456
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Coal ash for removing toxic metals and phenolic contaminants from wastewater: A brief review

, , , , ORCID Icon &
Pages 2006-2029 | Published online: 05 May 2023

References

  • Abidin, Z., Prajaputra, V., Budiarti, S., Suryaningtyas, D. T., Matsue, N., & Sakakibar, M. (2021). Effect of alkaline concentrations on the synthesis of volcanic soil-based zeolite for methylene blue removal by fenton-like oxidation process. Revista de Chimie, 71(12), 47–55. https://doi.org/10.37358/Rev.Chim.1949
  • Ajala, O. J., Khadir, A., Ighalo, J. O., & Umenweke, G. C. (2022). Cellulose-based nano-biosorbents in water purification, nano-biosorbents for decontamination of water, air, and soil pollution, 395–415. Elsevier. https://doi.org/10.1016/B978-0-323-90912-9.00017-4
  • Akinterinwa, A., Usaku, R., Atiku, J. U., & Adamu, M. (2022). Focus on the removal of lead and cadmium ions from aqueous solutions using starch derivatives: A review. Carbohydrate Polymers, 290, 119463. https://doi.org/10.1016/j.carbpol.2022.119463
  • Alawi, M., Torrijos, T. V., & Walsh, F. (2022). Plasmid-mediated antimicrobial resistance in drinking water. Environmental Advances, 8, 100191. https://doi.org/10.1016/j.envadv.2022.100191
  • Alberti, S., Caratto, V., Peddis, D., Belviso, C., & Ferretti, M. (2019). Synthesis and characterization of a new photocatalyst based on TiO2 nanoparticles supported on a magnetic zeolite obtained from iron and steel industrial waste. Journal of Alloys and Compounds, 797, 820–825. https://doi.org/10.1016/j.jallcom.2019.05.098
  • Alterary, S. S., & Marei, N. H. (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University - Science, 33(6), 101536. https://doi.org/10.1016/j.jksus.2021.101536
  • An, C., Yang, S., Huang, G., Zhao, S., Zhang, P., & Yao, Y. (2016). Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: Equilibrium and kinetic adsorption studies. Fuel, 165, 264–271. https://doi.org/10.1016/j.fuel.2015.10.069
  • Ayub, M. A., Ur Rehman, M. Z., Umar, W., Adnan, M., Farooqi, Z. U. R., Naveed, M., Aslam, M. Z., & Ahmad, H. R. (2021). Physiological mechanisms and adaptation strategies of plants under heavy metal micronutrient deficiency/toxicity conditions. Frontiers in Plant-Soil Interaction. Elsevier. 413–458. https://doi.org/10.1016/B978-0-323-90943-3.00016-X
  • Bada, S., Potgieter, J., & Afolabi, A. (2013). Kinetics studies of adsorption and desorption of South African fly ash for some phenolic compounds. Particulate Science and Technology, 31(1), 1–9. https://doi.org/10.1080/02726351.2011.613897
  • Belfort, G. (2019). Membrane filtration with liquids: A global approach with prior successes, new developments and unresolved challenges. Angewandte Chemie, 131(7), 1908–1918. https://doi.org/10.1002/ange.201809548
  • Bi, R., Yin, D., Lei, B., Chen, F., Zhang, R., & Li, W. (2022). Mercaptocarboxylic acid intercalated MgAl layered double hydroxide adsorbents for removal of heavy metal ions and recycling of spent adsorbents for photocatalytic degradation of organic dyes. Separation and Purification Technology, 289, 120741. https://doi.org/10.1016/j.seppur.2022.120741
  • Bing, H., Liu, Y., Huang, J., Tian, X., Zhu, H., & Wu, Y. (2022). Dam construction attenuates trace metal contamination in water through increased sedimentation in the Three Gorges Reservoir. Water Research, 217, 118419. https://doi.org/10.1016/j.watres.2022.118419
  • Buema, G., Lupu, N., Chiriac, H., Ciobanu, G., Bucur, R.-D., Bucur, D., Favier, L., & Harja, M. (2021). Performance assessment of five adsorbents based on fly ash for removal of cadmium ions. Journal of Molecular Liquids, 333, 115932. https://doi.org/10.1016/j.molliq.2021.115932
  • Cao, J., Cui, Z., Wang, T., Zou, Q., Zeng, Q., Luo, S., Liu, Y., & Liu, B. (2021). Reductive removal of Cr (VI) by citric acid promoted by ceramsite particles: Kinetics, influential factors, and mechanisms. Materials Today Communications, 28, 102716. https://doi.org/10.1016/j.mtcomm.2021.102716
  • Cheng, Z., Yang, J., Li, L., Chen, Y., & Wang, X. (2022). Flocculation inspired combination of layered double hydroxides and fulvic acid to form a novel composite adsorbent for the simultaneous adsorption of anionic dye and heavy metals. Journal of Colloid and Interface Science, 618, 386–398. https://doi.org/10.1016/j.jcis.2022.03.097
  • Cho, Y. K., Jung, S. H., & Choi, Y. C. (2019). Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Construction and Building Materials, 204, 255–264. https://doi.org/10.1016/j.conbuildmat.2019.01.208
  • Chuaicham, C., Inoue, T., Balakumar, V., Tian, Q., Ohtani, B., & Sasaki, K. (2022). Visible light-driven ZnCr double layer oxide photocatalyst composites with fly ashes for the degradation of ciprofloxacin. Journal of Environmental Chemical Engineering, 10(1), 106970. https://doi.org/10.1016/j.jece.2021.106970
