2,301
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1378-1403 | Published online: 07 Nov 2022

References

  • Abuarab, M., Mostafa, E., & Ibrahim, M. (2013). Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil. Journal of Advanced Research, 4(6), 493–499. https://doi.org/10.1016/j.jare.2012.08.009
  • Agarwal, A., Ng, W. J., & Liu, Y. (2011). Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84(9), 1175–1180. https://doi.org/10.1016/j.chemosphere.2011.05.054
  • Ahmed, A. K. A., Shi, X., Hua, L., Manzueta, L., Qing, W., Marhaba, T., & Zhang, W. (2018b). Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth. Journal of Agricultural and Food Chemistry, 66(20), 5117–5124. https://doi.org/10.1021/acs.jafc.8b00333
  • Ahmed, A. K. A., Sun, C., Hua, L., Zhang, Z., Zhang, Y., Zhang, W., & Marhaba, T. (2018a). Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure. Chemosphere, 203, 327–335. https://doi.org/10.1016/j.chemosphere.2018.03.157
  • Alheshibri, M., Al Baroot, A., Shui, L., & Zhang, M. (2021). Nanobubbles and nanoparticles. Current Opinion in Colloid & Interface Science, 55, 101470. https://doi.org/10.1016/j.cocis.2021.101470
  • Alheshibri, M., Qian, J., Jehannin, M., & Craig, V. S. J. (2016). A history of nanobubbles. Langmuir, 32(43), 11086–11100. https://doi.org/10.1021/acs.langmuir.6b02489
  • Amaral, A., Gillot, S., Garrido-Baserba, M., Filali, A., Karpinska, A. M., Plósz, B. G., De Groot, C., Bellandi, G., Nopens, I., Takács, I., Lizarralde, I., Jimenez, J. A., Fiat, J., Rieger, L., Arnell, M., Andersen, M., Jeppsson, U., Rehman, U., Fayolle, Y., Amerlinck, Y., & Rosso, D. (2019). Modelling gas–liquid mass transfer in wastewater treatment: when current knowledge needs to encounter engineering practice and vice versa. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 80(4), 607–619. https://doi.org/10.2166/wst.2019.253
  • ASCE. (2018). Standard guidelines for in-process oxygen transfer testing (ASCE/EWRI). Reston, VA: American Society of Civil Engineers.
  • Atkinson, A., Apul, O., Schneider, O., Garcia-Segura, S., & Westerhoff, P. (2019). Nanobubble technologies offer opportunities to improve water treatment. Accounts of Chemical Research, 52(5), 1196–1205.
  • Attard, P. (2014). The stability of nanobubbles. The European Physical Journal Special Topics, 223(5), 893–914. https://doi.org/10.1140/epjst/e2013-01817-0
  • Bailly, C., El-Maarouf-Bouteau, H., & Corbineau, F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies, 331(10), 806–814.
  • Barahoei, M., Hatamipour, M. S., & Afsharzadeh, S. (2020). CO2 capturing by chlorella vulgaris in a bubble column photo-bioreactor; Effect of bubble size on CO2 removal and growth rate. Journal of CO2 Utilization, 37, 9–19. https://doi.org/10.1016/j.jcou.2019.11.023
  • Barbosa, R. G., Sleutels, T., Verstraete, W., & Boon, N. (2020). Hydrogen oxidizing bacteria are capable of removing orthophosphate to ultra-low concentrations in a fed batch reactor configuration. Bioresource Technology, 311, 123494. https://doi.org/10.1016/j.biortech.2020.123494
  • Batagoda, J. H., Hewage, S. D. A., & Meegoda, J. N. (2019a). Nano-ozone bubbles for drinking water treatment. Journal of Environmental Engineering and Science, 14(2), 57–66. https://doi.org/10.1680/jenes.18.00015
  • Batagoda, J. H., Hewage, S. D. A., & Meegoda, J. N. (2019b). Remediation of heavy-metal-contaminated sediments in USA using ultrasound and ozone nanobubbles. Journal of Environmental Engineering and Science, 14(2), 130–138. https://doi.org/10.1680/jenes.18.00012
  • Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M. A., Alkawareek, M. Y., Dreaden, E. C., Brown, D., Alkilany, A. M., Farokhzad, O. C., & Mahmoudi, M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 46(14), 4218–4244. https://doi.org/10.1039/C6CS00636A
  • Bhattarai, S. P., Huber, S., & Midmore, D. J. (2004). Aerated subsurface irrigation water gives growth and yield benefits to zucchini, vegetable soybean and cotton in heavy clay soils. Annals of Applied Biology, 144(3), 285–298. https://doi.org/10.1111/j.1744-7348.2004.tb00344.x
  • Bui, T. T., Nguyen, D. C., & Han, M. (2019). Average size and zeta potential of nanobubbles in different reagent solutions. Journal of Nanoparticle Research, 21(8), 173. https://doi.org/10.1007/s11051-019-4618-y
  • Bunkin, N. F., Shkirin, A. v., Ignatiev, P. S., Chaikov, L. L., Burkhanov, I. S., & Starosvetskij, A. v. (2012a). Nanobubble clusters of dissolved gas in aqueous solutions of electrolyte. I. Experimental proof. The Journal of Chemical Physics, 137(5), 054706. https://doi.org/10.1063/1.4739528
  • Bunkin, N. F., Yurchenko, S. O., Suyazov, N. v., & Shkirin, A. v. (2012b). Structure of the nanobubble clusters of dissolved air in liquid media. Journal of Biological Physics, 38(1), 121–152. https://doi.org/10.1007/s10867-011-9242-8
  • Calgaroto, S., Azevedo, A., & Rubio, J. (2015). Flotation of quartz particles assisted by nanobubbles. International Journal of Mineral Processing, 137, 64–70. https://doi.org/10.1016/j.minpro.2015.02.010
  • Camp, C. R. (1998). Subsurface drip irrigation: a review. Transactions of the ASAE, 41(5), 1353–1367.
