J., Xiang, P., & Ma, L. Q. (2020). Aquaporins mediated arsenite transport in plants: Molecular mechanisms and applications in crop improvement. Critical Reviews in Environmental Science and Technology, 50(16), 1613–1639. https://doi.org/10.1080/10643389.2019.1662704
  • Deng, T., Wu, D. P., Duan, C. F., Yan, X. H., Du, Y., Zou, J., & Guan, Y. F. (2017). Spatial profiling of gibberellins in a single leaf based on microscale matrix solid-phase dispersion and precolumn derivatization coupled with ultraperformance liquid chromatography-tandem mass spectrometry. Analytical Chemistry, 89(17), 9537–9543. https://doi.org/10.1021/acs.analchem.7b02589
  • Di, D. W., Wu, L., Zhang, L., An, C. W., Zhang, T. Z., Luo, P., Gao, H. H., Kriechbaumer, V., & Guo, G. Q. (2016). Functional roles of ArabidopsisCKRC2/YUCCA8 gene and the involvement of PIF4 in the regulation of auxin biosynthesis by cytokinin. Scientific Reports, 6, 36866. https://doi.org/10.1038/srep36866
  • Drazic, G., & Mihailovic, N. (2005). Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Science, 168(2), 511–517. https://doi.org/10.1016/j.plantsci.2004.09.019
  • Drzewiecka, K., Gąsecka, M., Rutkowski, P., Magdziak, Z., Goliński, P., & Mleczek, M. (2018). Arsenic forms and their combinations induce differences in phenolic accumulation in Ulmus laevis Pall. Journal of Plant Physiology, 220, 34–42. https://doi.org/10.1016/j.jplph.2017.09.013
  • Eichhorn, H., Klinghammer, M., Becht, P., & Tenhaken, R. (2006). Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. Journal of Experimental Botany, 57(10), 2193–2201. https://doi.org/10.1093/jxb/erj179
  • Emamverdian, A., Ding, Y. L., Mokhberdoran, F., & Ahmad, Z. (2020). Mechanisms of selected plant hormones under heavy metal stress. Polish Journal of Environmental Studies, 30(1), 497–507. https://doi.org/10.15244/pjoes/122809
  • Fan, S. K., Fang, X. Z., Guan, M. Y., Ye, Y. Q., Lin, X. Y., Du, S. T., & Jin, C. W. (2014). Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Frontiers in Plant Science, 5, 721. https://doi.org/10.3389/fpls.2014.00721
  • Farooq, M. A., Gill, R. A., Islam, F., Ali, B., Liu, H., Xu, J., He, S., & Zhou, W. (2016). Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Frontiers in Plant Science, 7, 468. https://doi.org/10.3389/fpls.2016.00468
  • Fattorini, L., Ronzan, M., Piacentini, D., Della Rovere, F., De Virgilio, C., Sofo, A., Altamura, M. M., & Falasca, G. (2017). Cadmium and arsenic affect quiescent centre formation and maintenance in Arabidopsis thaliana post-embryonic roots disrupting auxin biosynthesis and transport. Environmental and Experimental Botany, 144, 37–48. https://doi.org/10.1016/j.envexpbot.2017.10.005
  • Formentin, E., Barizza, E., Stevanato, P., Falda, M., Massa, F., Tarkowska, D., Novak, O., & Lo Schiavo, F. (2018). Fast regulation of hormone metabolism contributes to salt tolerance in rice (Oryza sativa spp. Japonica, L.) by inducing specific morpho-physiological responses. Plants, 7(3), 75. https://doi.org/10.3390/plants7030075
  • Freeman, J. L., Garcia, D., Kim, D., Hopf, A., & Salt, D. E. (2005). Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiology, 137(3), 1082–1091. https://doi.org/10.1104/pp.104.055293
  • Gordon, L. K., Minibayeva, F. V., Rakhmatullina, D. F., Alyabyev, A. J., Ogorodnikova, T. I., Loseva, N. L., & Valitova, Y. N. (2004). Heat production of wheat roots induced by the disruption of proton gradient by salicylic acid. Thermochimica Acta. 422(1-2), 101–104. https://doi.org/10.1016/j.tca.2004.04.032
  • Guedes, F., Maia, C. F., Silva, B., Batista, B. L., Alyemeni, M. N., Ahmad, P., & Lobato, A. (2021). Exogenous 24-epibrassinolide stimulates root protection, and leaf antioxidant enzymes in lead stressed rice plants: Central roles to minimize Pb content and oxidative stress. Environmental Pollution (Barking, Essex : 1987), 280, 116992. https://doi.org/10.1016/j.envpol.2021.116992
