1,653
Views
8
CrossRef citations to date
0
Altmetric
Invited Review

Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions

, , , , , , , , , & ORCID Icon show all
Pages 1289-1309 | Published online: 23 Jan 2023

References

  • Afshari, M., & Dinari, M. (2020). Synthesis of new imine-linked covalent organic framework as high efficient absorbent and monitoring the removal of direct fast scarlet 4BS textile dye based on mobile phone colorimetric platform. Journal of Hazardous Materials, 385, 121514. https://doi.org/10.1016/j.jhazmat.2019.121514
  • Akin, I., Arslan, G., Tor, A., Cengeloglu, Y., & Ersoz, M. (2011). Removal of arsenate [As(V)] and arsenite [As (III)] from water by SWHR and BW-30 reverse osmosis. Desalination, 281, 88–92. https://doi.org/10.1016/j.desal.2011.07.062
  • Asadi, E., Bakherad, M., & Ghasemi, M. H. (2022). High and selective adsorption of methylene blue using N-rich, microporous metal-organic framework [ZnBT (H2O)2]n. Journal of the Iranian Chemical Society, 19(1), 173–185. https://doi.org/10.1007/s13738-021-02297-7
  • Bae, S., Collins, R. N., Waite, T. D., & Hanna, K. (2018). Advances in surface passivation of nanoscale zerovalent iron: A critical review. Environmental Science & Technology, 52(21), 12010–12025. https://doi.org/10.1021/acs.est.8b01734
  • Bagheri, A. R., Aramesh, N., & Haddad, P. R. (2022). Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. Journal of Chromatography A, 1661(4), 462612. https://doi.org/10.1016/j.chroma.2021.462612
  • Beaudoin, D., Maris, T., & Wuest, J. D. (2013). Constructing monocrystalline covalent organic networks by polymerization. Nature Chemistry, 5(10), 830–834. https://doi.org/10.1038/nchem.1730
  • Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G., Chatterjee, D., & Iglesias, M. (2014). Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal, 243(1), 14–23. https://doi.org/10.1016/j.cej.2013.12.049
  • Cao, Y., Hu, X., Zhu, C., Zhou, S., Li, R., Shi, H., Miao, S., Vakili, M., Wang, W., & Qi, D. (2020). Sulfhydryl functionalized covalent organic framework as an efficient adsorbent for selective Pb(II) removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 600(5), 125004. https://doi.org/10.1016/j.colsurfa.2020.125004
  • Chaillot, D., Bennici, S., & Brendlé, J. (2021). Layered double hydroxides and LDH-derived materials in chosen environmental applications: A review. Environmental Science and Pollution Research, 28(19), 24375–24405. https://doi.org/10.1007/s11356-020-08498-6
  • Chen, G., He, S., Shi, G., Ma, Y., Ruan, C., Jin, X., Chen, Q., Liu, X., Dai, H., Chen, X., & Chen, X. (2021). In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water. Chemical Engineering Journal, 423(1), 130184. https://doi.org/10.1016/j.cej.2021.130184
  • Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J., & Yaghi, O. M. (2005). Porous, crystalline, covalent organic frameworks. Science (New York, N.Y.), 310(5751), 1166–1170. https://doi.org/10.1126/science.1120411
  • Cui, F. Z., Liang, R. R., Qi, Q. Y., Jiang, G. F., & Zhao, X. (2019). Efficient removal of Cr(VI) from aqueous solutions by a dual‐pore covalent organic framework. Advanced Sustainable Systems, 3(4), 1800150. https://doi.org/10.1002/adsu.201800150
  • Deng, Y., Qi, D., Deng, C., Zhang, X., & Zhao, D. (2008). Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 130(1), 28–29. https://doi.org/10.1021/ja0777584
  • Dhaka, S., Kumar, R., Deep, A., Kurade, M. B., Ji, S. W., & Jeon, B. H. (2019). Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews, 380(1), 330–352. https://doi.org/10.1016/j.ccr.2018.10.003
  • Díaz, U., & Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs: From preparation to application. Coordination Chemistry Reviews, 311(15), 85–124. https://doi.org/10.1016/j.ccr.2015.12.010
  • Drout, R. J., Otake, K., Howarth, A. J., Islamoglu, T., Zhu, L., Xiao, C., Wang, S., & Farha, O. K. (2018). Efficient capture of perrhenate and pertechnetate by a mesoporous Zr metal-organic framework and examination of anion binding motifs. Chemistry of Materials, 30(4), 1277–1284. https://doi.org/10.1021/acs.chemmater.7b04619