  • Cerrón-Calle, G. A., Luna Magdaleno, A., Graf, J. C., Apul, O. G., & Garcia-Segura, S. (2022). Elucidating CO2 nanobubble interfacial reactivity and impacts on water chemistry. Journal of Colloid and Interface Science, 607(Pt 1), 720–728.
  • Chaplin, M. (2022). Nanobubbles (ultrafine bubbles). http://www1.lsbu.ac.uk/water/nanobubble.html
  • Cho, E., Holback, H., Liu, K., Abouelmagd, S. A., Park, J., & Yeo, Y. (2013). Nanoparticle characterization: State of the art, challenges, and emerging technologies. Molecular Pharmaceutics, 10(6), 2093–2110.
  • Cho, S. H., Kim, J.-Y., Chun, J.-H., & Kim, J.-D. (2005). Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1–3), 28–34. https://doi.org/10.1016/j.colsurfa.2005.06.063
  • Chuenchart, W., Karki, R., Shitanaka, T., Marcelino, K. R., Lu, H., & Khanal, S. K. (2021). Nanobubble technology in anaerobic digestion: A review. Bioresource Technology, 329, 124916.
  • Cui, X., Shi, C., Xie, L., Liu, J., & Zeng, H. (2016). Probing interactions between air bubble and hydrophobic polymer surface: Impact of solution salinity and interfacial nanobubbles. Langmuir: The ACS Journal of Surfaces and Colloids, 32(43), 11236–11244. https://doi.org/10.1021/acs.langmuir.6b01674
  • Dien, L. T., Linh, N. V., Mai, T. T., Senapin, S., St-Hilaire, S., Rodkhum, C., & Dong, H. T. (2022). Impacts of oxygen and ozone nanobubbles on bacteriophage in aquaculture system. Aquaculture, 551, 737894. https://doi.org/10.1016/j.aquaculture.2022.737894
  • Ebina, K., Shi, K., Hirao, M., Hashimoto, J., Kawato, Y., Kaneshiro, S., Morimoto, T., Koizumi, K., & Yoshikawa, H. (2013). Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One, 8(6), e65339.
  • Epstein, P. S., & Plesset, M. S. (1950). On the stability of gas bubbles in liquid‐gas solutions. The Journal of Chemical Physics, 18(11), 1505–1509. https://doi.org/10.1063/1.1747520
  • Faghihnejad, A., & Zeng, H. (2012). Hydrophobic interactions between polymer surfaces: using polystyrene as a model system. Soft Matter, 8(9), 2746–2759. https://doi.org/10.1039/c2sm07150a
  • Fan, M., Tao, D., Honaker, R., & Luo, Z. (2010). Nanobubble generation and its applications in froth flotation (part II): fundamental study and theoretical analysis. Mining Science and Technology (China), 20(2), 159–177. https://doi.org/10.1016/S1674-5264(09)60179-4
  • Fan, M., Tao, D., Zhao, Y., & Honaker, R. (2013). Effect of nanobubbles on the flotation of different sizes of coal particle. Minerals and Metallurgical Processing, 30, 157–161.
  • Fan, W., An, W., Huo, M., Xiao, D., Lyu, T., & Cui, J. (2021). An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants. Water Research, 196, 117039.
  • Fan, Y., Lei, Z., Yang, X., Kobayashi, M., Adachi, Y., Zhang, Z., & Shimizu, K. (2020). Effect of nano-bubble water on high solid anaerobic digestion of pig manure: Focus on digestion stability, methanogenesis performance and related mechanisms. Bioresource Technology, 315, 123793. https://doi.org/10.1016/j.biortech.2020.123793
  • Fan, Y., Yang, X., Lei, Z., Adachi, Y., Kobayashi, M., Zhang, Z., & Shimizu, K. (2021). Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation. Bioresource Technology, 326, 124782.