  • Guo, B., Liu, C., Liang, Y. C., Li, N. Y., & Fu, Q. L. (2019). Salicylic acid signals plant defence against cadmium toxicity. International Journal of Molecular Sciences, 20(12), 2960. https://doi.org/10.3390/ijms20122960
  • Guo, B., Liu, C., Li, H., Yi, K., Ding, N., Li, N., Lin, Y., & Fu, Q. (2016). Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms. Journal of Hazardous Materials, 316, 77–86. https://doi.org/10.1016/j.jhazmat.2016.05.032
  • Guo, J. J., Qin, S. Y., Rengel, Z., Gao, W., Nie, Z. J., Liu, H. E., Li, C., & Zhao, P. (2019). Cadmium stress increases antioxidant enzyme activities and decreases endogenous hormone concentrations more in Cd-tolerant than Cd-sensitive wheat varieties. Ecotoxicology and Environmental Safety, 172, 380–387. https://doi.org/10.1016/j.ecoenv.2019.01.069
  • Han, X., Hu, Y. R., Zhang, G. S., Jiang, Y. J., Chen, X. L., & Yu, D. Q. (2018). Jasmonate negatively regulates stomatal development in arabidopsis cotyledons. Plant Physiology, 176(4), 2871–2885. https://doi.org/10.1104/pp.17.00444
  • Hashem, H. A. (2014). Cadmium toxicity induces lipid peroxidation and alters cytokinin content and antioxidant enzyme activities in soybean. Botany, 92(1), 1–7. https://doi.org/10.1139/cjb-2013-0164
  • Hauser, F., Li, Z., Waadt, R., & Schroeder, J. I. (2017). SnapShot: abscisic acid signaling. Cell, 171(7), 1708–1708.e0. https://doi.org/10.1016/j.cell.2017.11.045
  • Hayat, S., Hayat, Q., Alyemeni, M. N., & Ahmad, A. (2014). Salicylic acid enhances the efficiency of nitrogen fixation and assimilation in Cicer arietinum plants grown under cadmium stress. Journal of Plant Interactions, 9(1), 35–42. https://doi.org/10.1080/17429145.2012.751635
  • He, Y., Zhang, T., Sun, Y., Wang, X., Cao, Q., Fang, Z., Chang, M., Cai, Q., & Lou, L. (2022). Exogenous IAA alleviates arsenic toxicity to rice and reduces arsenic accumulation in rice grains. Journal of Plant Growth Regulation, 41(2), 734–741. https://doi.org/10.1007/s00344-021-10336-z
  • Hogh-Jensen, H., & Pedersen, M. B. (2003). Morphological plasticity by crop plants and their potassium use effiency. Journal of Plant Nutrition, 26(5), 969–984. https://doi.org/10.1081/PLN-120020069
  • Hossain, A., Koyama, H., & Hara, T. (2006). Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. Journal of Plant Physiology, 163(1), 39–47. https://doi.org/10.1016/j.jplph.2005.02.008
  • Hsu, Y. T., & Kao, C. H. (2003). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell & Environment, 26(6), 867–874. https://doi.org/10.1046/j.1365-3040.2003.01018.x
  • Hsu, Y. T., & Kao, C. H. (2005). Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiologia Plantarum, 124(1), 71–80. https://doi.org/10.1111/j.1399-3054.2005.00490.x
  • Huang, T. L., Quynh, T. T. N., Fu, S. F., Lin, C. Y., Chen, Y. C., & Huang, H. J. (2012). Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Molecular Biology, 80(6), 587–608. https://doi.org/10.1007/s11103-012-9969-z
  • Jan, S., Alyemeni, M. N., Wijaya, L., Alam, P., Siddique, K. H., & Ahmad, P. (2018). Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient conten in Pisum sativum L. seedlings. BMC Plant Biology, 18(1), 146. https://doi.org/10.1186/s12870-018-1359-5
  • Jia, H., Wang, X., Wei, T., Wang, M., Liu, X., Hua, L., Ren, X., Guo, J., & Li, J. (2021). Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicology and Environmental Safety, 207, 111550. https://doi.org/10.1016/j.ecoenv.2020.111550
  • Jiang, K., & Asami, T. (2018). Chemical regulators of plant hormones and their applications in basic research and agriculture. Bioscience, Biotechnology, and Biochemistry, 82(8), 1265–1300. https://doi.org/10.1080/09168451.2018.1462693
  • Jung, J. H., Fouad, W. M., Vermerris, W., Gallo, M., & Altpeter, F. (2012). RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnology Journal, 10(9), 1067–1076. https://doi.org/10.1111/j.1467-7652.2012.00734.x
