466
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Antiepileptic drugs in aquatic environments: Occurrence, toxicity, transformation mechanisms and fate

, , , , , & show all
Pages 2030-2054 | Published online: 11 May 2023

References

  • Acena, J., Stampachiacchiere, S., Perez, S., & Barcelo, D. (2015). Advances in liquid chromatography-high-resolution mass spectrometry for quantitative and qualitative environmental analysis. Analytical and Bioanalytical Chemistry, 407(21), 6289–6299. https://doi.org/10.1007/s00216-015-8852-6
  • Almeida, A., Freitas, R., Calisto, V., Esteves, V. I., Schneider, R. J., Soares, A. M. V. M., & Figueira, E. (2015). Chronic toxicity of the antiepileptic carbamazepine on the clam Ruditapes philippinarum. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 172-173, 26–35. https://doi.org/10.1016/j.cbpc.2015.04.004
  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50(10), 1319–1330. https://doi.org/10.1016/s0045-6535(02)00769-5
  • Bahlmann, A., Brack, W., Schneider, R. J., & Krauss, M. (2014). Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Research, 57, 104–114. https://doi.org/10.1016/j.watres.2014.03.022
  • Bauer, J. E., Gerber, N., Lynn, R. K., Smith, R. G., & Thompson, R. M. (1976). A new N-glucuronide metabolite of carbamazepine. Experientia, 32(8), 1032–1033. https://doi.org/10.1007/BF01933954
  • Ben, W., Zhu, B., Yuan, X., Zhang, Y., Yang, M., & Qiang, Z. (2018). Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Research, 130, 38–46. https://doi.org/10.1016/j.watres.2017.11.057
  • Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. (2009). Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environmental Science & Technology, 43(3), 597–603. https://doi.org/10.1021/es801845a
  • Botero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., Manrique-Losada, L., Torres-Palma, R., Moncayo-Lasso, A., & Hernández, F. (2018). An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. The Science of the Total Environment, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088
  • Brandao, F. P., Rodrigues, S., Castro, B. B., Goncalves, F., Antunes, S. C., & Nunes, B. (2013). Short-term effects of neuroactive pharmaceutical drugs on a fish species: Biochemical and behavioural effects. Aquatic Toxicology, 144-145, 218–229. https://doi.org/10.1016/j.aquatox.2013.10.005
  • Calisto, V., Domingues, M. R. M., & Esteves, V. I. (2011). Photodegradation of psychiatric pharmaceuticals in aquatic environments–Kinetics and photodegradation products. Water Research, 45(18), 6097–6106. https://doi.org/10.1016/j.watres.2011.09.008
  • Cao, J., Nie, W., Huang, L., Ding, Y., Lv, K., & Tang, H. (2019). Photocatalytic activation of sulfite by nitrogen vacancy modified graphitic carbon nitride for efficient degradation of carbamazepine. Applied Catalysis B: Environmental, 241, 18–27. https://doi.org/10.1016/j.apcatb.2018.09.007
  • Chen, H., Zha, J., Liang, X., Li, J., & Wang, Z. (2014). Effects of the human antiepileptic drug carbamazepine on the behavior, biomarkers, and heat shock proteins in the Asian clam Corbicula fluminea. Aquatic Toxicology (Amsterdam, Netherlands), 155, 1–8. https://doi.org/10.1016/j.aquatox.2014.06.001
  • Chiron, S., Minero, C., & Vione, D. (2006). Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environmental Science & Technology, 40(19), 5977–5983. https://doi.org/10.1021/es060502y
  • Daniel Cardoso-Vera, J., Axel Elizalde-Velazquez, G., Islas-Flores, H., Mejia-Garcia, A., Mario Ortega-Olvera, J., M., & Gomez-Olivan, L. (2021). A review of antiepileptic drugs: Part 1 occurrence, fate in aquatic environments and removal during different treatment technologies. The Science of the Total Environment, 768, 145487. https://doi.org/10.1016/j.scitotenv.2021.145487