  • Feng, M., Ma, X., Zhang, Z., Luo, K. H., Sun, C., & Xu, X. (2022). How sodium chloride extends lifetime of bulk nanobubbles in water. Soft Matter, 18(15), 2968–2978.
  • Galang, D. P., Ashari, A. K., Sulmatiwi, L., Mahasri, G., Sari, L. A., & Prayogo. (2019). The oxygen content and dissolved oxygen consumption level of white shrimp Litopenaeus vannamei in the nanobubble cultivation system. IOP Conference Series: Earth and Environmental Science, 236(1), 012014. https://doi.org/10.1088/1755-1315/236/1/012014
  • Gao, Z., Wu, W., Sun, W., & Wang, B. (2021). Understanding the stabilization of a bulk nanobubble: A molecular dynamics analysis. Langmuir: The ACS Journal of Surfaces and Colloids, 37(38), 11281–11291.
  • Gęsicka, A., Oleskowicz-Popiel, P., & Łężyk, M. (2021). Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnology Advances, 53, 107861.
  • Ghadimkhani, A., Zhang, W., & Marhaba, T. (2016). Ceramic membrane defouling (cleaning) by air nano bubbles. Chemosphere, 146, 379–384.
  • Goto, E., Both, A. J., Albright, L. D., Langhans, R. W., & Leed, A. R. (1996). Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Horticulturae, 440, 205–210.
  • Gunanti, M., Wulansari, P. D., & Kinzella, K. (2019). The erythrocyte and leucocyte profile of saline tilapia (Oreochromis Niloticus) in a cultivation system with nanobubbles. IOP Conference Series: Earth and Environmental Science, 236(1), 012089. https://doi.org/10.1088/1755-1315/236/1/012089
  • Guo, Z., Wang, X., Wang, H., Hu, B., Lei, Z., Kobayashi, M., Adachi, Y., Shimizu, K., & Zhang, Z. (2019). Effects of nanobubble water on the growth of: Lactobacillus acidophilus 1028 and its lactic acid production. RSC Advances, 9(53), 30760–30767. https://doi.org/10.1039/c9ra05868k
  • Gurung, A., Dahl, O., & Jansson, K. (2016). The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies. Geosystem Engineering, 19(3), 133–142. https://doi.org/10.1080/12269328.2016.1153987
  • Hampton, M. A., & Nguyen, A. v. (2010). Nanobubbles and the nanobubble bridging capillary force. Advances in Colloid and Interface Science, 154(1–2), 30–55.
  • Han, M., Kim, M., & Shin, M. (2006). Generation of a positively charged bubble and its possible mechanism of formation. Journal of Water Supply: Research and Technology-Aqua, 55(7–8), 471–478. https://doi.org/10.2166/aqua.2006.055
  • Haris, S., Qiu, X., Klammler, H., & Mohamed, M. M. A. (2020). The use of micro-nano bubbles in groundwater remediation: A comprehensive review. Groundwater for Sustainable Development, 11, 100463. https://doi.org/10.1016/j.gsd.2020.100463
  • He, H., Zheng, L., Li, Y., & Song, W. (2015). Research on the feasibility of spraying micro/nano bubble ozonated water for airborne disease prevention. Ozone: Science & Engineering, 37(1), 78–84. https://doi.org/10.1080/01919512.2014.913473
  • Hewage, S. A., Kewalramani, J., & Meegoda, J. N. (2021). Stability of nanobubbles in different salts solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609, 125669. https://doi.org/10.1016/j.colsurfa.2020.125669
  • Hewage, S. A., & Meegoda, J. N. (2022). Molecular dynamics simulation of bulk nanobubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129565. https://doi.org/10.1016/j.colsurfa.2022.129565
  • Horseman, T., & Lin, S. (2022). Exceptional mineral scaling resistance from the surface gas layer: Impacts of surface wetting properties and the gas layer charging mechanism. ACS Environmental Au, 2(5), 418–427. https://doi.org/10.1021/acsenvironau.2c00011
  • Horseman, T., Yin, Y., Christie, K. S. S., Wang, Z., Tong, T., & Lin, S. (2021). Wetting, scaling, and fouling in membrane distillation: State-of-the-art insights on fundamental mechanisms and mitigation strategies. ACS ES&T Engineering, 1(1), 117–140. https://doi.org/10.1021/acsestengg.0c00025
  • Hu, L., & Xia, Z. (2018). Application of ozone micro-nano-bubbles to groundwater remediation. Journal of Hazardous Materials, 342, 446–453.