  • Chuaicham, C., Inoue, T., Balakumar, V., Tian, Q., & Sasaki, K. (2022). Fabrication of visible-light-active ZnCr mixed metal oxide/fly ash for photocatalytic activity toward pharmaceutical waste ciprofloxacin. Journal of Industrial and Engineering Chemistry, 108, 263–273. https://doi.org/10.1016/j.jiec.2022.01.006
  • Constantino, D. S., Dias, M. M., Silva, A. M., Faria, J. L., & Silva, C. G. (2022). Intensification strategies for improving the performance of photocatalytic processes: A review. Journal of Cleaner Production, 340, 130800. https://doi.org/10.1016/j.jclepro.2022.130800
  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9
  • Cui, Y., Bai, L., Li, C., He, Z., & Liu, X. (2022). Assessment of heavy metal contamination levels and health risks in environmental media in the northeast region. Sustainable Cities and Society, 80, 103796. https://doi.org/10.1016/j.scs.2022.103796
  • Dalanta, F., & Kusworo, T. D. (2022). Synergistic adsorption and photocatalytic properties of AC/TiO2/CeO2 composite for phenol and ammonia–nitrogen compound degradations from petroleum refinery wastewater. Chemical Engineering Journal, 434, 134687. https://doi.org/10.1016/j.cej.2022.134687
  • Dell’Edera, M., Porto, C. L., De Pasquale, I., Petronella, F., Curri, M. L., Agostiano, A., & Comparelli, R. (2021). Photocatalytic TiO2-based coatings for environmental applications. Catalysis Today, 380, 62–83. https://doi.org/10.1016/j.cattod.2021.04.023
  • Dogar, S., Nayab, S., Farooq, M. Q., Said, A., Kamran, R., Duran, H., & Yameen, B. (2020). Utilization of biomass fly ash for improving quality of organic dye-contaminated water. ACS Omega, 5(26), 15850–15864. https://doi.org/10.1021/acsomega.0c00889
  • Du, Z., Gong, Z., Qi, W., Li, E., Shen, J., Li, J., & Zhao, H. (2022). Coagulation performance and floc characteristics of poly-ferric-titanium-silicate-chloride in coking wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 642, 128413. https://doi.org/10.1016/j.colsurfa.2022.128413
  • Fang, J., Qin, G., Wei, W., Zhao, X., & Jiang, L. (2013). Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion. Desalination, 311, 113–126. https://doi.org/10.1016/j.desal.2012.11.008
  • Ferreira, S., Meunier, S., Heinrich, M., Cherni, J. A., Darga, A., & Quéval, L. (2022). A decision support tool to place drinking water sources in rural communities. The Science of the Total Environment, 833, 155069. https://doi.org/10.1016/j.scitotenv.2022.155069
  • Fu, H., Li, Z., Zhang, Y., Zhang, H., & Chen, H. (2022). Preparation, characterization and properties study of a superhydrophobic ceramic membrane based on fly ash. Ceramics International, 48(8), 11573–11587. https://doi.org/10.1016/j.ceramint.2022.01.014
  • Fu, H., Zhou, Z., Zheng, S., Xu, Z., Alvarez, P. J., Yin, D., Qu, X., & Zhu, D. (2018). Dissolved mineral ash generated by vegetation fire is photoactive under the solar spectrum. Environmental Science & Technology, 52(18), 10453–10461. https://doi.org/10.1021/acs.est.8b03010
  • Gangani, N., Joshi, V. C., Sharma, S., & Bhattacharya, A. (2022). Fluoride contamination in water: Remediation strategies through membranes. Groundwater for Sustainable Development, 17, 100751. https://doi.org/10.1016/j.gsd.2022.100751
  • Gao, K., & Iliuta, M. C. (2022). Trends and advances in the development of coal fly ash-based materials for application in hydrogen-rich gas production: A review. Journal of Energy Chemistry, 73, 485–512. https://doi.org/10.1016/j.jechem.2022.05.016
  • Ge, Y., Yuan, Y., Wang, K., He, Y., & Cui, X. (2015). Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. Journal of Hazardous Materials, 299, 711–718. https://doi.org/10.1016/j.jhazmat.2015.08.006
  • Giri, T. K., & Badwaik, H. (2022). Understanding the application of gum ghatti based biodegradable hydrogel for wastewater treatment. Environmental Nanotechnology, Monitoring & Management, 17, 100668. https://doi.org/10.1016/j.enmm.2022.100668
  • Glasner, B., Henríquez-Castillo, C., Alfaro, F., Trefault, N., Andrade, S., & De la Iglesia, R. (2021). Decoupling of biotic and abiotic patterns in a coastal area affected by chronic metal micronutrients disturbances. Marine Pollution Bulletin, 166, 111608. https://doi.org/10.1016/j.marpolbul.2020.111608
  • Goswami, K. P., & Pugazhenthi, G. (2020). Credibility of polymeric and ceramic membrane filtration in the removal of bacteria and virus from water: A review. Journal of Environmental Management, 268, 110583. https://doi.org/10.1016/j.jenvman.2020.110583