  • De Laurentiis, E., Chiron, S., Kouras-Hadef, S., Richard, C., Minella, M., Maurino, V., Minero, C., & Vione, D. (2012). Photochemical fate of carbamazepine in surface freshwaters: Laboratory measures and modeling. Environmental Science & Technology, 46(15), 8164–8173. https://doi.org/10.1021/es3015887
  • de Oliveira, J. A., Izeppi, L. J. P., Loose, R. F., Muenchen, D. K., Prestes, O. D., & Zanella, R. (2019). A multiclass method for the determination of pharmaceuticals in drinking water by solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Analytical Methods, 11(17), 2333–2340. https://doi.org/10.1039/C9AY00289H
  • Deng, J., Shao, Y., Gao, N., Deng, Y., Zhou, S., & Hu, X. (2013). Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water. Chemical Engineering Journal and the Biochemical Engineering Journal, 228, 765–771. https://doi.org/10.1016/j.cej.2013.05.044
  • Desbiolles, F., Moreau, X., de Jong, L., Malleret, L., Grandet-Marchant, Q., Wong-Wah-Chung, P., & Laffont-Schwob, I. (2020). Advances and limits of two model species for ecotoxicological assessment of carbamazepine, two by-products and their mixture at environmental level in freshwater. Water Research, 169, 115267. https://doi.org/10.1016/j.watres.2019.115267
  • Dimpe, K. M., & Nomngongo, P. N. (2016). Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. TrAC Trends in Analytical Chemistry, 82, 199–207. https://doi.org/10.1016/j.trac.2016.05.023
  • Ding, Y., Zhang, W., Gu, C., Xagoraraki, I., & Li, H. (2011). Determination of pharmaceuticals in biosolids using accelerated solvent extraction and liquid chromatography/tandem mass spectrometry. Journal of Chromatography A, 1218(1), 10–16. https://doi.org/10.1016/j.chroma.2010.10.112
  • Doll, T. E., & Frimmel, F. H. (2005). Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catalysis Today, 101(3-4), 195–202. https://doi.org/10.1016/j.cattod.2005.03.005
  • Dordio, A., Carvalho, A. J. P., Teixeira, D. M., Dias, C. B., & Pinto, A. P. (2010). Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresource Technology, 101(3), 886–892. https://doi.org/10.1016/j.biortech.2009.09.001
  • DrugBank. (2021). https://go.drugbank.com/.
  • Du, Y., Xu, X., Liu, Q., Bai, L., Hang, K., & Wang, D. (2022). Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. The Science of the Total Environment, 806(Pt 3), 150691. https://doi.org/10.1016/j.scitotenv.2021.150691
  • Duhrkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Melnik, A. V., Meusel, M., Dorrestein, P. C., Rousu, J., & Bocker, S. (2019). SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 16(4), 299–302. +. https://doi.org/10.1038/s41592-019-0344-8
  • Faigle, J. W., & Feldmann, K. F. (1975). Pharmacokinetic data of carbamazepine and its major metabolites in man. Springer Berlin Heidelberg.
  • Feitosa-Felizzola, J., & Chiron, S. (2009). Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France). Journal of Hydrology. 364(1-2), 50–57. https://doi.org/10.1016/j.jhydrol.2008.10.006
  • Focazio, M. J., Kolpin, D. W., Barnes, K. K., Furlong, E. T., Meyer, M. T., Zaugg, S. D., Barber, L. B., & Thurman, M. E. (2008). A national reconnaissance for pharmaceuticals and otherorganic wastewater contaminants in the United States – II) Untreated drinking water sources. The Science of the Total Environment, 402(2-3), 201–216. https://doi.org/10.1016/j.scitotenv.2008.02.021
  • Furst, S. M., & Uetrecht, J. P. (1993). Carbamazepine metabolism to a reactive intermediate by the myeloperoxidase system of activated neutrophils. Biochemical Pharmacology, 45(6), 1267–1275. https://doi.org/10.1016/0006-2952(93)90279-6
  • Gao, P., Ding, Y., Li, H., & Xagoraraki, I. (2012). Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes. Chemosphere, 88(1), 17–24. https://doi.org/10.1016/j.chemosphere.2012.02.017
  • Gauthier, H., Yargeau, V., & Cooper, D. G. (2010). Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. The Science of the Total Environment, 408(7), 1701–1706. https://doi.org/10.1016/j.scitotenv.2009.12.012