  • Iijima, M., Yamashita, K., Hirooka, Y., Ueda, Y., Yamane, K., & Kamimura, C. (2020). Ultrafine bubbles effectively enhance soybean seedling growth under nutrient deficit stress. Plant Production Science, 23(3), 366–373. https://doi.org/10.1080/1343943X.2020.1725391
  • Iijima, M., Yamashita, K., Hirooka, Y., Ueda, Y., Yamane, K., & Kamimura, C. (2022). Promotive or suppressive effects of ultrafine bubbles on crop growth depended on bubble concentration and crop species. Plant Production Science, 25(1), 78–83. https://doi.org/10.1080/1343943X.2021.1960175
  • Jadhav, A. J., & Barigou, M. (2020a). Proving and interpreting the spontaneous formation of bulk nanobubbles in aqueous organic solvent solutions: effects of solvent type and content. Soft Matter, 16(18), 4502–4511. https://doi.org/10.1039/D0SM00111B
  • Jadhav, A. J., & Barigou, M. (2020b). Bulk nanobubbles or not nanobubbles: That is the question. Langmuir: The ACS Journal of Surfaces and Colloids, 36(7), 1699–1708. https://doi.org/10.1021/acs.langmuir.9b03532
  • Jadhav, A. J., & Barigou, M. (2021). On the clustering of bulk nanobubbles and their colloidal stability. Journal of Colloid and Interface Science, 601, 816–824.
  • Jiang, X., Wang, W., Yu, G., & Deng, S. (2021). Contribution of nanobubbles for PFAS adsorption on graphene and OH- and NH2-functionalized graphene: Comparing simulations with experimental results. Environmental Science & Technology, 55(19), 13254–13263. https://doi.org/10.1021/acs.est.1c03022
  • Jhunkeaw, C., Khongcharoen, N., Rungrueng, N., Sangpo, P., Panphut, W., Thapinta, A., Senapin, S., St-Hilaire, S., & Dong, H. T. (2021). Ozone nanobubble treatment in freshwater effectively reduced pathogenic fish bacteria and is safe for Nile tilapia (Oreochromis niloticus). Aquaculture, 534, 736286. https://doi.org/10.1016/j.aquaculture.2020.736286
  • Jin, F., Li, J., Ye, X., & Wu, C. (2007). Effects of pH and ionic strength on the stability of nanobubbles in aqueous solutions of α-cyclodextrin. The Journal of Physical Chemistry. B, 111(40), 11745–11749.
  • John, A., Carra, I., Jefferson, B., Jodkowska, M., Brookes, A., & Jarvis, P. (2022). Are microbubbles magic or just small? a direct comparison of hydroxyl radical generation between microbubble and conventional bubble ozonation under typical operational conditions. Chemical Engineering Journal, 435, 134854. https://doi.org/10.1016/j.cej.2022.134854
  • Kim, J.-Y., Song, M.-G., & Kim, J.-D. (2000). Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions. Journal of Colloid and Interface Science, 223(2), 285–291.
  • Kobayashi, N., & Yamaji, K. (2022). Leaf lettuce (Lactuca sativa L. ‘L-121’) growth in hydroponics with different nutrient solutions used to generate ultrafine bubbles. Journal of Plant Nutrition, 45(6), 816–827. https://doi.org/10.1080/01904167.2021.2006227
  • Kurita, Y., Chiba, I., & Kijima, A. (2017). Physical eradication of small planktonic crustaceans from aquaculture tanks with cavitation treatment. Aquaculture International, 25(6), 2127–2133. https://doi.org/10.1007/s10499-017-0179-1
  • Kyzas, G. Z., Bomis, G., Kosheleva, R. I., Efthimiadou, E. K., Favvas, E. P., Kostoglou, M., & Mitropoulos, A. C. (2019). Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chemical Engineering Journal, 356, 91–97. https://doi.org/10.1016/j.cej.2018.09.019
  • Lee, S.-U. (2017, July 3-7). Onsite algae harvesting using micro and nano (Sub-micron) bubbles. 13th International Conference of the International Institure for Infrastructure Resilience and Reconstruction, Tsinghua University, Shenzhen, China.
  • Li, M., Ma, X., Eisener, J., Pfeiffer, P., Ohl, C.-D., & Sun, C. (2021). How bulk nanobubbles are stable over a wide range of temperatures. Journal of Colloid and Interface Science, 596, 184–198. https://doi.org/10.1016/j.jcis.2021.03.064
  • Liu, S., Kawagoe, Y., Makino, Y., & Oshita, S. (2013). Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles. Chemical Engineering Science, 93(C), 250–256. https://doi.org/10.1016/j.ces.2013.02.004
  • Liu, S., Oshita, S., Kawabata, S., Makino, Y., & Yoshimoto, T. (2016a). Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination. Langmuir: The ACS Journal of Surfaces and Colloids, 32(43), 11295–11302. https://doi.org/10.1021/acs.langmuir.6b01621
  • Liu, S., Oshita, S., Kawabata, S., & Thuyet, D. Q. (2017). Nanobubble water’s promotion effect of barley (Hordeum vulgare L.) sprouts supported by RNA-seq analysis. Langmuir: The ACS Journal of Surfaces and Colloids, 33(43), 12478–12486.