  • Guo, L.-C., Lv, Z., Ma, W., Xiao, J., Lin, H., He, G., Li, X., Zeng, W., Hu, J., Zhou, Y., Li, M., Yu, S., Xu, Y., Zhang, J., Zhang, H., & Liu, T. (2022). Contribution of heavy metals in PM2.5 to cardiovascular disease mortality risk, a case study in Guangzhou, China. Chemosphere, 297, 134102. https://doi.org/10.1016/j.chemosphere.2022.134102
  • Gupta, V., & Anandkumar, J. (2019). Synthesis of crosslinked PVA-ceramic composite membrane for phenol removal from aqueous solution. Journal of the Serbian Chemical Society, 84(2), 211–224. https://doi.org/10.2298/JSC180424083G
  • Gupta, V., Raja, C., & Anandkumar, J. (2019). Phenol removal by novel choline chloride blended cellulose acetate-fly ash composite membrane. Periodica Polytechnica Chemical Engineering, 64(1), 116–123. https://doi.org/10.3311/PPch.14126
  • Hasan, M., Rahman, M., Al Ahmed, A., Islam, M. A., & Rahman, M. (2022). Heavy metal pollution and ecological risk assessment in the surface water from a marine protected area, Swatch of No Ground, north-western part of the Bay of Bengal. Regional Studies in Marine Science, 52, 102278. https://doi.org/10.1016/j.rsma.2022.102278
  • Hashim, H. S., Fen, Y. W., Omar, N. A. S., & Fauzi, N. I. M. (2021). Sensing methods for hazardous phenolic compounds based on graphene and conducting polymers-based materials. Chemosensors, 9(10), 291. https://doi.org/10.3390/chemosensors9100291
  • Hashim, H. S., Fen, Y. W., Omar, N. A. S., Fauzi, N. I. M., & Daniyal, W. (2021). Recent advances of priority phenolic compounds detection using phenol oxidases-based electrochemical and optical sensors. Measurement, 184, 109855. https://doi.org/10.1016/j.measurement.2021.109855
  • He, P. Y., Zhang, Y. J., Chen, H., Han, Z. C., & Liu, L. C. (2020). Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium (VI) separation from aqueous solution. Journal of Hazardous Materials, 392, 122359.https://doi.org/10.1016/j.jhazmat.2020.122359
  • Helmrich, S., Vlassopoulos, D., Alpers, C. N., & O’Day, P. A. (2022). Critical review of mercury methylation and methylmercury demethylation rate constants in aquatic sediments for biogeochemical modeling. Critical Reviews in Environmental Science and Technology, 52(24), 4353–4378. https://doi.org/10.1080/10643389.2021.2013073
  • Huang, L., Wu, B., Wu, Y., Yang, Z., Yuan, T., Alhassan, S. I., Yang, W., Wang, H., & Zhang, L. (2020). Porous and flexible membrane derived from ZIF-8-decorated hyphae for outstanding adsorption of Pb2+ ion. Journal of Colloid and Interface Science, 565, 465–473. https://doi.org/10.1016/j.jcis.2020.01.035
  • Hubadillah, S. K., Othman, M. H. D., Ismail, A., Rahman, M. A., & Jaafar, J. (2019). A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Separation and Purification Technology, 214, 31–39. https://doi.org/10.1016/j.seppur.2018.04.025
  • Huda, B. N., Wahyuni, E. T., & Mudasir, M. (2021). Eco-friendly immobilization of dithizone on coal bottom ash for the adsorption of lead (II) ion from water. Results in Engineering, 10, 100221. https://doi.org/10.1016/j.rineng.2021.100221
  • Iqbal, K., Jiang, W., Ma, R., & Deng, C. (2022). Synthesis of large-scale total water network with multiple water resources under seasonal flow rate constraints. Journal of Cleaner Production, 337, 130462. https://doi.org/10.1016/j.jclepro.2022.130462
  • Jabbar, K. Q., Barzinjy, A. A., & Hamad, S. M. (2022). Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment. Environmental Nanotechnology, Monitoring & Management, 17, 100661. https://doi.org/10.1016/j.enmm.2022.100661
  • Jain, S., & Tembhurkar, A. R. (2022). Sustainable amelioration of fly ash dumps linking bio-energy plantation, bioremediation and amendments: A review. Journal of Environmental Management, 314, 115124. https://doi.org/10.1016/j.jenvman.2022.115124
  • Jayaranjan, M. L. D., Van Hullebusch, E. D., & Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science and Bio/Technology, 13(4), 467–486. https://doi.org/10.1007/s11157-014-9336-4
  • Jin, Y., Feng, W., Zheng, D., Dong, Z., & Cui, H. (2020). Structure refinement of fly ash in connection with its reactivity in geopolymerization. Waste Management (New York, N.Y.), 118, 350–359. https://doi.org/10.1016/j.wasman.2020.08.049
  • Joseph, I. V., Tosheva, L., & Doyle, A. M. (2020). Simultaneous removal of Cd (II), Co (II), Cu (II), Pb (II), and Zn (II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash. Journal of Environmental Chemical Engineering, 8(4), 103895. https://doi.org/10.1016/j.jece.2020.103895
  • Joshi, N. C., & Gururani, P. (2022). Advances of graphene oxide based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes. Current Research in Green and Sustainable Chemistry, 5, 100306. https://doi.org/10.1016/j.crgsc.2022.100306
  • Ju, T., Han, S., Meng, Y., & Jiang, J. (2021). High-end reclamation of coal fly ash focusing on elemental extraction and synthesis of porous materials. ACS Sustainable Chemistry & Engineering, 9(20), 6894–6911. https://doi.org/10.1021/acssuschemeng.1c00587