  • Kanwar, M. K., & Bhardwaj, R. (2015). Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicology and Environmental Safety, 115, 119–125. https://doi.org/10.1016/j.ecoenv.2015.02.016
  • Kaya, C., Ashraf, M., Alyemeni, M. N., Corpas, F. J., & Ahmad, P. (2020). Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. Journal of Hazardous Materials, 399, 123020. https://doi.org/10.1016/j.jhazmat.2020.123020
  • Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation and regulation in higher plants. Annual Review of Plant Biology, 63, 131–152. https://doi.org/10.1146/annurev-arplant-042811-105522
  • Kour, J., Kohli, S. K., Khanna, K., Bakshi, P., Sharma, P., Singh, A. D., Ibrahim, M., Devi, K., Sharma, N., Ohri, P., Skalicky, M., Brestic, M., Bhardwaj, R., Landi, M., & Sharma, A. (2021). Brassinosteroid signaling, crosstalk and, physiological functions in plants under heavy metal stress. Frontiers in Plant Science, 12, 608061. https://doi.org/10.3389/fpls.2021.608061
  • Kovac, J., Lux, A., & Vaculik, M. (2018). Formation of a subero-lignified apical deposit in root tip of radish (Raphanus sativus) as a response to copper stress. Annals of Botany, 122(5), 823–831. https://doi.org/10.1093/aob/mcy013
  • Krzesłowska, M., Rabęda, I., Basińska, A., Lewandowski, M., Mellerowicz, E. J., Napieralska, A., Samardakiewicz, S., & Woźny, A. (2016). Pectinous cell wall thickenings formation – A common defense strategy of plants to cope with Pb. Environmental Pollution (Barking, Essex : 1987), 214, 354–361. https://doi.org/10.1016/j.envpol.2016.04.019
  • Kupper, H., & Kochian, L. V. (2010). Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). The New Phytologist, 185(1), 114–129. https://doi.org/10.1111/j.1469-8137.2009.03051.x
  • Kurowska, M. M., Daszkowska-Golec, A., Gajecka, M., Kościelniak, P., Bierza, W., & Szarejko, I. (2020). Methyl jasmonate affects photosynthesis efficiency, expression of HvTIP genes and nitrogen homeostasis in barley. International Journal of Molecular Sciences, 21(12), 4335. https://doi.org/10.3390/ijms21124335
  • Li, C., Wang, P., Menzies, N. W., Lombi, E., & Kopittke, P. M. (2017). Effects of changes in leaf properties mediated by methyl jasmonate (MeJA) on foliar absorption of Zn, Mn and Fe. Annals of Botany, 120(3), 405–415. https://doi.org/10.1093/aob/mcx063
  • Li, N., Euring, D., Cha, J. Y., Lin, Z., Lu, M., Huang, L.-J., & Kim, W. Y. (2020). Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science, 11, 627969. https://doi.org/10.3389/fpls.2020.627969
  • Li, X. J., Guo, X., Zhou, Y. H., Shi, K., Zhou, J., Yu, J. Q., & Xia, X. J. (2016). Overexpression of a brassinosteroid biosynthetic gene dwarf enhances photosynthetic capacity through activation of calvin cycle enzymes in tomato. BMC Plant Biology, 16, 33. https://doi.org/10.1186/s12870-016-0715-6
  • Li, X. H., Zhou, Q. X., Sun, X. Y., & Ren, W. J. (2016). Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chemistry, 194, 101–110. https://doi.org/10.1016/j.foodchem.2015.07.114
  • Li, X. Y., Wang, L. H., Shen, F., Zhou, Q., & Huang, X. H. (2018). Impacts of exogenous pollutant bisphenol a on characteristics of soybeans. Ecotoxicology and Environmental Safety, 157, 463–471. https://doi.org/10.1016/j.ecoenv.2018.04.013
  • Liu, M., Zhang, H. H., Fang, X. Z., Zhang, Y. S., & Jin, C. W. (2018). Auxin acts downstream of ethylene and nitric oxide to regulate magnesium-deficiency-induced root hair development in Arabidopsis thaliana. Plant & Cell Physiology, 59(7), 1452–1465. https://doi.org/10.1093/pcp/pcy078
  • Liu, W. C., Song, R. F., Zheng, S. Q., Li, T. T., Zhang, B. L., Gao, X., & Lu, Y. T. (2022). Coordination of plant growth and abiotic stress responses by Tryptophan Synthase β Subunit1 through modulating tryptophan and ABA homeostasis in Arabidopsis. Molecular Plant, 15(6), 973–990. https://doi.org/10.1016/j.molp.2022.04.009