  • Ghauch, A., Baydoun, H., & Dermesropian, P. (2011). Degradation of aqueous carbamazepine in ultrasonic/Fe0/H2O2 systems. Chemical Engineering Journal and the Biochemical Engineering Journal, 172(1), 18–27. https://doi.org/10.1016/j.cej.2011.04.002
  • Gobel, A., McArdell, C. S., Joss, A., Siegrist, H., & Giger, W. (2007). Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. The Science of the Total Environment, 372(2-3), 361–371. https://doi.org/10.1016/j.scitotenv.2006.07.039
  • Gros, M., Petrovic, M., Ginebreda, A., & Barcelo, D. (2010). Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International, 36(1), 15–26. https://doi.org/10.1016/j.envint.2009.09.002
  • Gurke, R., Rößler, M., Marx, C., Diamond, S., Schubert, S., Oertel, R., & Fauler, J. (2015). Occurrence and removal of frequently prescribed Pharmaceuticals and corresponding metabolites in wastewater of a sewage treatment plant. The Science of the Total Environment, 532, 762–770. https://doi.org/10.1016/j.scitotenv.2015.06.067
  • Han, Y., Ma, M., Li, N., Hou, R., Huang, C., Oda, Y., & Wang, Z. (2018). Chlorination, chloramination and ozonation of carbamazepine enhance cytotoxicity and genotoxicity: Multi-endpoint evaluation and identification of its genotoxic transformation products. Journal of Hazardous Materials, 342, 679–688. https://doi.org/10.1016/j.jhazmat.2017.08.076
  • He, Y., Jia, D., Du, S., Zhu, R., Zhou, W., Pan, S., & Zhang, Y. (2021). Toxicity of gabapentin-lactam on the early developmental stage of zebrafish (Danio rerio). Environmental Pollution, 287, 117649. https://doi.org/10.1016/j.envpol.2021.117649
  • He, Y., Li, X., Jia, D., Zhang, W., Zhang, T., Yu, Y., Xu, Y., & Zhang, Y. (2019). A transcriptomics-based analysis of the toxicity mechanisms of gabapentin to zebrafish embryos at realistic environmental concentrations. Environmental Pollution (Barking, Essex: 1987), 251, 746–755. https://doi.org/10.1016/j.envpol.2019.05.063
  • Heeb, M. B., Criquet, J., Zimmermann-Steffens, S. G., & von Gunten, U. (2014). Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds – A critical review. Water Research, 48, 15–42. https://doi.org/10.1016/j.watres.2013.08.030
  • Helbling, D. E., Hollender, J., Kohler, H.-P. E., Singer, H., & Fenner, K. (2010). High-throughput identification of microbial transformation products of organic micropollutants. Environmental Science & Technology, 44(17), 6621–6627. https://doi.org/10.1021/es100970m
  • Henning, N., Kunkel, U., Wick, A., & Ternes, T. A. (2018). Biotransformation of gabapentin in surface water matrices under different redox conditions and the occurrence of one major TP in the aquatic environment. Water Research, 137, 290–300. https://doi.org/10.1016/j.watres.2018.01.027
  • Hernández-Tenorio, R., González-Juárez, E., Guzmán-Mar, J. L., Hinojosa-Reyes, L., & Hernández-Ramírez, A. (2022). Review of occurrence of pharmaceuticals worldwide for estimating concentration ranges in aquatic environments at the end of the last decade. Journal of Hazardous Materials Advances, 8, 100172. https://doi.org/10.1016/j.hazadv.2022.100172
  • Hernandez-Tenorio, R., Guzman-Mar, J. L., Hinojosa-Reyes, L., Ramos-Delgado, N., & Hernandez-Ramirez, A. (2021). Determination of pharmaceuticals discharged in wastewater from a public hospital using LC-MS/MS technique. Journal of the Mexican Chemical Society, 65(1), 94–108. https://doi.org/10.29356/jmcs.v65i1.1439
  • Hernández-Tenorio, R., Hernández-Ramírez, A., Möder, M., & Luis Guzmán-Mar, J. (2022). Photodegradation processes of oxcarbazepine under solar simulated radiation: Analysis of transformation products. Journal of Photochemistry and Photobiology A: Chemistry, 425, 113646. https://doi.org/10.1016/j.jphotochem.2021.113646