  • Karanac, M., Đolić, M., Veljović, Đ., Rajaković-Ognjanović, V., Veličković, Z., Pavićević, V., & Marinković, A. (2018). The removal of Zn2+, Pb2+, and As (V) ions by lime activated fly ash and valorization of the exhausted adsorbent. Waste Management (New York, N.Y.), 78, 366–378. https://doi.org/10.1016/j.wasman.2018.05.052
  • Keshvardoostchokami, M., Majidi, M., Zamani, A., & Liu, B. (2021). A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants. Carbohydrate Polymers, 273, 118625. https://doi.org/10.1016/j.carbpol.2021.118625
  • Kim, M., & Bae, S. (2018). Immobilization and characterization of Fe (0) catalyst on NaOH-treated coal fly ash for catalytic reduction of p-nitrophenol. Chemosphere, 212, 1020–1029. https://doi.org/10.1016/j.chemosphere.2018.09.006
  • Korashy, H. M., Attafi, I. M., Famulski, K. S., Bakheet, S. A., Hafez, M. M., Alsaad, A. M., & Al-Ghadeer, A. R. M. (2017). Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environmental Pollution (Barking, Essex : 1987), 221, 64–74. https://doi.org/10.1016/j.envpol.2016.10.058
  • Labidi, A., Salaberria, A. M., Fernandes, S. C., Labidi, J., & Abderrabba, M. (2020). Microwave assisted synthesis of poly (N-vinylimidazole) grafted chitosan as an effective adsorbent for mercury (II) removal from aqueous solution: Equilibrium, kinetic, thermodynamics and regeneration studies. Journal of Dispersion Science and Technology, 41(6), 828–840. https://doi.org/10.1080/01932691.2019.1614025
  • Lei, K., Pan, H.-Y., Zhu, Y., Chen, W., & Lin, C.-Y. (2021). Pollution characteristics and mixture risk prediction of phenolic environmental estrogens in rivers of the Beijing–Tianjin–Hebei urban agglomeration, China. The Science of the Total Environment, 787, 147646. https://doi.org/10.1016/j.scitotenv.2021.147646
  • Li, X., Bai, C., Qiao, Y., Wang, X., Yang, K., & Colombo, P. (2022). Preparation, properties and applications of fly ash-based porous geopolymers: A review. Journal of Cleaner Production, 359, 132043. https://doi.org/10.1016/j.jclepro.2022.132043
  • Li, X., Huang, G., Wang, S., Li, Y., Zhang, X., & Zhou, X. (2022). An interval two-stage fuzzy fractional programming model for planning water resources management in the coastal region–A case study of Shenzhen, China. Environmental Pollution (Barking, Essex : 1987), 306, 119343. https://doi.org/10.1016/j.envpol.2022.119343
  • Li, Q-G., Liu, G-h., Qi, L., Wang, H-C., Ye, Z-F., & Zhao, Q-L. (2022). Heavy metal-contained wastewater in China: Discharge, management and treatment. The Science of the Total Environment, 808, 152091. https://doi.org/10.1016/j.scitotenv.2021.152091
  • Li, G., Teng, Q., Sun, B., Yang, Z., Liu, S., & Zhu, X. (2021). Synthesis scaly Ag-TiO2 loaded fly ash magnetic bead particles for treatment of xanthate wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126795. https://doi.org/10.1016/j.colsurfa.2021.126795
  • Liu, Y., Wang, P., Gojenko, B., Yu, J., Wei, L., Luo, D., & Xiao, T. (2021). A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects. Environmental Pollution (Barking, Essex : 1987), 291, 118209. https://doi.org/10.1016/j.envpol.2021.118209
  • Li, J., Yang, Z-l., Ding, T., Song, Y.-J., Li, H.-C., Li, D-q., Chen, S., & Xu, F. (2022). The role of surface functional groups of pectin and pectin-based materials on the adsorption of heavy metal ions and dyes. Carbohydrate Polymers, 276, 118789. https://doi.org/10.1016/j.carbpol.2021.118789
  • Li, Z., Zhang, C., Liu, H., Zhang, C., Zhao, M., Gong, Q., & Fu, G. (2022). Developing stacking ensemble models for multivariate contamination detection in water distribution systems. The Science of the Total Environment, 828, 154284. https://doi.org/10.1016/j.scitotenv.2022.154284
  • Loi, J. X., Chua, A., S. M., Rabuni, M. F., Tan, C. K., Lai, S. H., Takemura, Y., & Syutsubo, K. (2022). Water quality assessment and pollution threat to safe water supply for three river basins in Malaysia. The Science of the Total Environment, 832, 155067. https://doi.org/10.1016/j.scitotenv.2022.155067
  • Luo, M., Zhang, Y., Li, H., Hu, W., Xiao, K., Yu, S., Zheng, C., & Wang, X. (2022). Pollution assessment and sources of dissolved heavy metals in coastal water of a highly urbanized coastal area: The role of groundwater discharge. The Science of the Total Environment, 807(Pt 3), 151070. https://doi.org/10.1016/j.scitotenv.2021.151070
  • Malakootian, M., Mesdaghinia, A., & Rezaei, S. (2016). The Photocatalytic Removal of Ortho Chlorophenol from Aqueous Solution Using Modified Fly Ash-Titanium Dioxide. Journal of Water and Wastewater; Ab va Fazilab (in persian) 27, 14–21. http://www.wwjournal.ir/article_12203.html?lang=en.