  • Dutta, S., Samanta, P., Joarder, B., Let, S., Mahato, D., Babarao, R., & Ghosh, S. K. (2020). A water-stable cationic metal-organic framework with hydrophobic pore surfaces as an efficient scavenger of oxo-anion pollutants from water. ACS applied Materials & Interfaces, 12(37), 41810–41818. https://doi.org/10.1021/acs.chemmater.7b04619
  • El-Yazeed, W. A., Abou El-Reash, Y., Elatwy, L., & Ahmed, A. I. (2020). Facile fabrication of bimetallic Fe–Mg MOF for the synthesis of xanthenes and removal of heavy metal ions. RSC Advances, 10(16), 9693–9703. https://doi.org/10.1039/C9RA10300G
  • Esrafili, L., Gharib, M., & Morsali, A. (2019). The targeted design of dual-functional metal–organic frameworks (DF-MOFs) as highly efficient adsorbents for Hg2+ ions: Synthesis for purpose. Dalton Transactions (Cambridge, England: 2003), 48(48), 17831–17839. https://doi.org/10.1039/C9DT03933C
  • Farhat, N., Vrouwenvelder, J. S., Van Loosdrecht, M. C., Bucs, S. S., & Staal, M. (2016). Effect of water temperature on biofouling development in reverse osmosis membrane systems. Water Research, 103(15), 149–159. https://doi.org/10.1016/j.watres.2016.07.015
  • Furukawa, H., Cordova, K. E., O'Keeffe, M., & Yaghi, O. M. (2013). The chemistry and applications of metal-organic frameworks. Science (New York, N.Y.), 341(6149), 1230444. https://doi.org/10.1126/science.1230444
  • Geisse, A. R., Ngule, C. M., & Genna, D. T. (2020). Removal of lead ions from water using thiophene-functionalized metal-organic frameworks. Chemical Communications (Cambridge, England), 56(2), 237–240. https://doi.org/10.1039/C9CC09022C
  • Gendy, E. A., Ifthikar, J., Ali, J., Oyekunle, D. T., Elkhlifia, Z., Shahib, I. I., Khodair, A. I., & Chen, Z. (2021). Removal of heavy metals by covalent organic frameworks (COFs): A review on its mechanism and adsorption properties. Journal of Environmental Chemical Engineering, 9(4), 105687. https://doi.org/10.1016/j.jece.2021.105687
  • Gendy, E. A., Oyekunle, D. T., Ifthikar, J., Jawad, A., & Chen, Z. (2022). A review on the adsorption mechanism of different organic contaminants by covalent organic framework (COF) from the aquatic environment. Environmental Science and Pollution Research International, 29(22), 32566–32593. https://doi.org/10.1007/s11356-022-18726-w
  • Gnanasekaran, G., Balaguru, S., Arthanareeswaran, G., & Das, D. B. (2019). Removal of hazardous material from wastewater by using metal organic framework (MOF) embedded polymeric membranes. Separation Science and Technology, 54(3), 434–446. https://doi.org/10.1080/01496395.2018.1508232
  • Gnanasekaran, G., Sudhakaran, M., Kulmatova, D., Han, J., Arthanareeswaran, G., Jwa, E., & Mok, Y. S. (2021). Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane. Chemosphere, 284, 131244. https://doi.org/10.1016/j.chemosphere.2021.131244
  • Gu, H., Liu, X., Wang, S., Chen, Z., Yang, H., Hu, B., Shen, C., & Wang, X. (2022). COF-based composites: Extraordinary removal performance for heavy metals and radionuclides from aqueous solutions. Reviews of Environmental Contamination and Toxicology, 260(1), 23. https://doi.org/10.1007/s44169-022-00018-6
  • Guo, Y. Z., Gao, F., Wang, Z., Liu, Y. A., Hu, W.-B., Yang, H., & Wen, K. (2021). Highly branched pillar [5] arene-derived porous aromatic frameworks (PAFs) for removal of organic pollutants from water. ACS applied Materials & Interfaces, 13(14), 16507–16515. https://doi.org/10.1021/acsami.1c02583
  • Hakimifar, A., & Morsali, A. (2019). Urea-based metal-organic frameworks as high and fast adsorbent for Hg2+ and Pb2+ removal from water. Inorganic Chemistry, 58(1), 180–187. https://doi.org/10.1021/acs.inorgchem.8b02133
  • Hao, M., Chen, Z., Yang, H., Waterhouse, G. I. N., Ma, S., & Wang, X. (2022). Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4. Science Bulletin, 67(9), 924–932. https://doi.org/10.1016/j.scib.2022.02.012