  • Hernando, M. D., Mezcua, M., Fernández-Alba, A. R., & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), 334–342. https://doi.org/10.1016/j.talanta.2005.09.037
  • Herrmann, M., Menz, J., Olsson, O., & Kümmerer, K. (2015). Identification of phototransformation products of the antiepileptic drug gabapentin: biodegradability and initial assessment of toxicity. Water Research, 85, 11–21. https://doi.org/10.1016/j.watres.2015.08.004
  • Heye, K., Becker, D., Eversloh, C. L., Durmaz, V., Ternes, T. A., Oetken, M., & Oehlmann, J. (2016). Effects of carbamazepine and two of its metabolites on the non-biting midge Chironomus riparius in a sediment full life cycle toxicity test. Water Research, 98, 19–27. https://doi.org/10.1016/j.watres.2016.03.071
  • . Hu, S., Kaw, H. Y., Zhu, L., & Wang, W. (2022). Formation and cytotoxicity of halophenylacetamides: A new group of nitrogenous aromatic halogenated disinfection byproducts in drinking water. Environmental Science & Technology, 56(5), 3181–3192. https://doi.org/10.1021/acs.est.1c08419
  • Hua, G. H., Reckhow, D. A., & Kim, J. (2006). Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination. Environmental Science & Technology, 40(9), 3050–3056. https://doi.org/10.1021/es0519278
  • Huerta-Fontela, M., Galceran, M. T., & Ventura, F. (2011). Occurrence and removal of Pharmaceuticals and hormones through drinking water treatment. Water Research, 45(3), 1432–1442. https://doi.org/10.1016/j.watres.2010.10.036
  • Jelic, A., Cruz-Morató, C., Marco-Urrea, E., Sarrà, M., Perez, S., Vicent, T., Petrović, M., & Barcelo, D. (2012). Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Research, 46(4), 955–964. https://doi.org/10.1016/j.watres.2011.11.063
  • Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2002). Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 36(20), 5013–5022. https://doi.org/10.1016/s0043-1354(02)00227-0
  • Ju, C., & Uetrecht, J. (1999). Detection of 2-hydroxyiminostilbene in the urine of patients taking carbamazepine and its oxidation to a reactive iminoquinone intermediate. The Journal of Pharmacology and Experimental Therapeutics, 288(1), 51–56.
  • Kaiser, E., Prasse, C., Wagner, M., Br?der, K., & Ternes, T. A. (2014). Transformation of Oxcarbazepine and Human Metabolites of Carbamazepine and Oxcarbazepine in Wastewater Treatment and Sand Filters. Environmental Science & Technology, 48(17), 10208–10216. https://doi.org/10.1021/es5024493
  • Kang, S.-I., Kang, S.-Y., & Hur, H.-G. (2008). Identification of fungal metabolites of anticonvulsant drug carbamazepine. Applied Microbiology and Biotechnology, 79(4), 663–669. https://doi.org/10.1007/s00253-008-1459-5
  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2008). The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Research, 42(13), 3498–3518. https://doi.org/10.1016/j.watres.2008.04.026
  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). Illicit drugs and pharmaceuticals in the environment - Forensic applications of environmental data, Part 2: Pharmaceuticals as chemical markers of faecal water contamination. Environmental Pollution (Barking, Essex: 1987), 157(6), 1778–1786. https://doi.org/10.1016/j.envpol.2009.02.019
  • Kerr, B. M., Thummel, K. E., Wurden, C. J., Klein, S. M., Kroetz, D. L., Gonzalez, F. J., & Levy, R. (1994). Human liver carbamazepine metabolism: Role of CYP3A4 and CYP2C8 in 10, 11-epoxide formation. Biochemical Pharmacology, 47(11), 1969–1979. https://doi.org/10.1016/0006-2952(94)90071-x
  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013–1021. https://doi.org/10.1016/j.watres.2006.06.034
  • Kitteringham, N. R., Davis, C., Howard, N., Pirmohamed, M., & Park, B. K. (1996). Interindividual and interspecies variation in hepatic microsomal epoxide hydrolase activity: Studies with cis-stilbene oxide, carbamazepine 10, 11-epoxide and naphthalene. The Journal of Pharmacology and Experimental Therapeutics, 278(3), 1018–1027.