  • Mangi, S. A., Ibrahim, M. H. W., Jamaluddin, N., Arshad, M. F., Memon, F. A., Jaya, R. P., & Shahidan, S. (2018). A review on potential use of coal bottom ash as a supplementary cementing material in sustainable concrete construction. International Journal of Integrated Engineering, 10(9), 127–135.https://doi.org/10.30880/ijie.2018.10.09.006
  • Meesala, C. R., Verma, N. K., & Kumar, S. (2020). Critical review on fly-ash based geopolymer concrete. Structural Concrete, 21(3), 1013–1028. https://doi.org/10.1002/suco.201900326
  • Min, X., Han, C., Yang, L., & Zhou, C. (2021). Enhancing As (V) and As (III) adsorption performance of low alumina fly ash with ferric citrate modification: Role of FeSiO3 and monosodium citrate. Journal of Environmental Management, 287, 112302. https://doi.org/10.1016/j.jenvman.2021.112302
  • Mo, Z., Tai, D., Zhang, H., & Shahab, A. (2022). A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water. Chemical Engineering Journal, 443, 136320. https://doi.org/10.1016/j.cej.2022.136320
  • Mofulatsi, M., Prabakaran, E., Velempini, T., Green, E., & Pillay, K. (2022). Preparation of manganese oxide coated coal fly ash adsorbent for the removal of lead and reuse for latent fingerprint detection. Microporous and Mesoporous Materials, 329, 111480. https://doi.org/10.1016/j.micromeso.2021.111480
  • Mukherjee, A. G., Wanjari, U. R., Renu, K., Vellingiri, B., & Gopalakrishnan, A. V. (2022). Heavy metal and metalloid-induced reproductive toxicity. Environmental Toxicology and Pharmacology, 92, 103859. https://doi.org/10.1016/j.etap.2022.103859
  • Nadeem, N., Yaseen, M., Rehan, Z. A., Zahid, M., Shakoor, R. A., Jilani, A., Iqbal, J., Rasul, S., & Shahid, I. (2022). Coal fly ash supported CoFe2O4 nanocomposites: Synergetic Fenton-like and photocatalytic degradation of methylene blue. Environmental Research, 206, 112280. https://doi.org/10.1016/j.envres.2021.112280
  • Omar, A., Arken, A., Wali, A., Gao, Y., Aisa, H. A., & Yili, A. (2022). Effect of phenolic compound-protein covalent conjugation on the physicochemical, anti-inflammatory, and antioxidant activities of silk sericin. Process Biochemistry, 117, 101–109. https://doi.org/10.1016/j.procbio.2022.03.008
  • Oyehan, T. A., Olabemiwo, F. A., Tawabini, B. S., & Saleh, T. A. (2020). The capacity of mesoporous fly ash grafted with ultrathin film of polydiallyldimethyl ammonium for enhanced removal of phenol from aqueous solutions. Journal of Cleaner Production, 263, 121280. https://doi.org/10.1016/j.jclepro.2020.121280
  • Özcan, M., Birol, B., & Kaya, F. (2021). Investigation of photocatalytic properties of TiO2 nanoparticle coating on fly ash and red mud based porous ceramic substrate. Ceramics International, 47(17), 24270–24280. https://doi.org/10.1016/j.ceramint.2021.05.138
  • Pan, J., Li, L., Hang, H., Ou, H., Zhang, L., Yan, Y., & Shi, W. (2013). Study on the nonylphenol removal from aqueous solution using magnetic molecularly imprinted polymers based on fly-ash-cenospheres. Chemical Engineering Journal, 223, 824–832. https://www.sciencedirect.com/science/article/pii/S1385894713001654#!. https://doi.org/10.1016/j.cej.2013.02.004
  • Park, J., & Bae, S. (2019). Highly efficient and magnetically recyclable Pd catalyst supported by iron-rich fly ash@ fly ash-derived SiO2 for reduction of p-nitrophenol. Journal of Hazardous Materials, 371, 72–82. https://doi.org/10.1016/j.jhazmat.2019.02.105
  • Park, J., Saratale, G. D., Cho, S.-K., & Bae, S. (2020). Synergistic effect of Cu loading on Fe sites of fly ash for enhanced catalytic reduction of nitrophenol. The Science of the Total Environment, 705, 134544. https://doi.org/10.1016/j.scitotenv.2019.134544
  • Patel, H. (2021). Review on solvent desorption study from exhausted adsorbent. Journal of Saudi Chemical Society, 25(8), 101302. https://doi.org/10.1016/j.jscs.2021.101302
  • Picetti, R., Deeney, M., Pastorino, S., Miller, M. R., Shah, A., Leon, D. A., Dangour, A. D., & Green, R. (2022). Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environmental Research, 210, 112988. https://doi.org/10.1016/j.envres.2022.112988
  • Picos-Corrales, L. A., Sarmiento-Sánchez, J. I., Ruelas-Leyva, J. P., Crini, G., Hermosillo-Ochoa, E., & Gutierrez-Montes, J. A. (2020). Environment-friendly approach toward the treatment of raw agricultural wastewater and river water via flocculation using chitosan and bean straw flour as bioflocculants. ACS Omega, 5(8), 3943–3951. https://doi.org/10.1021/acsomega.9b03419
  • Pu, M., Ailijiang, N., Mamat, A., Chang, J., Zhang, Q., Liu, Y., & Li, N. (2022). Occurrence of antibiotics in the different biological treatment processes, reclaimed wastewater treatment plants and effluent-irrigated soils. Journal of Environmental Chemical Engineering, 10(3), 107715. https://doi.org/10.1016/j.jece.2022.107715
  • Qi, L., Teng, F., Deng, X., Zhang, Y., & Zhong, X. (2019). Experimental study on adsorption of Hg (II) with microwave-assisted alkali-modified fly ash. Powder Technology, 351, 153–158. https://doi.org/10.1016/j.powtec.2019.04.029
  • Rajendran, S., Priya, A., Kumar, P. S., Hoang, T. K., Sekar, K., Chong, K. Y., Khoo, K. S., Ng, H. S., & Show, P. L. (2022). A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere, 303, 135146. https://doi.org/10.1016/j.chemosphere.2022.135146
  • Ramos, R. L., Moreira, V. R., Lebron, Y. A., Santos, L. V., & Amaral, M. C. (2022). Fouling in the membrane distillation treating superficial water with phenolic compounds. Chemical Engineering Journal, 437, 135325. https://doi.org/10.1016/j.cej.2022.135325
  • Ramos, R. L., Moreira, V. R., Lebron, Y. A., Santos, A. V., Santos, L. V., & Amaral, M. C. (2021). Phenolic compounds seasonal occurrence and risk assessment in surface and treated waters in Minas Gerais—Brazil. Environmental Pollution (Barking, Essex: 1987), 268(Pt A), 115782. https://doi.org/10.1016/j.envpol.2020.115782
  • Rani, S. L. S., & Kumar, R. V. (2021). Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review. Case Studies in Chemical and Environmental Engineering, 4, 100149. https://doi.org/10.1016/j.cscee.2021.100149
  • Rani, N. H. A., Mohamad, N. F., Onn, M., Jalil, M. J., & Muda, N. (2021). Coal bottom ash as a potential adsorbent for CO2 capture. In IOP Conference Series: Materials Science and Engineering. (Vol. 1176, No. 1, p. 12001). IOP Publishing. https://doi.org/10.1088/1757-899X/1176/1/012001
  • Rashidi, N. A., & Yusup, S. (2016). Overview on the potential of coal-based bottom ash as low-cost adsorbents. ACS Sustainable Chemistry & Engineering, 4(4), 1870–1884. https://doi.org/10.1021/acssuschemeng.5b01437
  • Rawat, M., & Bulasara, V. K. (2018). Synthesis and characterization of low-cost ceramic membranes from fly ash and kaolin for humic acid separation. Korean Journal of Chemical Engineering, 35(3), 725–733. https://doi.org/10.1007/s11814-017-0316-6
  • Ray, S. S., & Iroegbu, A. O. C. (2021). Nanocellulosics: Benign, sustainable, and ubiquitous biomaterials for water remediation. ACS Omega, 6(7), 4511–4526. https://doi.org/10.1021/acsomega.0c06070
  • Repo, E. (2011). EDTA-and DTPA-functionalized silica gel and chitosan adsorbents for the removal of heavy metals from aqueous solutions. Lappeenranta University of TechnologyLaboratory of Green Chemistry. https://urn.fi/URN:ISBN:978-952-265-108-2.