  • Hao, M., Xie, Y., Liu, X., Chen, Z., Yang, H., Waterhouse, G., Ma, S., & Wang, X. (2023). Modulating uranium extraction performance of multivariate covalent organic frameworks through donor-acceptor inkers and amidoxime nanotraps. JACS Au. https://doi.org/10.1021/jacsau.2c00614
  • Hasankola, Z. S., Rahimi, R., & Safarifard, V. (2019). Rapid and efficient ultrasonic-assisted removal of lead(II) in water using two copper-and zinc-based metal-organic frameworks. Inorganic Chemistry Communications, 107, 107474. https://doi.org/10.1016/j.inoche.2019.107474
  • He, L., Chen, L., Dong, X., Zhang, S., Zhang, M., Dai, X., Liu, X., Lin, P., Li, K., Che, C., Pan, T., Ma, F., Chen, J., Yuan, M., Zhang, Y., Chen, L., Zhou, R., Han, Y., Chai, Z., & Wang, S. (2021). A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 7(3), 699–714. https://doi.org/10.1016/j.chempr.2020.11.024
  • Huang, J., Cui, W. R., Wang, Y. G., Yan, R. H., Jiang, W., Zhang, L., Liang, R. P., & Qiu, J. D. (2022). Rational designed molecularly imprinted triazine-based porous aromatic frameworks for enhanced palladium capture via three synergistic mechanisms. Chemical Engineering Journal, 430(3), 132962. https://doi.org/10.1016/j.cej.2021.132962
  • Hu, K., Cheng, J., Zhang, W., Pang, T., Wu, X., Zhang, Z., Huang, Y., Zhao, W., & Zhang, S. (2020). Simultaneous extraction of diverse organic pollutants from environmental water using a magnetic covalent organic framework composite. Analytica chimica Acta, 1140(15), 132–144. https://doi.org/10.1016/j.aca.2020.10.019
  • Hu, Y., Tang, D., Shen, Z., Yao, L., Zhao, G., & Wang, X. (2023). Photochemically triggered self-extraction of uranium from aqueous solution under ambient conditions. Applied Catalysis B: Environmental, 322, 122092. https://doi.org/10.1016/j.apcatb.2022.122092
  • Hu, Q., Xu, L., Fu, K., Zhu, F., Yang, T., Yang, T., Luo, J., Wu, M., & Yu, D. (2022). Ultrastable MOF-based foams for versatile applications. Nano Research, 15(4), 2961–2970. https://doi.org/10.1007/s12274-021-3918-6
  • Jabeen, H., Chandra, V., Jung, S., Lee, J. W., Kim, K. S., & Kim, S. B. (2011). Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale, 3(9), 3583–3585. doi:10.1039/c1nr10549c
  • Jia, Z., Yan, Z., Zhang, J., Zou, Y., Qi, Y., Li, X., Li, Y., Guo, X., Yang, C., & Ma, L. (2021). Pore size control via multiple-site alkylation to homogenize sub-nanoporous covalent organic frameworks for efficient sieving of Xenon/Krypton. ACS applied Materials & Interfaces, 13(1), 1127–1134. https://doi.org/10.1021/acsami.0c14610
  • Jin, E., Kim, J., Nam, J., Yang, D. C., Jeong, H., Kim, S., Kang, E., Cho, H. J., & Choe, W. (2021). Adsorptive removal of industrial dye by nanoporous Zr porphyrinic metal-organic framework microcubes. ACS Applied Nano Materials, 4(10), 10068–10076. https://doi.org/10.1021/acsanm.1c01450
  • Karak, S., Dey, K., Torris, A., Halder, A., Bera, S., Kanheerampockil, F., & Banerjee, R. (2019). Inducing disorder in order: Hierarchically porous covalent organic framework nanostructures for rapid removal of persistent organic pollutants. Journal of the American Chemical Society, 141(18), 7572–7581. https://doi.org/10.1021/jacs.9b02706
  • Kent, C. A., Liu, D., Ma, L., Papanikolas, J. M., Meyer, T. J., & Lin, W. (2011). Light harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching. Journal of the American Chemical Society, 133(33), 12940–12943. https://doi.org/10.1021/ja204214t
  • Kim, Y., Lin, Z., Jeon, I., Van Voorhis, T., & Swager, T. M. (2018). Polyaniline nanofiber electrodes for reversible capture and release of mercury(II) from water. Journal of the American Chemical Society, 140(43), 14413–14420. https://doi.org/10.1021/jacs.8b09119
  • Li, G., Ye, J., Fang, Q., & Liu, F. (2019). Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead(II). Chemical Engineering Journal, 370(15), 822–830. https://doi.org/10.1016/j.cej.2019.03.260