  • Liu, S., Oshita, S., Makino, Y., Wang, Q., Kawagoe, Y., & Uchida, T. (2016b). Oxidative capacity of nanobubbles and its effect on seed germination. ACS Sustainable Chemistry & Engineering, 4(3), 1347–1353. https://doi.org/10.1021/acssuschemeng.5b01368
  • Liu, Y., Zhou, Y., Wang, T., Pan, J., Zhou, B., Muhammad, T., Zhou, C., & Li, Y. (2019). Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality. Journal of Cleaner Production, 222, 835–843. https://doi.org/10.1016/j.jclepro.2019.02.208
  • Lyu, T., Wu, S., Mortimer, R. J. G., & Pan, G. (2019). Nanobubble technology in environmental engineering: Revolutionization potential and challenges. Environmental Science & Technology, 53(13), 7175–7176. https://doi.org/10.1021/acs.est.9b02821
  • Ma, X., Li, M., Pfeiffer, P., Eisener, J., Ohl, C.-D., & Sun, C. (2022). Ion adsorption stabilizes bulk nanobubbles. Journal of Colloid and Interface Science, 606(Pt 2), 1380–1394.
  • Mahasri, G., Saskia, A., Apandi, P. S., Dewi, N. N., Usuman, N. M., & Rozi. (2018). Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus). IOP Conference Series: Earth and Environmental Science, 137(1), 012046. https://doi.org/10.1088/1755-1315/137/1/012046
  • Marui, T. (2013). An introduction to micro/nano-bubbles and their applications. Journal of Systemics, Cybernetics and Informatics, 11(4), 68–73.
  • Mauter, M. S., Zucker, I., Perreault, F., Werber, J. R., Kim, J. H., & Elimelech, M. (2018). The role of nanotechnology in tackling global water challenges. Nature Sustainability, 1(4), 166–175. https://doi.org/10.1038/s41893-018-0046-8
  • Meegoda, J. N., Aluthgun Hewage, S., & Batagoda, J. H. (2018). Stability of nanobubbles. Environmental Engineering Science, 35(11), 1216–1227. https://doi.org/10.1089/ees.2018.0203
  • Meegoda, J. N., Batagoda, J. H., & Aluthgun-Hewage, S. (2017). Decontaminate passaic river sediments using ultrasound with ozone nano bubbles. ICSMGE 2017 - 19th International Conference on Soil Mechanics and Geotechnical Engineering, 2017-Septe 2001, pp. 3159––3162.
  • Meegoda, J. N., Hewage, S. A., & Batagoda, J. H. (2019). Application of the diffused double layer theory to nanobubbles. Langmuir: The ACS Journal of Surfaces and Colloids, 35(37), 12100–12112.
  • Minamikawa, K., Takahashi, M., Makino, T., Tago, K., & Hayatsu, M. (2015). Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy. Environmental Research Letters, 10(8), 084012. https://doi.org/10.1088/1748-9326/10/8/084012
  • Morsi, B. I. (2015). Mass transfer in multiphase systems (O. M. B. E.-M. Solecki, Ed.; p. Ch. 9). IntechOpen.
  • Movahed, S. M. A., & Sarmah, A. K. (2021). Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis. The Science of the Total Environment, 785, 147362.
  • Nirmalkar, N., Pacek, A. W., & Barigou, M. (2018a). Interpreting the interfacial and colloidal stability of bulk nanobubbles. Soft Matter, 14(47), 9643–9656. https://doi.org/10.1039/c8sm01949e
  • Nirmalkar, N., Pacek, A. W., & Barigou, M. (2018b). On the existence and stability of bulk nanobubbles. Langmuir: The ACS Journal of Surfaces and Colloids, 34(37), 10964–10973. https://doi.org/10.1021/acs.langmuir.8b01163
  • Ohgaki, K., Khanh, N. Q., Joden, Y., Tsuji, A., & Nakagawa, T. (2010). Physicochemical approach to nanobubble solutions. Chemical Engineering Science, 65(3), 1296–1300. https://doi.org/10.1016/j.ces.2009.10.003
  • Pan, G., Miao, X., Bi, L., Zhang, H., Wang, L., Wang, L., Wang, Z., Chen, J., Ali, J., Pan, M., Zhang, J., Yue, B., & Lyu, T. (2019). Modified local soil (MLS) technology for harmful algal bloom control, sediment remediation, and ecological restoration. Water (Basel), 11(6), 1123.