  • Rosman, N., Salleh, W., Mohamed, M. A., Jaafar, J., Ismail, A., & Harun, Z. (2018). Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. Journal of Colloid and Interface Science, 532, 236–260. https://doi.org/10.1016/j.jcis.2018.07.118
  • Said, K., A., M., Ismail, A., Zulhairun, A., Abdullah, M., Azali, M. A., & Abidin, M. N. Z. (2022). Magnetic induced asymmetric membrane: Effect of magnetic pattern to phenol removal by adsorption. Materials Chemistry and Physics, 278, 125692. https://doi.org/10.1016/j.matchemphys.2021.125692
  • Salam, M. A., Obaid, A. Y., El-Shishtawy, R. M., & Hussein, M. A. (2021). Preparation of novel magnetic chemically modified chitin nanocomposites and their application for environmental remediation of cadmium ions in model and real water samples. Journal of Physics and Chemistry of Solids, 148, 109748. https://doi.org/10.1016/j.jpcs.2020.109748
  • Sanna, A., Thompson, S., Zajac, J., & Whitty, K. (2022). Evaluation of palm-oil fly ash derived lithium silicate for CO2 sorption under simulated gasification conditions. Journal of CO2 Utilization, 56, 101826. https://doi.org/10.1016/j.jcou.2021.101826
  • Shah, B. A., Pandya, D. D., & Shah, H. A. (2017). Impounding of ortho-chlorophenol by zeolitic materials adapted from bagasse fly ash: Four factor three level Box-Behnken design modelling and optimization. Arabian Journal for Science and Engineering, 42(1), 241–260. https://doi.org/10.1007/s13369-016-2294-0
  • Sharma, C., Kashyap, D. K., Chaturvedi, A. K., Pappu, A., Chaurasia, J., Srivastava, A. K., & Gupta, M. K. (2022). Remarkable enhancement in dielectric constant and band gap shrinkage of hydrothermal grown fly ash waste derived zeolite nanoneedles. Physica B: Condensed Matter, 634, 413817. https://doi.org/10.1016/j.physb.2022.413817
  • Sharma, N., Pap, Z., Kornélia, B., Gyulavari, T., Karacs, G., Nemeth, Z., Garg, S., & Hernadi, K. (2022). Effective removal of phenol by activated charcoal/BiOCl composite under UV light irradiation. Journal of Molecular Structure, 1254, 132344. https://doi.org/10.1016/j.molstruc.2022.132344
  • Shen, B., Guo, Z., Huang, B., Zhang, G., Fei, P., & Hu, S. (2022). Preparation of hydrogels based on pectin with different esterification degrees and evaluation of their structure and adsorption properties. International Journal of Biological Macromolecules, 202, 397–406. https://doi.org/10.1016/j.ijbiomac.2021.12.160
  • Singh, N., Bhardwaj., & A., Shehnazdeep. (2020). Reviewing the role of coal bottom ash as an alternative of cement. Construction and Building Materials, 233, 117276. https://doi.org/10.1016/j.conbuildmat.2019.117276
  • Some, S., Mondal, R., Mitra, D., Jain, D., Verma, D., & Das, S. (2021). Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus, 1, 100008. https://doi.org/10.1016/j.nexus.2021.100008
  • Soury, R., Jabli, M., Latif, S., Alenezi, K. M., El Oudi, M., Abdulaziz, F., Teka, S., El Moll, H., & Haque, A. (2022). Synthesis and characterization of a new meso-tetrakis (2, 4, 6-trimethylphenyl) porphyrinto) zinc (II) supported sodium alginate gel beads for improved adsorption of methylene blue dye. International Journal of Biological Macromolecules, 202, 161–176. https://doi.org/10.1016/j.ijbiomac.2022.01.087
  • Su, T., Qin, Z., Ji, H., & Wu, Z. (2019). An overview of photocatalysis facilitated by 2D heterojunctions. Nanotechnology, 30(50), 502002. https://doi.org/10.1088/1361-6528/ab3f15
  • Subbulekshmi, N., & Subramanian, E. (2017). Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline. Journal of Environmental Chemical Engineering, 5(2), 1360–1371. https://doi.org/10.1016/j.jece.2017.02.019
  • Sun, S., Zhang, H., Luo, Y., Guo, C., Ma, X., Fan, J., Chen, J., & Geng, N. (2022). Occurrence, accumulation, and health risks of heavy metals in Chinese market baskets. The Science of the Total Environment, 829, 154597. https://doi.org/10.1016/j.scitotenv.2022.154597
  • Tahari, N., Nefzi, H., Labidi, A., Ayadi, S., Abderrabba, M., & Labidi, J. (2021). Removal of dyes and heavy metals with clays and diatomite, water pollution and remediation: Heavy metals, 539–569. Springer. https://doi.org/10.1007/978-3-030-52421-0_16
  • Tan, H., Du, C., He, X., Li, M., Zhang, J., Zheng, Z., Su, Y., Yang, J., Deng, X., & Wang, Y. (2022). Enhancement of compressive strength of high-volume fly ash cement paste by wet grinded cement: Towards low carbon cementitious materials. Construction and Building Materials, 323, 126458. https://doi.org/10.1016/j.conbuildmat.2022.126458