  • Li, J., Dai, X., Zhu, L., Xu, C., Zhang, D., Silver, M. A., Li, P., Chen, L., Li, Y., Zuo, D., Zhang, H., Xiao, C., Chen, J., Diwu, J., Farha, O. K., Albrecht-Schmitt, T. E., Chai, Z., & Wang, S. (2018a). 99TcO4− remediation by a cationic polymeric network. Nature Communications, 9(1), 3007. https://doi.org/10.1038/s41467-018-05380-5
  • Li, J., Li, B., Shen, N., Chen, L., Guo, Q., Chen, L., He, L., Dai, X., Chai, Z., & Wang, S. (2021). Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4– cleanup from alkaline nuclear waste. ACS Central Science, 7(8), 1441–1450. https://doi.org/10.1021/acscentsci.1c00847
  • Li, J., Wang, X., Zhao, G., Chen, C., Chai, Z., Alsaedi, A., Hayat, T., & Wang, X. (2018b). Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 47(7), 2322–2356. https://doi.org/10.1039/C7CS00543A
  • Li, Z. J., Ju, Y., Lu, H., Wu, X., Yu, X., Li, Y., Wu, X., Zhang, Z. H., Lin, J., Qian, Y., He, M. Y., & Wang, J. (2021). Boosting the iodine adsorption and radioresistance of Th‐UiO‐66 MOFs via aromatic substitution. Chemistry (Weinheim an Der Bergstrasse, Germany), 27(4), 1286–1291. https://doi.org/10.1002/chem.202003621
  • Liu, B., Liu, M., Xie, Z., Li, Y., & Zhang, A. (2022). Performance of defective Zr-MOFs for the adsorption of anionic dyes. Journal of Materials Science, 57(9), 5438–5455. https://doi.org/10.1007/s10853-022-06874-w
  • Liu, X., Ma, R., Zhuang, L., Hu, B., Chen, J., Liu, X., & Wang, X. (2021a). Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Critical Reviews in Environmental Science and Technology, 51(8), 751–790. https://doi.org/10.1080/10643389.2020.1734433
  • Liu, X., Pang, H., Liu, X., Li, Q., Zhang, N., Mao, L., Qiu, M., Hu, B., Yang, H., & Wang, X. (2021b). Orderly porous covalent organic frameworks-based materials: Superior adsorbents for pollutants removal from aqueous solutions. Innovation (Cambridge (MA)), 2(1), 100076. https://doi.org/10.1016/j.xinn.2021.100076
  • Liu, Y. Q., Song, C. G., Ding, G., Yang, J., Wu, J. R., Wu, G., Zhang, M. Z., Song, C., Guo, L. P., Qin, J. C., & Yang, Y. W. (2022). High‐performance functional Fe‐MOF for removing aflatoxin B1 and other organic pollutants. Advanced Materials Interfaces, 9(9), 2102480. https://doi.org/10.1002/admi.202102480
  • Liu, X., Verma, G., Chen, Z., Hu, B., Huang, Q., Yang, H., Ma, S., & Wang, X. (2022). Metal-organic framework nanocrystals derived hollow porous materials: Synthetic strategies and emerging applications. Innovation (Cambridge (MA)), 3(5), 100281. https://doi.org/10.1016/j.xinn.2022.100281
  • Liu, Z., Xu, Z., Xu, L., Buyong, F., Chay, T. C., Li, Z., Cai, Y., Hu, B., Zhu, Y., & Wang, X. (2022). Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Research, 1(1), 8. https://doi.org/10.1007/s44246-022-00007-3
  • Lv, S. W., Liu, J. M., Li, C. Y., Zhao, N., Wang, Z. H., & Wang, S. (2019). A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chemical Engineering Journal, 375(1), 122111. https://doi.org/10.1016/j.cej.2019.122111
  • Lv, R., Wang, J., Zhang, Y., Li, H., Yang, L., Liao, S., Gu, W., & Liu, X. (2016). An amino-decorated dual-functional metal–organic framework for highly selective sensing of Cr(III) and Cr(VI) ions and detection of nitroaromatic explosives. Journal of Materials Chemistry A, 4(40), 15494–15500. https://doi.org/10.1039/C6TA05965A
  • Ma, L., Gao, J., Huang, C., Xu, X., Xu, L., Ding, R., Bao, H., Wang, Z., Xu, G., Li, Q., Deng, P., & Ma, H. (2021). UiO-66-NH-(AO) MOFs with a new ligand BDC-NH-(CN) for efficient extraction of uranium from seawater. ACS applied Materials & Interfaces, 13(48), 57831–57840. https://doi.org/10.1021/acsami.1c18625
  • Ma, L., Islam, S. M., Liu, H., Zhao, J., Sun, G., Li, H., Ma, S., & Kanatzidis, M. G. (2017). Selective and efficient removal of toxic oxoanions of As(III), As(V), and Cr(VI) by layered double hydroxide intercalated with MoS42–. Chemistry of Materials, 29(7), 3274–3284. https://doi.org/10.1021/acs.chemmater.7b00618