  • Liu, X. Y., Lv, S. S., Liu, R., Fan, S. X., Liu, C. J., Liu, R. Y., & Han, Y. Y. (2018). Transcriptomic analysis reveals the roles of gibberellin-regulated genes and transcription factors in regulating bolting in lettuce (Lactuca sativa L.). PloS One, 13(2), e0191518. https://doi.org/10.1371/journal.pone.0191518
  • Lu, G. W., Coneva, V., Casaretto, J. A., Ying, S., Mahmood, K., Liu, F., Nambara, E., Bi, Y. M., & Rothstein, S. J. (2015). OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. The Plant Journal: For Cell and Molecular Biology, 83(5), 913–925. https://doi.org/10.1111/tpj.12939
  • Maghsoudi, K., Arvin, M. J., & Ashraf, M. (2020). Mitigation of arsenic toxicity in wheat by the exogenously applied salicylic acid, 24-epi-brassinolide and silicon. Journal of Soil Science and Plant Nutrition, 20(2), 577–588. https://doi.org/10.1007/s42729-019-00147-3
  • Majumdar, S., Sachdev, S., & Kundu, R. (2020). Salicylic acid mediated reduction in grain cadmium accumulation and amelioration of toxicity in Oryza sativa L. cv Bandana. Ecotoxicology and Environmental Safety, 205, 111167. https://doi.org/10.1016/j.ecoenv.2020.111167
  • Mathur, P., Tripathi, D. K., Baluška, F., & Mukherjee, S. (2022). Auxin-mediated molecular mechanisms of heavy metal and metallloid stress regulation in plants. Environmental and Experimental Botany, 196, 104796. https://doi.org/10.1016/j.envexpbot.2022.104796
  • Mohamed, H. I., Latif, H. H., & Hanafy, R. S. (2016). Influence of nitric oxide application on some biochemical aspects, endogenous hormones, minerals and phenolic compounds of Vicia faba plant grown under arsenic stress. Gesunde Pflanzen, 68(2), 99–107. https://doi.org/10.1007/s10343-016-0363-7
  • Mohan, T. C., Castrillo, G., Navarro, C., Zarco-Fernandez, S., Ramireddy, E., Mateo, C., Zamarreno, A. M., Paz-Ares, J., Munoz, R., Garcia-Mina, J. M., Hernandez, L. E., Schmulling, T., & Leyva, A. (2016). Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiology, 171(2), 1418–1426. https://doi.org/10.1104/pp.16.00372
  • Mostofa, M. G., Rahman, M. M., Ansary, M. M. U., Fujita, M., & Tran, L. S. P. (2019). Interactive effects of salicylic acid and nitric oxide in enhancing rice tolerance to cadmium stress. International Journal of Molecular Sciences, 20(22), 5798–5813. https://doi.org/10.3390/ijms20225798
  • Moussa, H., & El-Gamal, S. M. (2010). Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biologia Plantarum, 54(2), 315–320. https://doi.org/10.1007/s10535-010-0054-7
  • Moustafa-Farag, M., Mohamed, H. I., Mahmoud, A., Elkelish, A., Misra, A. N., Guy, K. M., Kamran, M., Ai, S. Y., & Zhang, M. F. (2020). Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants, 9(6), 724. https://doi.org/10.3390/plants9060724
  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8
  • Napoleão, T. A., Soares, G., Vital, C. E., Bastos, C., Castro, R., Loureiro, M. E., & Giordano, A. (2017). Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon. Plant Science : An International Journal of Experimental Plant Biology, 263, 46–54. https://doi.org/10.1016/j.plantsci.2017.06.014
  • Nascimento, V. L., Pereira, A. M., Siqueira, J. A., Pereira, A. S., Silva, V. F., Costa, L. C., Ribeiro, D. M., Zsogon, A., Nunes-Nesi, A., & Araujo, W. L. (2021). Exogenous ethylene reduces growth via alterations in central metabolism and cell wall composition in tomato (Solanum lycopersicum). Journal of Plant Physiology, 263, 153460. https://doi.org/10.1016/j.jplph.2021.153460
  • Navarro-Leon, E., Albacete, A., de la Torre-Gonzalez, A., Ruiz, J. M., & Blasco, B. (2016). Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency. Phytochemistry, 130, 85–89. https://doi.org/10.1016/j.phytochem.2016.08.003