  • Taranu, B.-O., Vlazan, P., Svera, P., Poienar, M., & Sfirloaga, P. (2022). New functional hybrid materials based on clay minerals for enhanced electrocatalytic activity. Journal of Alloys and Compounds, 892, 162239. https://doi.org/10.1016/j.jallcom.2021.162239
  • Tiller, R., Booth, A., Kubowicz, S., & Jahren, S. (2021). Co-production of future scenarios of policy action plans in a science-policy-industry interface-The case of microfibre pollution from waste water treatment plants in Norway. Marine Pollution Bulletin, 173(Pt B), 113062. https://doi.org/10.1016/j.marpolbul.2021.113062
  • Tu, Y., Shi, H., Zhou, X., & Lev, B. (2022). Optimal trade-off of integrated river basin water resources allocation considering water market: A bi-level multi-objective model with conditional value-at-risk constraints. Computers & Industrial Engineering, 169, 108160. https://doi.org/10.1016/j.cie.2022.108160
  • Valeev, D., Bobylev, P., Osokin, N., Zolotova, I., Rodionov, I., Salazar-Concha, C., & Verichev, K. (2022). A review of the alumina production from coal fly ash, with a focus in Russia. Journal of Cleaner Production, 363, 132360. https://doi.org/10.1016/j.jclepro.2022.132360
  • Vellingiri, B., Suriyanarayanan, A., Selvaraj, P., Abraham, K. S., Pasha, M. Y., Winster, H., Gopalakrishnan, A. V., G, S., Reddy, J. K., Ayyadurai, N., Kumar, N., Giridharan, B., P, S., Rao, K. S., Nachimuthu, S. K., Narayanasamy, A., Mahalaxmi, I., & Venkatesan, D. (2022). Role of heavy metals (copper (Cu), arsenic (As), cadmium (Cd), iron (Fe) and lithium (Li)) induced neurotoxicity. Chemosphere, 301, 134625. https://doi.org/10.1016/j.chemosphere.2022.134625
  • Vu, D.-H., Bui, H.-B., Bui, X.-N., An-Nguyen, D., Le, Q.-T., Do, N.-H., & Nguyen, H. (2020). A novel approach in adsorption of heavy metal ions from aqueous solution using synthesized MCM-41 from coal bottom ash. International Journal of Environmental Analytical Chemistry, 100(11), 1226–1244. https://doi.org/10.1080/03067319.2019.1651300
  • Wang, Y., Chen, B., Xiong, T., Zhang, Y., & Zhu, W. (2022). Immobilization of U (VI) in wastewater using coal fly ash aerogel (CFAA) as a low-cost adsorbent. Process Safety and Environmental Protection, 160, 900–909. https://doi.org/10.1016/j.psep.2022.03.006
  • Wang, N., Hao, L., Chen, J., Zhao, Q., & Xu, H. (2018). Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: Preparation, adsorption, and Fenton regenerative valorization of “spent” adsorbent. Environmental Science and Pollution Research International, 25(13), 12481–12490. https://doi.org/10.1007/s11356-018-1560-y
  • Wang, N., Jin, L., Li, C., Liang, Y., & Wang, P. (2022). Preparation of coal fly ash-based Fenton-like catalyst and its application for the treatment of organic wastewater under microwave assistance. Journal of Cleaner Production, 342, 130926. https://doi.org/10.1016/j.jclepro.2022.130926
  • Wang, X., Sun, R., & Wang, C. (2014). pH dependence and thermodynamics of Hg (II) adsorption onto chitosan-poly (vinyl alcohol) hydrogel adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 51–58. https://doi.org/10.1016/j.colsurfa.2013.08.068
  • Wang, N., Sun, X., Zhao, Q., & Wang, P. (2021). Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: System parameters, kinetics, and proposed mechanism. Chemical Engineering Journal, 406, 126734. https://doi.org/10.1016/j.cej.2020.126734
  • Wang, N., Sun, X., Zhao, Q., Yang, Y., & Wang, P. (2020). Leachability and adverse effects of coal fly ash: A review. Journal of Hazardous Materials, 396, 122725. https://doi.org/10.1016/j.jhazmat.2020.122725
  • Wang, C., Xu, G., Gu, X., Gao, Y., & Zhao, P. (2021). High value-added applications of coal fly ash in the form of porous materials: A review. Ceramics International, 47(16), 22302–22315. https://doi.org/10.1016/j.ceramint.2021.05.070
  • Wang, Y., Yang, N., Soldatov, M., & Liu, H. (2022). A novel phosphazene-based amine-functionalized porous polymer with high adsorption ability for I2, dyes and heavy metal ions. Reactive and Functional Polymers, 173, 105235. https://doi.org/10.1016/j.reactfunctpolym.2022.105235
  • Wang, Y., Zhang, Y., Sun, W., & Zhu, L. (2022). The impact of new urbanization and industrial structural changes on regional water stress based on water footprints. Sustainable Cities and Society, 79, 103686. https://doi.org/10.1016/j.scs.2022.103686
  • Wang, N., Zhao, Q., Xu, H., Niu, W., Ma, L., Lan, D., & Hao, L. (2018). Adsorptive treatment of coking wastewater using raw coal fly ash: Adsorption kinetic, thermodynamics and regeneration by Fenton process. Chemosphere, 210, 624–632. https://doi.org/10.1016/j.chemosphere.2018.07.073