  • Kleywegt, S., Pileggi, V., Yang, P., Hao, C., Zhao, X., Rocks, C., Thach, S., Cheung, P., & Whitehead, B. (2011). Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada—Occurrence and treatment efficiency. The Science of the Total Environment, 409(8), 1481–1488. https://doi.org/10.1016/j.scitotenv.2011.01.010
  • Kondor, A. C., Molnár, É., Jakab, G., Vancsik, A., Filep, T., Szeberényi, J., Szabó, L., Maász, G., Pirger, Z., Weiperth, A., Ferincz, Á., Staszny, Á., Dobosy, P., Horváthné Kiss, K., Hatvani, I. G., & Szalai, Z. (2022). Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: Concentrations, interactions, and risks. The Science of the Total Environment, 808, 152160. https://doi.org/10.1016/j.scitotenv.2021.152160
  • Lam, M. W., & Mabury, S. A. (2005). Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquatic Sciences, 67(2), 177–188. https://doi.org/10.1007/s00027-004-0768-8
  • Leclercq, M., Mathieu, O., Gomez, E., Casellas, C., Fenet, H., & Hillaire-Buys, D. (2009). Presence and fate of carbamazepine, oxcarbazepine, and seven of their metabolites at wastewater treatment plants. Archives of Environmental Contamination and Toxicology, 56(3), 408–415. https://doi.org/10.1007/s00244-008-9202-x
  • Lertratanangkoon, K., & Horning, M. G. (1982). Metabolism of carbamazepine. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 10(1), 1–10.
  • Li, Z., Fenet, H., Gomez, E., & Chiron, S. (2011). Transformation of the antiepileptic drug oxcarbazepine upon different water disinfection processes. Water Research, 45(4), 1587–1596. https://doi.org/10.1016/j.watres.2010.11.038
  • Liu, Q., Xu, X., Fu, J., Du, Y., Lin, L., Bai, L., & Wang, D. (2021). Role of hypobromous acid in the transformation of polycyclic aromatic hydrocarbons during chlorination. Water Research, 207, 117787. https://doi.org/10.1016/j.watres.2021.117787
  • Liu, Q., Xu, X., Wang, L., & Wang, D. (2020). Transformation reactivity of parent polycyclic aromatic hydrocarbons and the formation trend of halogenated polycyclic aromatic hydrocarbons in the presence of bromide ion during chlorination. Chemical Engineering Journal and the Biochemical Engineering Journal, 400, 125901. https://doi.org/10.1016/j.cej.2020.125901
  • Maggs, J. L., Pirmohamed, M., Kitteringham, N. R., & Park, B. K. (1997). Characterization of the metabolites of carbamazepine in patient urine by liquid chromatography/mass spectrometry. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 25(3), 275–280.
  • Mastrángelo, M. M., Valdés, M. E., Eissa, B., Ossana, N. A., Barceló, D., Sabater, S., Rodríguez-Mozaz, S., Giorgi,., & A. D., N. (2022). Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. The Science of the Total Environment, 828, 154303. https://doi.org/10.1016/j.scitotenv.2022.154303
  • Matamoros, V., Duhec, A., Albaigés, J., & Bayona, J. M. (2009). Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17α-ethinylestradiol in fresh and seawater. Water, Air, and Soil Pollution, 196(1-4), 161–168. https://doi.org/10.1007/s11270-008-9765-1
  • Mcdowell, D. C., Huber, M. M., Wagner, M., von Gunten, U., & Ternes, T. A. (2005). Ozonation of carbamazepine in drinking water: Identification and kinetic study of major oxidation products. Environmental Science & Technology, 39(20), 8014–8022. https://doi.org/10.1021/es050043l
  • Meribout, R., Zuo, Y., Khodja, A. A., Piram, A., Lebarillier, S., Cheng, J., Wang, C., & Wong-Wah-Chung, P. (2016). Photocatalytic degradation of antiepileptic drug carbamazepine with bismuth oxychlorides (BiOCl and BiOCl/AgCl composite) in water: Efficiency evaluation and elucidation degradation pathways. Journal of Photochemistry and Photobiology A: Chemistry, 328, 105–113. https://doi.org/10.1016/j.jphotochem.2016.04.024
  • Metcalfe, C. D., Miao, X. S., Koenig, B. G., & Struger, J. (2003). Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environmental Toxicology and Chemistry, 22(12), 2881–2889. https://doi.org/10.1897/02-627
  • Miao, X. S., & Metcalfe, C. D. (2003). Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography-electrospray tandem mass spectrometry. Analytical Chemistry, 75(15), 3731–3738. https://doi.org/10.1021/ac030082k
  • Mogal, Z., & Aziz, H. (2020). Epilepsy treatment gap and stigma reduction in Pakistan: A tested public awareness model. Epilepsy & Behavior: E&B, 102, 106637. https://doi.org/10.1016/j.yebeh.2019.106637