  • Nazir, F., Fariduddin, Q., Hussain, A., & Khan, T. A. (2021). Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu-triggered oxidative burst in tomato. Ecotoxicology and Environmental Safety, 207, 111081. https://doi.org/10.1016/j.ecoenv.2020.111081
  • Ogura, T., Goeschl, C., Filiault, D., Mirea, M., Slovak, R., Wolhrab, B., Satbhai, S. B., & Busch, W. (2019). Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell, 178(2), 400–412.e16. https://doi.org/10.1016/j.cell.2019.06.021
  • O'Lexy, R., Kasai, K., Clark, N., Fujiwara, T., Sozzani, R., & Gallagher, K. L. (2018). Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. Journal of Experimental Botany, 69(15), 3715–3728. https://doi.org/10.1093/jxb/ery171
  • Ovečka, M., & Takáč, T. (2014). Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnology Advances, 32(1), 73–86. https://doi.org/10.1016/j.biotechadv.2013.11.011
  • Pandey, C., & Gupta, M. (2015). Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. Journal of Hazardous Materials, 287, 384–391. https://doi.org/10.1016/j.jhazmat.2015.01.044
  • Parrotta, L., Guerriero, G., Sergeant, K., Cai, G., & Hausman, J.-F. (2015). Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Frontiers in Plant Science, 6, 133. https://doi.org/10.3389/fpls.2015.00133
  • Patra, M., Bhowmik, N., Bandopadhyay, B., & Sharma, A. (2004). Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany, 52(3), 199–223. https://doi.org/10.1016/j.envexpbot.2004.02.009
  • Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in corp plants. Current Opinion in Plant Biology, 14(3), 290–295. https://doi.org/10.1016/j.pbi.2011.02.001
  • Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41(8-9), 1665–1677. https://doi.org/10.1016/j.biocel.2009.03.005
  • Petersson, S. V., Johansson, A. I., Kowalczyk, M., Makoveychuk, A., Wang, J. Y., Moritz, T., Grebe, M., Benfey, P. N., Sandberg, G., & Ljung, K. (2009). An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. The Plant Cell, 21(6), 1659–1668. https://doi.org/10.1105/tpc.109.066480
  • Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: Can we make metabolic concections from available data?Journal of Experimental Botany, 62(3), 869–882. https://doi.org/10.1093/jxb/erq340
  • Piotrowska-Niczyporuk, A., Bajguz, A., Kotowska, U., Zambrzycka-Szelewa, E., & Sienkiewicz, A. (2020). Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Scientific Reports, 10(1), 10193. https://doi.org/10.1038/s41598-020-67085-4
  • Poschenrieder, C., Cabot, C., Martos, S., Gallego, B., & Barceló, J. (2013). Do toxic ions induce hormesis in plants?Plant Science : An International Journal of Experimental Plant Biology, 212, 15–25. https://doi.org/10.1016/j.plantsci.2013.07.012
  • Praveen, A., Pandey, A., & Gupta, M. (2019). Nitric oxide alters nitrogen metabolism and PIN gene expressions by playing protective role in arsenic challenged Brassica juncea L. Ecotoxicology and Environmental Safety, 176, 95–107. https://doi.org/10.1016/j.ecoenv.2019.03.054
  • Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129(2), 232–237. https://doi.org/10.1016/j.scienta.2011.03.035
  • Rasafi, T. E., Oukarroum, A., Haddioui, A., Song, H., Kwon, E. E., Bolan, N., Tack, F. M. G., Sebastian, A., Prasad, M. N. V., & Rinklebe, J. (2022). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 52(5), 675–726. https://doi.org/10.1080/10643389.2020.1835435
  • Rodriguez-Serrano, M., Romero-Puertas, M. C., Zabalza, A., Corpas, F. J., Gomez, M., Del Rio, L. A., & Sandalio, L. M. (2006). Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant, Cell and Environment, 29(8), 1532–1544. https://doi.org/10.1111/j.1365-3040.2006.01531.x
  • Ronzan, M., Piacentini, D., Fattorini, L., Della Rovere, F., Eiche, E., Rieman, M., Altamura, M. M., & Falasca, G. (2018). Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environmental and Experimental Botany, 151, 64–75. https://doi.org/10.1016/j.envexpbot.2018.04.008