  • Wassel, A. R., El-Naggar, M. E., & Shoueir, K. (2020). Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: A review. Journal of Environmental Chemical Engineering, 8(5), 104175. https://doi.org/10.1016/j.jece.2020.104175
  • Wu, Y., & Ke, Z. (2022). Novel Cu-doped zeolitic imidazolate framework-8 membranes supported on copper foam for highly efficient catalytic wet peroxide oxidation of phenol. Materials Today Chemistry, 24, 100787. https://doi.org/10.1016/j.mtchem.2022.100787
  • Xu, Z.-P., Liu, Y., Wang, S.-Y., Li, Z.-W., Lu, D.-X., Jiang, P., Pan, J., Guan, W., Kuang, H.-X., & Yang, B.-Y. (2022). Phenolic compounds of Solanum xanthocarpum play an important role in anti-inflammatory effects. Arabian Journal of Chemistry, 15(7), 103877. https://doi.org/10.1016/j.arabjc.2022.103877
  • Xu, X., Zong, S., Chen, W., & Liu, D. (2019). Heterogeneously catalyzed binary oxidants system with magnetic fly ash for the degradation of bisphenol A. Chemical Engineering Journal, 360, 1363–1370. https://doi.org/10.1016/j.cej.2018.10.192
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002
  • Yang, L., Wang, F., Du, D., Liu, P., Zhang, W., & Hu, S. (2016). Enhanced photocatalytic efficiency and long-term performance of TiO2 in cementitious materials by activated zeolite fly ash bead carrier. Construction and Building Materials, 126, 886–893. https://doi.org/10.1016/j.conbuildmat.2016.09.062
  • Yang, L., Wang, F., Hakki, A., Macphee, D. E., Liu, P., & Hu, S. (2017). The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance. Applied Surface Science, 392, 687–696. https://doi.org/10.1016/j.apsusc.2016.09.023
  • Yavari-Bafghi, M., Shavandi, M., Dastgheib, S. M. M., & Amoozegar, M. A. (2022). Simultaneous application of CaO2 nanoparticles and microbial consortium in Small Bioreactor Chambers (SBCs) for phenol removal from groundwater. Process Safety and Environmental Protection, 160, 465–477. https://doi.org/10.1016/j.psep.2022.02.039
  • Yusof, M. S. M., Othman, M. H. D., Wahab, R. A., Samah, R. A., Kurniawan, T. A., Mustafa, A., Rahman, M. A., Jaafar, J., & Ismail, A. F. (2020). Effects of pre and post-ozonation on POFA hollow fibre ceramic adsorptive membrane for arsenic removal in water. Journal of the Taiwan Institute of Chemical Engineers, 110, 100–111. https://doi.org/10.1016/j.jtice.2020.02.014
  • Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., & Guerrero, V. H. (2021). Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504
  • Zhang, S., Shi, T., Ni, W., Li, K., Gao, W., Wang, K., & Zhang, Y. (2021). The mechanism of hydrating and solidifying green mine fill materials using circulating fluidized bed fly ash-slag-based agent. Journal of Hazardous Materials, 415, 125625. https://doi.org/10.1016/j.jhazmat.2021.125625
  • Zhang, J., Yan, M., Sun, G., & Liu, K. (2021). Simultaneous removal of Cu (II), Cd (II), Cr (VI), and rhodamine B in wastewater using TiO2 nanofibers membrane loaded on porous fly ash ceramic support. Separation and Purification Technology, 272, 118888. https://doi.org/10.1016/j.seppur.2021.118888
  • Zhang, X., Yuan, X., Yu, J., He, P., Chen, T., Zhang, L., Wang, K., Hua, X., & Zhu, P. (2022). Core@ Shell structured coal fly ash Magnetospheres@ C/g-C3N4 for degradation of Rh B via photo-Fenton catalysis. Journal of Alloys and Compounds, 908, 164441. https://doi.org/10.1016/j.jallcom.2022.164441
  • Zhao, X., Zhao, H., Huang, X., Wang, L., Liu, F., Hu, X., Li, J., Zhang, G., & Ji, P. (2021). Effect and mechanisms of synthesis conditions on the cadmium adsorption capacity of modified fly ash. Ecotoxicology and Environmental Safety, 223, 112550. https://doi.org/10.1016/j.ecoenv.2021.112550
  • Zhou, Y., Jiang, J., Qian, K., Ding, Y., Yang, S.-H., & He, L. (2021). Graph convolutional networks based contamination source identification across water distribution networks. Process Safety and Environmental Protection, 155, 317–324. https://doi.org/10.1016/j.psep.2021.09.008
  • Zhu, Y., Fan, W., Zhou, T., & Li, X. (2019). Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. The Science of the Total Environment, 678, 253–266. https://doi.org/10.1016/j.scitotenv.2019.04.416
  • Zhu, L., Ji, J., Wang, S., Xu, C., Yang, K., & Xu, M. (2018). Removal of Pb (II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash. Chemosphere, 206, 278–284. https://doi.org/10.1016/j.chemosphere.2018.05.001
  • Zierold, K. M., & Odoh, C. (2020). A review on fly ash from coal-fired power plants: Chemical composition, regulations, and health evidence. Reviews on Environmental Health, 35(4), 401–418. https://doi.org/10.1515/reveh-2019-0039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.