  • Patel, A. K., Singhania, R. R., Chen, C.-W., Tseng, Y.-S., Kuo, C.-H., Wu, C.-H., & Dong, C. d. (2021). Advances in micro- and nano bubbles technology for application in biochemical processes. Environmental Technology & Innovation, 23, 101729. https://doi.org/10.1016/j.eti.2021.101729
  • Phan, K. K. T., Truong, T., Wang, Y., & Bhandari, B. (2020). Nanobubbles: Fundamental characteristics and applications in food processing. Trends in Food Science & Technology, 95, 118–130. https://doi.org/10.1016/j.tifs.2019.11.019
  • Rafeeq, S., Shiroodi, S., Schwarz, M. H., Nitin, N., & Ovissipour, R. (2020). Inactivation of aeromonas hydrophila and vibrio parahaemolyticus by curcumin-mediated photosensitization and nanobubble-ultrasonication approaches. Foods, 9(9), 1306. https://doi.org/10.3390/foods9091306
  • Saputra, H. K., Nirmala, K., Supriyono, E., & Rochman, N. T. (2018). Micro/nano bubble technology: Characteristics and implications biology performance of Koi Cyprinus Carpio in recirculation aquaculture system (RAS). Omni-Akuatika, 14(2), 29–36. https://doi.org/10.20884/1.oa.2018.14.2.539
  • Seddon, J. R. T., Lohse, D., Ducker, W. A., & Craig, V. S. J. (2012). A deliberation on nanobubbles at surfaces and in bulk. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 13(8), 2179–2187.
  • Seridou, P., & Kalogerakis, N. (2021). Disinfection applications of ozone micro- and nanobubbles. Environmental Science: Nano, 8(12), 3493–3510.
  • Serizawa, A. (2017, January 5–7). Fundamentals and applications of micro/nano bubbles. 1st International Symposium on application of high voltage, plasmas & micro/nano bubbles to agriculture and aquaculture, Rajamangala University of Technology, Lanna Chiang Mai, Thailand.
  • Shi, W., Pan, G., Chen, Q., Song, L., Zhu, L., & Ji, X. (2018). Hypoxia remediation and methane emission manipulation using surface oxygen nanobubbles. Environmental Science & Technology, 52(15), 8712–8717.
  • Shi, X., Xue, S., Marhaba, T., & Zhang, W. (2021). Probing internal pressures and long-term stability of nanobubbles in water. Langmuir: The ACS Journal of Surfaces and Colloids, 37(7), 2514–2522.
  • Soyluoglu, M., Kim, D., Zaker, Y., & Karanfil, T. (2021). Stability of oxygen nanobubbles under freshwater conditions. Water Research, 206, 117749.
  • Subhan, U., Muthukannan, V., Azhary, S. Y., Mulhadi, M. F., Rochima, E., Panatarani, C., & Joni, I. M. (2018). Development and performance evaluation of air fine bubbles on water quality of Thai catfish rearing. AIP Conference Proceedings, 1927. (February).
  • Sun, Y., Xie, G., Peng, Y., Xia, W., & Sha, J. (2016). Stability theories of nanobubbles at solid–liquid interface: A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 495, 176–186. https://doi.org/10.1016/j.colsurfa.2016.01.050
  • Sun, Z., Xia, F., Lou, Z., Chen, X., Zhu, N., Yuan, H., & Shen, Y. (2020). Innovative process for total petroleum hydrocarbons reduction on oil refinery sludge through microbubble ozonation. Journal of Cleaner Production, 256, 120337. https://doi.org/10.1016/j.jclepro.2020.120337
  • Sung, M., Teng, C.-H., & Yang, T.-H. (2017). Dissolution enhancement and mathematical modeling of removal of residual trichloroethene in sands by ozonation during flushing with micro-nano-bubble solution. Journal of Contaminant Hydrology, 202, 1–10.
  • Svetovoy, V. B. (2021). Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles. Current Opinion in Colloid & Interface Science, 52, 101423. https://doi.org/10.1016/j.cocis.2021.101423
  • Tada, K., Maeda, M., Nishiuch, Y., Nagahara, J., Hata, T., Zhuowei, Z., Yoshida, Y., Watanabe, S., & Ohmori, M. (2014). ESR measurement of hydroxyl radicals in micro-nanobubble water. Chemistry Letters, 43(12), 1907–1908. https://doi.org/10.1246/cl.140691
  • Takahashi, M. (2005). ζ potential of microbubbles in aqueous solutions: Electrical properties of the gas − water interface. The Journal of Physical Chemistry. B, 109(46), 21858–21864. https://doi.org/10.1021/jp0445270
  • Takahashi, M., Shirai, Y., & Sugawa, S. (2021). Free-radical generation from bulk nanobubbles in aqueous electrolyte solutions: ESR spin-trap observation of microbubble-treated water. Langmuir: The ACS Journal of Surfaces and Colloids, 37(16), 5005–5011. https://doi.org/10.1021/acs.langmuir.1c00469
  • Tasaki, T., Wada, T., Baba, Y., & Kukizaki, M. (2009). Degradation of surfactants by an integrated nanobubbles/VUV irradiation technique. Industrial & Engineering Chemistry Research, 48(9), 4237–4244. https://doi.org/10.1021/ie801279b
  • Temesgen, T., & Han, M. (2021). Ultrafine bubbles as an augmenting agent for ozone-based advanced oxidation. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 84(12), 3705–3715.
  • Torres-Palma, R. A., & Serna-Galvis, E. A. (2018). Chapter 7 - sonolysis. In S. C. Ameta & R. Ameta (Eds.), Advanced oxidation processes for waste water treatment (pp. 177–213). Academic Press.