  • Ronzan, M., Piacentini, D., Fattorini, L., Federica, D., Caboni, E., Eiche, E., Ziegler, J., Hause, B., Riemann, M., Betti, C., Altamura, M. M., & Falasca, G. (2019). Auxin jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure. Environmental and Experimental Botany, 165, 59–69. https://doi.org/10.1016/j.envexpbot.2019.05.013
  • Ruzicka, K., Simaskova, M., Duclercq, J., Petrasek, J., Zazimalova, E., Simon, S., Friml, J., Van Montagu, M. C. E., & Benkova, E. (2009). Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4284–4289. https://www.jstor.org/stable/40441801 https://doi.org/10.1073/pnas.0900060106
  • Safari, F., Akramian, M., Salehi-Arjmand, H., & Khadivi, A. (2019). Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). Ecotoxicology and Environmental Safety, 183, 109542. https://doi.org/10.1016/j.ecoenv.2019.109542
  • Saha, I., Hasanuzzaman, M., & Adak, M. K. (2021). Abscisic acid priming regulates arsenite toxicity in two contrasting rice (Oryza sativa L.) genotypes through differential functioning of sub1A quantitative trait loci. Environmental Pollution (Barking, Essex : 1987), 287, 117586. https://doi.org/10.1016/j.envpol.2021.117586
  • Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459(7250), 1071–1078. https://doi.org/10.1038/nature08122
  • Santos, L. R., Batista, B. L., & Lobato, A. K. S. (2018). Brassinosteroids mitigate cadmium toxicity in cowpea plants. Photosynthetica, 56(2), 591–605. https://doi.org/10.1007/s11099-017-0700-9
  • Semeradova, H., Montesinos, J. C., & Benkova, E. (2020). All roads lead to auxin: Post-translational regulation of auxin transport by multiple hormonal pathways. Plant Communications, 1(3), 100048. https://doi.org/10.1016/j.xplc.2020.100048
  • Serna, M., Hernandez, F., Coll, F., & Amoros, A. (2012). Brassinosteroid analogues effect on yield and quality parameters of field-grown lettuce (Lactuca sativa L.). Scientia Horticulturae, 143, 29–37. https://doi.org/10.1016/j.scienta.2012.05.019
  • Shahid, M., Niazi, N. K., Rinklebe, J., Bundschuh, J., Dumat, C., & Pinelli, E. (2020). Trace elements-induced phytohormesis: A critical review and mechanistic interpretation. Critical Reviews in Environmental Science and Technology, 50(19), 1984–2015. https://doi.org/10.1080/10643389.2019.1689061
  • Shakirova, F. M., Allagulova, C. R., Maslennikova, D. R., Klyuchnikova, E. O., Avalbaev, A. M., & Bezrukova, M. V. (2016). Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environmental and Experimental Botany, 122, 19–28. https://doi.org/10.1016/j.envexpbot.2015.08.002
  • Sharma, P., Kumar, A., & Bhardwaj, R. (2016). Plant steroidal hormone epibrassinolide regulate-heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environmental and Experimental Botany, 122, 1–9. https://doi.org/10.1016/j.envexpbot.2015.08.005
  • Shen, G. M., Niu, J. K., & Deng, Z. X. (2017). Abscisic acid treatment alleviates cadmium toxicity in purple flowering stalk (Brassica campestri L. spp. Chinensis var. purpurea Hort.) seedlings. Plant Physiology and Biochemistry : PPB, 118, 471–478. https://doi.org/10.1016/j.plaphy.2017.07.018
  • Sheshukova, E. V., Komarova, T. V., Pozdyshev, D. V., Ershova, N. M., Shindyapina, A. V., Tashlitsky, V. N., Sheval, E. V., & Dorokhov, Y. L. (2017). The intergenic interplay between aldose 1-epimerase-like protein and pectin methylesterase in abiotic and biotic stress control. Frontiers in Plant Science, 8, 1646. https://doi.org/10.3389/fpls.2017.01646
  • Shin, R., & Schachtman, D. P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 101(23), 8827–8832. https://doi.org/10.1073/pnas.0401707101
  • Siddiqui, H., Hayat, S., & Bajguz, A. (2018). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40(3), 59. https://doi.org/10.1007/s11738-018-2639-2