  • Naghdi, M., Taheran, M., Pulicharla, R., Rouissi, T., Brar, S. K., Verma, M., & Surampalli, R. Y. (2019). Pine-wood derived nanobiochar for removal of carbamazepine from aqueous media: Adsorption behavior and influential parameters. Arabian Journal of Chemistry, 12(8), 5292–5301. https://doi.org/10.1016/j.arabjc.2016.12.025
  • Padhye, L. P., Yao, H., Kung’u, F. T., & Huang, C. H. (2014). Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 51, 266–276. https://doi.org/10.1016/j.watres.2013.10.070
  • Pearce, R. E., Vakkalagadda, G. R., & Leeder, J. S. (2002). Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2-and 3-hydroxylated metabolites. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 30(11), 1170–1179. https://doi.org/10.1124/dmd.30.11.1170
  • Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. https://doi.org/10.1016/j.watres.2014.08.053
  • Prabhu, L. V., Rai, R., Pai, M. M., Yadav, S. K., Madhyastha, S., Goel, R. K., Singh, G., Nasar., & M. A., Prakash. (2008). Teratogenic effects of the anticonvulsant gabapentin in mice. Singapore Medical Journal, 49(1), 47–53.
  • Radjenovi, J., Jelić, A., Petrović, M., & Barceló, D. (2009). Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analytical and Bioanalytical Chemistry, 393(6-7), 1685–1695. https://doi.org/10.1007/s00216-009-2604-4
  • Ramírez-Morales, D., Masís-Mora, M., Montiel-Mora, J. R., Cambronero-Heinrichs, J. C., Briceño-Guevara, S., Rojas-Sánchez, C. E., Méndez-Rivera, M., Arias-Mora, V., Tormo-Budowski, R., Brenes-Alfaro, L., Rodríguez-Rodríguez,., & C., E. (2020). Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of wastewater treatment plants in Costa Rica. The Science of the Total Environment, 746, 141200. https://doi.org/10.1016/j.scitotenv.2020.141200
  • Richter, W. J., Kriemler, P., & Faigle, J. W. (1978). Newer Aspects of the Biotransformation of Carbamazepine: Structural Characterization of Highly Polar Metabolites. In: A. Frigerio (ed.) Recent developments in mass spectrometry in biochemistry and medicine, Vol. 1. Springer US.
  • Rodarte-Morales, A. I., Feijoo, G., Moreira, M. T., & Lema, J. M. (2012). Operation of stirred tank reactors (STRs) and fixed-bed reactors (FBRs) with free and immobilized Phanerochaete chrysosporium for the continuous removal of pharmaceutical compounds. Biochemical Engineering Journal, 66, 38–45. https://doi.org/10.1016/j.bej.2012.04.011
  • Sacher, F., Lange, F. T., Brauch, H. J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters: Analytical methods and results of a monitoring program in Baden-Württemberg, Germany. Journal of Chromatography A, 938(1-2), 199–210. https://doi.org/10.1016/s0021-9673(01)01266-3
  • Sadutto, D., Alvarez-Ruiz, R., & Pico, Y. (2020). Systematic assessment of extraction of pharmaceuticals and personal care products in water and sediment followed by liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 412(1), 113–127. https://doi.org/10.1007/s00216-019-02207-0
  • Santos, J. L., Aparicio, I., & Alonso, E. (2007). Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environment International, 33(4), 596–601. https://doi.org/10.1016/j.envint.2006.09.014
  • Sedlak, D. L., & von Gunten, U. (2011). The chlorine dilemma. Science (New York, N.Y.), 331(6013), 42–43. https://doi.org/10.1126/science.1196397
  • Shahzad, A., Rasool, K., Nawaz, M., Miran, W., Jang, J., Moztahida, M., Mahmoud, K. A., & Lee, D. S. (2018). Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chemical Engineering Journal and the Biochemical Engineering Journal, 349, 748–755. https://doi.org/10.1016/j.cej.2018.05.148
  • Sim, W. J., Lee, J. W., & Oh, J. E. (2010). Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environmental Pollution (Barking, Essex: 1987), 158(5), 1938–1947. https://doi.org/10.1016/j.envpol.2009.10.036
  • Stackelberg, P. E., Gibs, J., Furlong, E. T., Meyer, M. T., Zaugg, S. D., & Lippincott, R. L. (2007). Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. The Science of the Total Environment, 377(2-3), 255–272. https://doi.org/10.1016/j.scitotenv.2007.01.095
  • Stravs, M. A., Duhrkop, K., Bocker, S., & Zamboni, N. (2022). MSNovelist: de novo structure generation from mass spectra. Nature Methods.