  • Mo, L., Shen, Y., Tan, Y., & Zhang, S. (2021). Ultralight and shapeable nanocellulose/metal-organic framework aerogel with hierarchical cellular architecture for highly efficient adsorption of Cu(II) ions. International Journal of Biological Macromolecules, 193(Pt B), 1488–1498. https://doi.org/10.1016/j.ijbiomac.2021.10.212
  • Mohammed, A. K., Usgaonkar, S., Kanheerampockil, F., Karak, S., Halder, A., Tharkar, M., Addicoat, M., Ajithkumar, T. G., & Banerjee, R. (2020). Connecting microscopic structures, mesoscale assemblies, and macroscopic architectures in 3D-printed hierarchical porous covalent organic framework foams. Journal of the American Chemical Society, 142(18), 8252–8261. https://doi.org/10.1021/jacs.0c00555
  • Mollick, S., Fajal, S., Saurabh, S., Mahato, D., & Ghosh, S. K. (2020). Nanotrap grafted anion exchangeable hybrid materials for efficient removal of toxic oxoanions from water. ACS Central Science, 6(9), 1534–1541. https://doi.org/10.1021/acscentsci.0c00533
  • Narayani, M., & Shetty, K. V. (2013). Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review. Critical Reviews in Environmental Science and Technology, 43(9), 955–1009. https://doi.org/10.1080/10643389.2011.627022
  • Nguyen, K. D., Ho, P. H., Vu, P. D., Pham, T. L., Trens, P., Di Renzo, F., Phan, N. T. S., & Le, H. V. (2021). Efficient removal of chromium(VI) anionic species and dye anions from water using MOF-808 materials synthesized with the assistance of formic acid. Nanomaterials, 11(6), 1398. https://doi.org/10.3390/nano11061398
  • Pan, T. T., Wang, Y. Q., Liu, F., Liu, C. S., & Li, W. X. (2022). Stable metal-organic frameworks based mixed tetramethylammonium hydroxide for toluene adsorption. Journal of Solid State Chemistry, 306, 122732. https://doi.org/10.1016/j.jssc.2021.122732
  • Patra, K., Ansari, S. A., & Mohapatra, P. K. (2021). Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. Journal of Chromatography A, 1655, 462491. https://doi.org/10.1016/j.chroma.2021.462491
  • Peng, J., He, Y., Zhou, C., Su, S., & Lai, B. (2021). The carbon nanotubes-based materials and their applications for organic pollutant removal: A critical review. Chinese Chemical Letters, 32(5), 1626–1636. https://doi.org/10.1016/j.cclet.2020.10.026
  • Pérez-Aguirre, R., Artetxe, B., Beobide, G., Castillo, O., de Pedro, I., Luque, A., Perez-Yanez, S., & Wuttke, S. (2021). Ferromagnetic supramolecular metal-organic frameworks for active capture and magnetic sensing of emerging drug pollutants. Cell Reports Physical Science, 2(5), 100421. https://doi.org/10.1016/j.xcrp.2021.100421
  • Pyles, D. A., Crowe, J. W., Baldwin, L. A., & McGrier, P. L. (2016). Synthesis of benzobisoxazole-linked two-dimensional covalent organic frameworks and their carbon dioxide capture properties. ACS Macro Letters, 5(9), 1055–1058. https://doi.org/10.1021/acsmacrolett.6b00486
  • Rostron, P., Gaber, S., & Gaber, D. (2016). Raman spectroscopy and regenerative medicine: A review. NPJ Regenerative Medicine, 2, 12. https://doi.org/10.1038/s41536-017-0014-3
  • Rouhani, F., & Morsali, A. (2018). Goal‐directed design of metal-organic frameworks for Hg(II) and PbII adsorption from aqueous solutions. Chemistry (Weinheim an Der Bergstrasse, Germany), 24(65), 17170–17179. https://doi.org/10.1002/chem.201802096
  • Sheng, D., Zhu, L., Dai, X., Xu, C., Li, P., Pearce, C. I., Xiao, C., Chen, J., Zhou, R., Duan, T., Farha, O. K., Chai, Z., & Wang, S. (2019). Successful decontamination of 99TcO4− in groundwater at legacy nuclear sites by a cationic metal-organic framework with hydrophobic pockets. Angewandte Chemie (International ed. in English), 58(15), 4968–4972. https://doi.org/10.1002/anie.201814640
  • Song, S., Shi, Y., Liu, N., & Liu, F. (2021). Theoretical screening and experimental synthesis of ultrahigh-iodine capture covalent organic frameworks. ACS Applied Materials & Interfaces, 13(8), 10513–10523. https://doi.org/10.1021/acsami.0c17748
  • Sun, Y., & Li, Y. (2021). Potential environmental applications of MXenes: A critical review. Chemosphere, 271, 129578. https://doi.org/10.1016/j.chemosphere.2021.129578