  • Singh, A. P., Dixit, G., Kumar, A., Mishra, S., Kumar, N., Dixit, S., Singh, P. K., Dwivedi, S., Trivedi, P. K., Pandey, V., Dhankher, O. P., Norton, G. J., Chakrabarty, D., & Tripathi, R. D. (2017). A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 115, 163–173. https://doi.org/10.1016/j.plaphy.2017.02.019
  • Srivastava, S., Srivastava, A. K., Suprasanna, P., & D'Souza, S. F. (2013). Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. Journal of Experimental Botany, 64(1), 303–315. https://doi.org/10.1093/jxb/ers333
  • Stroiński, A., Chadzinikolau, T., Giżewska, K., & Zielezińska, M. (2010). ABA or cadmium induced phytochelatin synthesis in potato tubers. Biologia Plantarum, 54(1), 117–120. https://doi.org/10.1007/s10535-010-0017-z
  • Su, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin-cytokinin interaction regulates meristem development. Molecular Plant, 4(4), 616–625. https://doi.org/10.1093/mp/ssr007
  • Sytar, O., Kumari, P., Yadav, S., Brestic, M., & Rastogi, A. (2019). Phytohormone priming: Regulator for heavy metal stress in plants. Journal of Plant Growth Regulation, 38(2), 739–752. https://doi.org/10.1007/s00344-018-9886-8
  • Szalai, G., Kellős, T., Galiba, G., & Kocsy, G. (2009). Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. Journal of Plant Growth Regulation, 28(1), 66–80. https://doi.org/10.1007/s00344-008-9075-2
  • Tan, M. P., Cheng, D., Yang, Y. N., Zhang, G. Q., Qin, M. J., Chen, J., Chen, Y. H., & Jiang, M. Y. (2017). Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC Plant Biology, 17(1), 194–211. https://doi.org/10.1186/s12870-017-1143-y
  • Tang, Z., & Zhao, F. J. (2021). The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Critical Reviews in Environmental Science and Technology, 51(21), 2449–2484. https://doi.org/10.1080/10643389.2020.1795053
  • Tiwari, P., Indoliya, Y., Chauhan, A. S., Singh, P., Singh, P. K., Singh, P. C., Srivastava, S., Pande, V., & Chakrabarty, D. (2020). Auxin-salicylic acid cross-talk ameliorates OsMYB-R1 mediated defense towards heavy metal, drought and fungal stress. Journal of Hazardous Materials, 399, 122811. https://doi.org/10.1016/j.jhazmat.2020.122811
  • Tu, T., Zheng, S., Ren, P., Meng, X., Zhao, J., Chen, Q., & Li, C. (2021). Coordinated cytokinin signaling and auxin biosynthesis mediates arsenate-induced root growth inhibition. Plant Physiology, 185(3), 1166–1181. https://doi.org/10.1093/plphys/kiaa072
  • Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., & Ishikawa, S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60(9), 2677–2688. https://doi.org/10.1093/jxb/erp119
  • Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208. https://doi.org/10.2174/0929867053764635
  • Verma, G., Srivastava, D., Narayan, S., Shirke, P. A., & Chakrabarty, D. (2020). Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 201, 110735. https://doi.org/10.1016/j.ecoenv.2020.110735
  • Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F., & Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14(6), 1223–1233. https://doi.org/10.1105/tpc.001388
  • Villiers, F., Jourdain, A., Bastien, O., Leonhardt, N., Fujioka, S., Tichtincky, G., Parcy, F., Bourguignon, J., & Hugouvieux, V. (2012). Evidence for functional interaction between brassinosteroids and cadmium response in Arabidopsis thaliana. Journal of Experimental Botany, 63(3), 1185–1200. https://doi.org/10.1093/jxb/err335
  • Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V., Verma, R., Upadhyay, R. G., Pandey, M., & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Frontiers in Plant Science, 8, 161–172. https://doi.org/10.3389/fpls.2017.00161
  • Wang, F., Tan, H., Zhang, Y., Huang, L., Bao, H., Ding, Y., Chen, Z., & Zhu, C. (2021). Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice. Chemosphere, 263, 128034. https://doi.org/10.1016/j.chemosphere.2020.128034
  • Wang, H. J., Dai, B. Y., Shu, X. G., Wang, H. B., & Ning, P. (2015). Effect of kinetin on physiological and biochemical properties of maize seedlings under arsenic stress. Advances in Materials Science and Engineering, 2015, 1–7. https://doi.org/10.1155/2015/714646