  • Subedi, B., Balakrishna, K., Joshua, D. I., & Kannan, K. (2017). Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere, 167, 429–437. https://doi.org/10.1016/j.chemosphere.2016.10.026
  • Sui, Q., Huang, J., Deng, S., Yu, G., & Fan, Q. (2010). Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 44(2), 417–426. https://doi.org/10.1016/j.watres.2009.07.010
  • Sun, J., Luo, Q., Wang, D., & Wang, Z. (2015). Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety, 117, 132–140. https://doi.org/10.1016/j.ecoenv.2015.03.032
  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260. https://doi.org/10.1016/S0043-1354(98)00099-2
  • Tixier, C., Singer, H. P., Oellers, S., & Müller, S. (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental Science & Technology, 37(6), 1061–1068. https://doi.org/10.1021/es025834r
  • Tran, N., Drogui, P., Zaviska, F., & Brar, S. K. (2013). Sonochemical degradation of the persistent pharmaceutical carbamazepine. Journal of Environmental Management, 131, 25–32. https://doi.org/10.1016/j.jenvman.2013.09.027
  • Tran, N. H., Reinhard, M., & Gin, Y. H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182–207. https://doi.org/10.1016/j.watres.2017.12.029
  • Valcárcel, Y., Alonso, S. G., Rodríguez-Gil, J. L., Castaño, A., Montero, J. C., Criado-Alvarez, J. J., Mirón, I. J., & Catalá, M. (2013). Seasonal variation of pharmaceutically active compounds in surface (Tagus River) and tap water (Central Spain). Environmental Science and Pollution Research International, 20(3), 1396–1412. https://doi.org/10.1007/s11356-012-1099-2
  • Verlicchi, P., Aukidy, M. A., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. The Science of the Total Environment, 429, 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028
  • Vieno, N., Tuhkanen, T., & Kronberg, L. (2007). Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Research, 41(5), 1001–1012. https://doi.org/10.1016/j.watres.2006.12.017
  • Vogna, D., Marotta, R., Andreozzi, R., Napolitano, A., & d’Ischia, M. (2004). Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere, 54(4), 497–505. https://doi.org/10.1016/S0045-6535(03)00757-4
  • Vulliet, E., & Cren-Olivé, C. (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution (Barking, Essex: 1987), 159(10), 2929–2934. https://doi.org/10.1016/j.envpol.2011.04.033
  • Vulliet, E., Cren-Olivé, C., & Grenier-Loustalot, M.-F. (2011). Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environmental Chemistry Letters, 9(1), 103–114. https://doi.org/10.1007/s10311-009-0253-7
  • Wang, C., Shi, H., Adams, C. D., Gamagedara, S., Stayton, I., Timmons, T., & Ma, Y. (2011). Investigation of Pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Research, 45(4), 1818–1828. https://doi.org/10.1016/j.watres.2010.11.043
  • Wang, L., Zhu, D., Cao, Y., Yu, X., Hui, Y., Li, W., & Wang, D. (2021). Seasonal changes and ecological rik assessment of pharmaceutical and personal care products in the effluents of wastewater treatment plants in Beijing. Acta Scientiae Circumstantiae, 41, 2922–2932.
  • Wang, Y., & Chen, Z. (2019). An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacology & Therapeutics, 201, 77–93. https://doi.org/10.1016/j.pharmthera.2019.05.010
  • West, C. E., & Rowland, S. J. (2012). Aqueous phototransformation of diazepam and related human metabolites under simulated sunlight. Environmental Science & Technology, 46(9), 4749–4756. https://doi.org/10.1021/es203529z
  • WHO. (2019). Epilepsy. https://www.who.int/news-room/fact-sheets/detail/epilepsy.