  • Tang, H., Wang, J., Zhang, S., Pang, H., Wang, X., Chen, Z., Li, M., Song, G., Qiu, M., & Yu, S. (2021). Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. Journal of Cleaner Production, 319, 128641. https://doi.org/10.1016/j.jclepro.2021.128641
  • Tian, D., Wu, T. T., Liu, Y. Q., & Li, N. (2021). Double-walled metal-organic framework with regulable pore environments for efficient removal of radioactive cesium cations. Inorganic Chemistry, 60(16), 12067–12074. https://doi.org/10.1021/acs.inorgchem.1c01260
  • Tian, J., Shi, C., Xiao, C., Jiang, F., Yuan, D., Chen, Q., & Hong, M. (2020). Introduction of flexibility into a metal–organic framework to promote Hg(II) capture through adaptive deformation. Inorganic Chemistry, 59(24), 18264–18275. https://doi.org/10.1021/acs.inorgchem.0c02781
  • Venkata Sravani, V., Tripathi, S., Sreenivasulu, B., Kumar, S., Maji, S., Brahmmananda Rao, C. V. S., Suresh, A., & Sivaraman, N. (2021). Post synthetically modified IRMOF-3 for efficient recovery and selective sensing of U(VI) from aqueous medium. RSC Advances, 11(45), 28126–28137. https://doi.org/10.1039/D1RA02971A
  • Wang, C., Wang, Y., Ge, R., Song, X., Xing, X., Jiang, Q., Lu, H., Hao, C., Guo, X., Gao, Y., & Jiang, D. (2018). A 3D covalent organic framework with exceptionally high iodine capture capability. Chemistry (Weinheim an Der Bergstrasse, Germany), 24(3), 585–589. https://doi.org/10.1002/chem.201705405
  • Wang, J., & Zhuang, S. (2019). Covalent organic frameworks (COFs) for environmental applications. Coordination Chemistry Reviews, 400(1), 213046. https://doi.org/10.1016/j.ccr.2019.213046
  • Wang, L., Deng, M., Xu, H., Li, W., Huang, W., Yan, N., Zhou, Y., Chen, J., & Qu, Z. (2020). Selective reductive removal of silver ions from acidic solutions by redox-active covalent organic frameworks. ACS Applied Materials & Interfaces, 12(33), 37619–37627. https://doi.org/10.1021/acsami.0c11463
  • Wang, X., Ma, F., Liu, S., Chen, L., Xiong, S., Dai, X., Tai, B., He, L., Yuan, M., Mi, P., Gong, S., Li, G., Tao, Y., Wan, J., Chen, L., Sun, X., Tang, Q., He, L., Yang, Z., Chai, Z., & Wang, S. (2022a). Thermodynamics-kinetics-balanced metal–organic framework for in-depth radon removal under ambient conditions. Journal of the American Chemical Society, 144(30), 13634–13642. https://doi.org/10.1021/jacs.2c04025
  • Wang, X., Ma, F., Xiong, S., Bai, Z., Zhang, Y., Li, G., Chen, J., Yuan, M., Wang, Y., Dai, X., Chai, Z., & Wang, S. (2022b). Efficient Xe/Kr separation based on a lanthanide-organic framework with one-dimensional local positively charged rhomboid channels. ACS applied Materials & Interfaces, 14(19), 22233–22241. https://doi.org/10.1021/acsami.2c05258
  • Wang, Y., Liu, W., Bai, Z., Zheng, T., Silver, M. A., Li, Y., Wang, Y., Wang, X., Diwu, J., Chai, Z., & Wang, S. (2018). Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angewandte Chemie (International ed. in English), 57(20), 5783–5787. https://doi.org/10.1002/anie.201802173
  • Wu, M. X., & Yang, Y. W. (2017). Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chinese Chemical Letters, 28(6), 1135–1143. https://doi.org/10.1016/j.cclet.2017.03.026
  • Wu, Y., Pang, H., Liu, Y., Wang, X., Yu, S., Fu, D., Chen, J., & Wang, X. (2019). Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environmental pollution (Barking, Essex : 1987), 246, 608–620. https://doi.org/10.1016/j.envpol.2018.12.076
  • Xiao, C., Khayambashi, A., & Wang, S. (2019). Separation and remediation of 99TcO4– from aqueous solutions. Chemistry of Materials, 31(11), 3863–3877. https://doi.org/10.1021/acs.chemmater.9b00329
  • Xiao, Y., Ma, C., Jin, Z., Wang, J., He, L., Mu, X., Song, L., & Hu, Y. (2021). Functional covalent organic framework for exceptional Fe2+, Co2+ and Ni2+ removal: An upcycling strategy to achieve water decontamination and reutilization as smoke suppressant and flame retardant simultaneously. Chemical Engineering Journal, 421(1), 127837. https://doi.org/10.1016/j.cej.2020.127837