  • Tsai, J.-C., Kumar, M., Chen, S.-Y., & Lin, J.-G. (2007). Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater. Separation and Purification Technology, 58(1), 61–67. https://doi.org/10.1016/j.seppur.2007.07.022
  • Uchida, T., Liu, S., Enari, M., Oshita, S., Yamazaki, K., & Gohara, K. (2016). Effect of NaCl on the lifetime of micro- and nanobubbles. Nanomaterials, 6(2), 31. https://doi.org/10.3390/nano6020031
  • Ueda, Y., Tokuda, Y., Shigeto, F., Nihei, N., & Oka, T. (2013). Removal of radioactive Cs from gravel conglomerate using water containing air bubbles. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 67(5), 996–999. https://doi.org/10.2166/wst.2013.650
  • Ulatowski, K., & Sobieszuk, P. (2020). Gas nanobubble dispersions as the important agent in environmental processes – generation methods review. Water and Environment Journal, 34(S1), 772–790. https://doi.org/10.1111/wej.12577
  • Uvarov, I. V., Shlepakov, P. S., Postnikov, A. V., & Svetovoy, V. B. (2021). Highly energetic impact of H2 and O2 nanobubbles on Pt surface. Journal of Colloid and Interface Science, 582(Pt A), 167–176.
  • Wang, L., Ali, J., Wang, Z., Oladoja, N. A., Cheng, R., Zhang, C., Mailhot, G., & Pan, G. (2020). Oxygen nanobubbles enhanced photodegradation of oxytetracycline under visible light: Synergistic effect and mechanism. Chemical Engineering Journal, 388, 124227. https://doi.org/10.1016/j.cej.2020.124227
  • Wang, S., Liu, Y., Lyu, T., Pan, G., & Li, P. (2021). Aquatic macrophytes in morphological and physiological responses to the nanobubble technology application for water restoration. ACS ES&T Water, 1(2), 376–387. https://doi.org/10.1021/acsestwater.0c00145
  • Wang, X., Yuan, T., Guo, Z., Han, H., Lei, Z., Shimizu, K., Zhang, Z., & Lee, D.-J. (2020). Enhanced hydrolysis and acidification of cellulose at high loading for methane production via anaerobic digestion supplemented with high mobility nanobubble water. Bioresource Technology, 297, 122499. https://doi.org/10.1016/j.biortech.2019.122499
  • Wang, X., Yuan, T., Lei, Z., Kobayashi, M., Adachi, Y., Shimizu, K., Lee, D.-J., & Zhang, Z. (2020b). Supplementation of O2-containing gas nanobubble water to enhance methane production from anaerobic digestion of cellulose. Chemical Engineering Journal, 398, 125652. https://doi.org/10.1016/j.cej.2020.125652
  • Wang, Y., Lee, S. M., & Dykes, G. (2015). The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies. Critical Reviews in Microbiology, 41(4), 452–464.
  • Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9–19. https://doi.org/10.1016/j.aquaeng.2017.01.004
  • Wongkiew, S., Hu, Z., Lee, J. W., Chandran, K., Nhan, H. T., Marcelino, K. R., & Khanal, S. K. (2021). Nitrogen recovery via aquaponics–bioponics: Engineering considerations and perspectives. ACS ES&T Engineering, 1(3), 326–339. https://doi.org/10.1021/acsestengg.0c00196
  • Wu, Y., Lin, H., Yin, W., Shao, S., Lv, S., & Hu, Y. (2019). Water quality and microbial community changes in an urban river after micro-nano bubble technology in situ treatment. Water (Switzerland), 11(1), 66. https://doi.org/10.3390/w11010066
  • Wu, Y., Lyu, T., Yue, B., Tonoli, E., Verderio, E. A. M., Ma, Y., & Pan, G. (2019). Enhancement of tomato plant growth and productivity in organic farming by agri-nanotechnology using nanobubble oxygation [research-article]. Journal of Agricultural and Food Chemistry, 67(39), 10823–10831.
  • Wu, Z., Chen, H., Dong, Y., Mao, H., Sun, J., Chen, S., Craig, V. S. J., & Hu, J. (2008). Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. Journal of Colloid and Interface Science, 328(1), 10–14.
  • Wu, Z., Zhang, X., Zhang, X., Li, G., Sun, J., Zhang, Y., Li, M., & Hu, J. (2006). Nanobubbles influence on BSA adsorption on mica surface. Surface and Interface Analysis, 38(6), 990–995. https://doi.org/10.1002/sia.2326
  • Xiao, W., & Xu, G. (2020). Mass transfer of nanobubble aeration and its effect on biofilm growth: Microbial activity and structural properties. The Science of the Total Environment, 703, 134976.
  • Xiao, W., Xu, G., & Li, G. (2021). Effect of nanobubble application on performance and structural characteristics of microbial aggregates. The Science of the Total Environment, 765, 142725.