  • Xin, J., Yan, S., Hong, X., Zhang, H., & Zha, J. (2021). Environmentally relevant concentrations of carbamazepine induced lipid metabolism disorder of Chinese rare minnow (Gobiocypris rarus) in a gender-specific pattern. Chemosphere, 265, 129080. https://doi.org/10.1016/j.chemosphere.2020.129080
  • Xu, M., Huang, H., Li, N., Li, F., Wang, D., & Luo, Q. (2019). Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicology and Environmental Safety, 175, 289–298. https://doi.org/10.1016/j.ecoenv.2019.01.131
  • Yan, Q., Zhang, Y.-X., Kang, J., Gan, X.-M., Xu-Y, P., Guo, J.-S., & Gao, X. (2015). A Preliminary study on the occurrence of pharmaceutically active compounds in the river basins and their removal in two conventional drinking water treatment plants in Chongqing, China. CLEAN – Soil, Air, Water, 43(6), 794–803. https://doi.org/10.1002/clen.201400039
  • Yan, S., Chen, R., Wang, M., & Zha, J. (2021). Carbamazepine at environmentally relevant concentrations caused DNA damage and apoptosis in the liver of Chinese rare minnows (Gobiocypris rarus) by the Ras/Raf/ERK/p53 signaling pathway. Environmental Pollution (Barking, Essex : 1987), 270, 116245. https://doi.org/10.1016/j.envpol.2020.116245
  • Yan, S., Wang, M., Liang, X., Martyniuk, C. J., Zha, J., & Wang, Z. (2018). Environmentally relevant concentrations of carbamazepine induce liver histopathological changes and a gender-specific response in hepatic proteome of Chinese rare minnows (Gobiocypris rarus). Environmental Pollution (Barking, Essex: 1987), 243(Pt A), 480–491. https://doi.org/10.1016/j.envpol.2018.09.009
  • Yan, S., Wang, M., Zha, J., Zhu, L., Li, W., Luo, Q., Sun, J., & Wang, Z. (2018). Environmentally relevant concentrations of carbamazepine caused endocrine-disrupting effects on non-target organisms, Chinese rare minnows (Gobiocypris rarus). Environmental Science & Technology, 52(2), 886–894. https://doi.org/10.1021/acs.est.7b06476
  • Yin, L., Wang, B., Yuan, H., Deng, S., Huang, J., Wang, Y., & Yu, G. (2017). Pay special attention to the transformation products of PPCPs in environment. Emerging Contaminants, 3(2), 69–75. https://doi.org/10.1016/j.emcon.2017.04.001
  • Ying, G.-G., Zhao, J.-L., Zhou, L.-J., & Liu, S. (2013). Fate and occurrence of pharmaceuticals in the aquatic environment (surface water and sediment). In: M. Petrovic, D. Barcelo, S. Pérez (eds.). Comprehensive analytical chemistry. Elsevier.
  • Yuan, X., Li, S., Hu, J., Yu, M., Li, Y., & Wang, Z. (2019). Experiments and numerical simulation on the degradation processes of carbamazepine and triclosan in surface water: A case study for the Shahe Stream, South China. The Science of the Total Environment, 655, 1125–1138. https://doi.org/10.1016/j.scitotenv.2018.11.290
  • Zhang, Y., Geissen, S.-U., & Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151–1161. https://doi.org/10.1016/j.chemosphere.2008.07.086
  • Zhang, Y., & Geissen, S. U. (2012). Elimination of carbamazepine in a non-sterile fungal bioreactor. Bioresource Technology, 112, 221–227. https://doi.org/10.1016/j.biortech.2012.02.073
  • Zhang, Y., Wang, B., Cagnetta, G., Duan, L., Yang, J., Deng, S., Huang, J., Wang, Y., & Yu, G. (2018). Typical pharmaceuticals in major WWTPs in Beijing, China: Occurrence, load pattern and calculation reliability. Water Research, 140, 291–300. https://doi.org/10.1016/j.watres.2018.04.056
  • Zhou, J. L., Zhang, Z. L., Banks, E., Grover, D., & Jiang, J. Q. (2009). Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water. Journal of Hazardous Materials, 166(2-3), 655–661. https://doi.org/10.1016/j.jhazmat.2008.11.070
  • Zhou, S., Xia, Y., Li, T., Yao, T., Shi, Z., Zhu, S., & Gao, N. (2016). Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products. Environmental Science and Pollution Research International, 23(16), 16448–16455. https://doi.org/10.1007/s11356-016-6823-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.