  • Xiao, Z., Zhou, J., Fan, L., Li, Y., He, Y., Wang, Y., & Li, L. (2021). Controllable preparation of Cu-MOF-coated carboxyl filter paper for simultaneous removal of organic dye and metal ions. Industrial & Engineering Chemistry Research, 60(19), 7311–7319. https://doi.org/10.1021/acs.iecr.1c00140
  • Xie, B., Shan, C., Xu, Z., Li, X., Zhang, X., Chen, J., & Pan, B. (2017). One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chemical Engineering Journal, 308(15), 791–797. https://doi.org/10.1016/j.cej.2016.09.123
  • Xu, T., Zhou, L., He, Y., An, S., Peng, C., Hu, J., & Liu, H. (2019). Covalent organic framework with triazine and hydroxyl bifunctional groups for efficient removal of lead(II) ions. Industrial & Engineering Chemistry Research, 58(42), 19642–19648. https://doi.org/10.1021/acs.iecr.9b04193
  • Yang, Y., Faheem, M., Wang, L., Meng, Q., Sha, H., Yang, N., Yuan, Y., & Zhu, G. (2018). Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Central Science, 4(6), 748–754. https://doi.org/10.1021/acscentsci.8b00232
  • Yang, H., Liu, Y., Chen, Z., Waterhouse, G. I. N., Ma, S., & Wang, X. (2022). Emerging technologies for uranium extraction from seawater. Science China Chemistry, 65(12), 2335–2337. https://doi.org/10.1007/s11426-022-1358-1
  • Yang, H., Liu, X., Hao, M., Xie, Y., Wang, X., Tian, H., Waterhouse, G. I. N., Kruge, P. E., Telfer, S. G., & Ma, S. (2021). Functionalized Iron − Nitrogen − Carbon Electrocatalyst Provides a Reversible Electron Transfer Platform for Efficient Uranium Extraction from Seawater. Advanced Materials, 33(51), 2106621. https://doi.org/10.1002/adma.202106621
  • Yang, X., Zhou, Y., Sun, Z., Yang, C., & Tang, D. (2020). Effective strategy to fabricate ZIF-8@ ZIF-8/polyacrylonitrile nanofibers with high loading efficiency and improved removing of Cr(VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603(20), 125292. https://doi.org/10.1016/j.colsurfa.2020.125292
  • Yao, L., Hu, Y., Zou, Y., Ji, Z., Hu, S., Wang, C., Zhang, P., Yang, H., Shen, Z., Tang, D., Zhang, S., Zhao, G., & Wang, X. (2022a). Selective and efficient photo-extraction of aqueous Cr(VI) as solid-state polyhydroxy Cr(V) complex for environment remediation and resources recovery. Environmental Science & Technology, 56(19), 14030–14037. https://doi.org/10.1021/acs.est.2c03994
  • Yao, L., Shen, Z., Ji, Z., Hu, Y., Tang, D., Zhao, G., & Wang, X. (2022b). Cr(VI) detoxification and simultaneous selective recovery of Cr resource from wastewater via photo-chemical extraction using biomass. Science Bulletin, 67(21), 2154–2157. https://doi.org/10.1016/j.scib.2022.10.013
  • Yazdi, M. N., Dadfarnia, S., & Shabani, A. M. H. (2021). Synthesis of stable S-functionalized metal-organic framework using MoS42- and its application for selective and efficient removal of toxic heavy metal ions in wastewater treatment. Journal of Environmental Chemical Engineering, 9(1), 104696. https://doi.org/10.1016/j.jece.2020.104696
  • Yu, S., Wang, X., Pang, H., Zhang, R., Song, W., Fu, D., Hayat, T., & Wang, X. (2018). Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review. Chemical Engineering Journal, 333(1), 343–360. https://doi.org/10.1016/j.cej.2017.09.163
  • Yuan, Y., Yang, Y., Faheem, M., Zou, X., Ma, X., Wang, Z., Meng, Q., Wang, L., Zhao, S., & Zhu, G. (2018a). Molecularly imprinted porous aromatic frameworks serving as porous artificial enzymes. Advanced Materials, 30(27), 1800069. https://doi.org/10.1002/adma.201800069
  • Yuan, Y., Yang, Y., Ma, X., Meng, Q., Wang, L., Zhao, S., & Zhu, G. (2018b). Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Advanced Materials, 30(12), 1706507. https://doi.org/10.1002/adma.201706507
  • Zango, Z. U., Jumbri, K., Sambudi, N. S., Bakar, H. H. A., Garba, Z. N., Isiyaka, H. A., & Saad, B. (2021). Selective adsorption of dyes and pharmaceuticals from water by UiO metal-organic frameworks: A comprehensive review. Polyhedron, 210(1), 115515. https://doi.org/10.1016/j.poly.2021.115515