  • Xiao, Y., Jiang, S. C., Wang, X., Muhammad, T., Song, P., Zhou, B., Zhou, Y., & Li, Y. (2020). Mitigation of biofouling in agricultural water distribution systems with nanobubbles. Environment International, 141(December 2019), 105787. https://doi.org/10.1016/j.envint.2020.105787
  • Xing, Y., Gui, X., & Cao, Y. (2017). The hydrophobic force for bubbleparticle attachment in flotation a brief review. Physical Chemistry Chemical Physics, 19(36), 24421–24435. https://doi.org/10.1039/C7CP03856A
  • Xue, S., Marhaba, T., & Zhang, W. (2022). Nanobubble watering affects nutrient release and soil characteristics. ACS Agricultural Science & Technology, 2(3), 453–461. https://doi.org/10.1021/acsagscitech.1c00238
  • Yang, X., Nie, J., Wei, Y., Zhao, Z., Shimizu, K., Lei, Z., & Zhang, Z. (2020). Simultaneous enhancement on lignin degradation and methane production from anaerobic co-digestion of waste activated sludge and alkaline lignin supplemented with N2-nanobubble water. Bioresource Technology Reports, 11, 100470. https://doi.org/10.1016/j.biteb.2020.100470
  • Yaparatne, S., Doherty, Z. E., Magdaleno, A. L., Matula, E. E., MacRae, J. D., Garcia-Segura, S., & Apul, O. G. (2022). Effect of air nanobubbles on oxygen transfer, oxygen uptake, and diversity of aerobic microbial consortium in activated sludge reactors. Bioresource Technology, 351, 127090.
  • Yasui, K., Tuziuti, T., & Kanematsu, W. (2018). Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrasonics Sonochemistry, 48, 259–266. https://doi.org/10.1016/j.ultsonch.2018.05.038
  • Yildirim, T., Yaparatne, S., Graf, J., Garcia-Segura, S., & Apul, O. (2022). Electrostatic forces and higher order curvature terms of Young–Laplace equation on nanobubble stability in water. NPJ Clean Water, 5(1), 18. https://doi.org/10.1038/s41545-022-00163-4
  • Yurchenko, S. O., Shkirin, A. v., Ninham, B. W., Sychev, A. A., Babenko, V. A., Penkov, N. v., Kryuchkov, N. P., & Bunkin, N. F. (2016). Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions. Langmuir: The ACS Journal of Surfaces and Colloids, 32(43), 11245–11255.
  • Zhang, F., Sun, L., Yang, H., Gui, X., Schönherr, H., Kappl, M., Cao, Y., & Xing, Y. (2021). Recent advances for understanding the role of nanobubbles in particles flotation. Advances in Colloid and Interface Science, 291, 102403.
  • Zhang, H., Lyu, T., Bi, L., Tempero, G., Hamilton, D. P., & Pan, G. (2018). Combating hypoxia/anoxia at sediment-water interfaces: A preliminary study of oxygen nanobubble modified clay materials. The Science of the Total Environment, 637–638, 550–560. https://doi.org/10.1016/j.scitotenv.2018.04.284
  • Zhao, J., Li, Y., & Dong, R. (2021). Recent progress towards in-situ biogas upgrading technologies. The Science of the Total Environment, 800, 149667.
  • Zhou, L., Wang, S., Zhang, L., & Hu, J. (2021). Generation and stability of bulk nanobubbles: A review and perspective. Current Opinion in Colloid & Interface Science, 53, 101439. https://doi.org/10.1016/j.cocis.2021.101439
  • Zhou, Y., Bastida, F., Zhou, B., Sun, Y., Gu, T., Li, S., & Li, Y. (2020). Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community. Soil Biology and Biochemistry, 141, 107663. https://doi.org/10.1016/j.soilbio.2019.107663
  • Zhou, Y., Han, Z., He, C., Feng, Q., Wang, K., Wang, Y., Luo, N., Dodbiba, G., Wei, Y., Otsuki, A., & Fujita, T. (2021). Long-term stability of different kinds of gas nanobubbles in deionized and salt water. Materials, 14(7), 1808. https://doi.org/10.3390/ma14071808
  • Zhou, Y., Li, Y., Liu, X., Wang, K., & Muhammad, T. (2019). Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation. Scientific Reports, 9(1), 1–10.
  • Zhu, J., An, H., Alheshibri, M., Liu, L., Terpstra, P. M. J., Liu, G., & Craig, V. S. J. (2016). Cleaning with bulk nanobubbles. Langmuir, 32(43), 11203–11211. https://doi.org/10.1021/acs.langmuir.6b01004
  • Zhu, J., & Wakisaka, M. (2019). Effect of air nanobubble water on the growth and metabolism of Haematococcus lacustris and Botryococcus braunii. Journal of Nutritional Science and Vitaminology, 65(Supplement), S212–S216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.