  • Wang, H.-Q., Xuan, W., Huang, X.-Y., Mao, C., & Zhao, F.-J. (2021). Cadmium inhibits lateral root emergence in rice by disrupting OsPIN-mediated auxin distribution and the protective effect of OsHMA3. Plant & Cell Physiology, 62(1), 166–177. https://doi.org/10.1093/pcp/pcaa150
  • Wojcik, M., Vangronsveld, J., Dahaen, J., & Tukiendorf, A. (2005). Cadmium tolerance in Thlaspi caerulescens II. localization of cadmium in Thlaspi caerulescens. Environmental and Experimental Botany, 53(2), 163–171. https://doi.org/10.1016/j.envexpbot.2004.03.011
  • Xu, L. L., Fan, Z. Y., Dong, Y. J., Kong, J., & Bai, X. Y. (2015). Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biologia Plantarum, 59(1), 171–182. https://doi.org/10.1007/s10535-014-0475-9
  • Yadav, P., Srivastava, S., Patil, T., Raghuvanshi, R., Srivastava, A. K., & Suprasanna, P. (2021). Tracking the time-dependent and tissue-specific processes of arsenic accumulation and stress responses in rice (Oryza sativa L.). Journal of Hazardous Materials, 406, 124307. https://doi.org/10.1016/j.jhazmat.2020.124307
  • Yuan, H. M., & Huang, X. (2016). Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant, Cell & Environment, 39(1), 120–135. https://doi.org/10.1111/pce.12597
  • Zhang, Q. M., Gong, M. G., Liu, K. Y., Chen, Y. L., Yuan, J. F., & Chang, Q. S. (2020). Rhizoglomus intraradices improves plant growth, root morphology and phytohormone balance of Robinia pseudoacacia in arsenic-contaminated soils. Frontiers in Microbiology, 11, 1428–1440. https://doi.org/10.3389/fmicb.2020.01428
  • Zhang, C., He, M. L., Wang, S. L., Chu, L. Y., Wang, C., Yang, N. M., Ding, G., D., Cai, H., M., Shi, L., & Xu, F. S. (2021). Boron deficiency-induced root growth inhibition is mediated by brassinosteroid signalling regulation in Arabidopsis. The Plant Journal : For Cell and Molecular Biology, 107(2), 564–578. https://doi.org/10.1111/tpj.15311
  • Zhang, P., Wang, R., Ju, Q., Li, W., Tran, L. P., & Xu, J. (2019). The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiology, 180(1), 529–542. https://doi.org/10.1104/pp.18.01380
  • Zhou, M. X., Han, R. M., Ghnaya, T., & Lutts, S. (2018). Salinity influences the interactive effects of cadmium and zinc on ethylene and polyamine synthesis in the halophyte plant species Kosteletzkya pentacarpos. Chemosphere, 209, 892–900. https://doi.org/10.1016/j.chemosphere.2018.06.143
  • Zhou, Z. Y., Zhang, C. G., Wu, L., Zhang, C. G., Chai, J., Wang, M., Jha, A., Jia, P. F., Cui, S. J., Yang, M., Chen, R. J., & Guo, G. Q. (2011). Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. The Plant Journal : For Cell and Molecular Biology, 66(3), 516–527. https://doi.org/10.1111/j.1365-313X.2011.04509.x
  • Zhu, X. F., Lei, G. J., Jiang, T., Liu, Y., Li, G. X., & Zheng, S. J. (2012). Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta, 236(4), 989–997. https://doi.org/10.1007/s00425-012-1652-8
  • Zhu, X. F., Wang, Z. W., Dong, F., Lei, G. J., Shi, Y. Z., Li, G. X., & Zheng, S. J. (2013). Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. Journal of Hazardous Materials, 263, 398–403. https://doi.org/10.1016/j.jhazmat.2013.09.018
  • Zlobin, I. E., Vankova, R., Pashkovskiy, P. P., Dobrev, P., Kartashov, A. V., Ivanov, Y. V., & Kuznetsov, V. V. (2020). Profiles of endogenous phytohormones and expression of some hormone-related genes in Scots pine and Norway spruce seedlings under water deficit. Plant Physiology and Biochemistry : PPB, 151, 457–468. https://doi.org/10.1016/j.plaphy.2020.03.056
  • Zulfiqar, F., & Ashraf, M. (2022). Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. Journal of Hazardous Materials, 427, 127891. https://doi.org/10.1016/j.jhazmat.2021.127891

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.