  • Zeng, Y., Lan, T., Li, M., Yuan, G., Li, F., Liao, J., Yang, J., Yang, Y., & Liu, N. (2021). Removal of Co(II) from aqueous solutions by pyridine Schiff base-functionalized zirconium-based MOFs: A combined experimental and DFT study on the effect of ortho-, meta-, and para-substitution. Journal of Chemical & Engineering Data, 66(1), 749–760. https://doi.org/10.1021/acs.jced.0c00852
  • Zhang, G., Wo, R., Sun, Z., Xiao, L., Liu, G., Hao, G., Guo, H., & Jiang, W. (2021). Amido-functionalized magnetic metal-organic frameworks adsorbent for the removal of bisphenol a and tetracycline. Frontiers in Chemistry, 9, 707559. https://doi.org/10.3389/fchem.2021.707559
  • Zhang, H., Hu, X., Li, T., Zhang, Y., Xu, H., Sun, Y., Gu, X., Gu, C., Luo, J., & Gao, B. (2022). MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. Journal of Hazardous Materials, 429(5), 128271. https://doi.org/10.1016/j.jhazmat.2022.128271
  • Zhang, L., Wang, J., Du, T., Zhang, W., Zhu, W., Yang, C., Yue, T., Sun, J., Li, T., & Wang, J. (2019). NH2-MIL-53 (Al) metal–organic framework as the smart platform for simultaneous high-performance detection and removal of Hg2+. Inorganic Chemistry, 58(19), 12573–12581. https://doi.org/10.1021/acs.inorgchem.9b01242
  • Zhang, L., Wang, J., Ren, X., Zhang, W., Zhang, T., Liu, X., Du, T., Li, T., & Wang, J. (2018). Internally extended growth of core-shell NH2-MIL-101(Al)@ZIF-8 nanoflowers for the simultaneous detection and removal of Cu(II). Journal of Materials Chemistry A, 6(42), 21029–21038. https://doi.org/10.1039/C8TA07349J
  • Zhang, N., Sun, L. X., Bai, F. Y., & Xing, Y. H. (2020). Thorium-organic framework constructed with a semirigid triazine hexacarboxylic acid ligand: Unique structure with thorium oxide wheel clusters and iodine adsorption behavior. Inorganic Chemistry, 59(6), 3964–3973. https://doi.org/10.1021/acs.inorgchem.9b03639
  • Zhang, X., Ballem, M. A., Hu, Z. J., Bergman, P., & Uvdal, K. (2011). Nanoscale light‐harvesting metal-organic frameworks. Angewandte Chemie, 123(25), 5847–5851. https://doi.org/10.1002/anie.201007277
  • Zhang, Y., Liu, H., Gao, F., Tan, X., Cai, Y., Hu, B., Huang, Q., Fang, M., & Wang, X. (2022). Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 4(4), 100078. https://doi.org/10.1016/j.enchem.2022.100078
  • Zhao, G., Huang, X., Tang, Z., Huang, Q., Niu, F., & Wang, X. (2018). Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: A review. Polymer Chemistry, 9(26), 3562–3582. https://doi.org/10.1039/C8PY00484F
  • Zhao, G., Li, J., Ren, X., Chen, C., & Wang, X. (2011). Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental science & Technology, 45(24), 10454–10462. https://doi.org/10.1021/es203439v
  • Zhong, Y., Mu, X., & Cheang, U. K. (2022). High-performance and selective adsorption of ZIF-8/MIL-100 hybrids towards organic pollutants. Nanoscale advances, 4(5), 1431–1444. https://doi.org/10.1039/d1na00819f
  • Zhu, L., Sheng, D., Xu, C., Dai, X., Silver, M. A., Li, J., Li, P., Wang, Y., Wang, Y., Chen, L., Xiao, C., Chen, J., Zhou, R., Zhang, C., Farha, O. K., Chai, Z., Albrecht-Schmitt, T. E., & Wang, S. (2017a). Identifying the recognition site for selective trapping of 99TcO4– in a hydrolytically stable and radiation resistant cationic metal-organic framework. Journal of the American Chemical Society, 139(42), 14873–14876. https://doi.org/10.1021/jacs.7b08632
  • Zhuang, X., Hao, J., Zheng, X., Fu, D., Mo, P., Jin, Y., Che, P., Liu, H., Liu, G., & Lv, W. (2021). High-performance adsorption of chromate by hydrazone-linked guanidinium-based ionic covalent organic frameworks: Selective ion exchange. Separation and Purification Technology, 274, 118993. https://doi.org/10.1016/j.seppur.2021.118993
  • Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., & Wang, X. (2016). Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environmental science & Technology, 50(14), 7290–7304. https://doi.org/10.1021/acs.est.6b01897

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.