1,347
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Electron transfer processes associated with structural Fe in clay minerals

, , , , , , , & show all
Pages 13-38 | Published online: 16 Jun 2023

References

  • Aeschbacher, M., Sander, M., & Schwarzenbach, R. P. (2010). Novel electrochemical approach to assess the redox properties of humic substances. Environmental Science & Technology, 44(1), 87–93. https://doi.org/10.1021/es902627p
  • Aeschbacher, M., Vergari, D., Schwarzenbach, R. P., & Sander, M. (2011). Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environmental Science & Technology, 45(19), 8385–8394. https://doi.org/10.1021/es201981g
  • Alexandrov, V., Neumann, A., Scherer, M. M., & Rosso, K. M. (2013a). Electron exchange and conduction in nontronite from first-principles. The Journal of Physical Chemistry C, 117(5), 2032–2040. https://doi.org/10.1021/jp3110776
  • Alexandrov, V., & Rosso, K. M. (2013b). Insights into the mechanism of Fe(II) adsorption and oxidation at Fe-clay mineral surfaces from first-principles calculations. The Journal of Physical Chemistry C, 117(44), 22880–22886. https://doi.org/10.1021/jp4073125
  • Baron, F., Petit, S., Pentrak, M., Decarreau, A., & Stucki, J. W. (2017). Revisiting the nontronite Mossbauer spectra. American Mineralogist, 102(7), 1501–1515. https://doi.org/10.2138/am-2017-1501x
  • Baron, F., Petit, S., Tertre, E., & Decarreau, A. (2016). Influence of aqueous Si and Fe speciation on tetrahedral Fe(III) substitutions in nontronites: A clay synthesis approach. Clays and Clay Minerals, 64(3), 230–244. https://doi.org/10.1346/CCMN.2016.0640309
  • Bishop, M. E., Dong, H., Glasser, P., Briggs, B. R., Pentrak, M., & Stucki, J. W. (2020). Microbially mediated iron redox cycling of subsurface sediments from Hanford Site, Washington State, USA. Chemical Geology, 546, 119643. https://doi.org/10.1016/j.chemgeo.2020.119643
  • Bishop, M. E., Dong, H. L., Glasser, P., Briggs, B. R., Pentrak, M., Stucki, J. W., Boyanov, M. I., Kemner, K. M., & Kovarik, L. (2019). Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction. Geochimica et Cosmochimica Acta, 252, 88–106. https://doi.org/10.1016/j.gca.2019.02.039
  • Bishop, M. E., Dong, H., Kukkadapu, R. K., Liu, C., & Edelmann, R. E. (2011). Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99). Geochimica et Cosmochimica Acta, 75(18), 5229–5246. https://doi.org/10.1016/j.gca.2011.06.034
  • Bishop, M. E., Glasser, P., Dong, H. L., Arey, B., & Kovarik, L. (2014). Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochimica et Cosmochimica Acta, 133, 186–203. https://doi.org/10.1016/j.gca.2014.02.040
  • Bonneville, S., Bray, A. W., & Benning, L. G. (2016). Structural Fe(II) oxidation in biotite by an ectomycorrhizal fungi drives mechanical forcing. Environmental Science & Technology, 50(11), 5589–5596. https://doi.org/10.1021/acs.est.5b06178
  • Brookshaw, D. R., Lloyd, J. R., Vaughan, D. J., & Pattrick, R. A. D. (2014). Bioreduction of biotite and chlorite by a Shewanella species. American Mineralogist, 99(8–9), 1746–1754. https://doi.org/10.2138/am.2014.4774CCBY
  • Brookshaw, D. R., Pattrick, R. A. D., Bots, P., Law, G. T. W., Lloyd, J. R., Mosselmans, J. F. W., Vaughan, D. J., Dardenne, K., & Morris, K. (2015). Redox interactions of Tc(VII), U(VI), and Np(V) with microbially reduced biotite and chlorite. Environmental Science & Technology, 49(22), 13139–13148. https://doi.org/10.1021/acs.est.5b03463
  • Bylaska, E. J., Song, D., & Rosso, K. M. (2020). Electron transfer calculations between edge sharing octahedra in hematite, goethite, and annite. Geochimica et Cosmochimica Acta, 291, 79–91. https://doi.org/10.1016/j.gca.2020.04.036
  • Byrne, J. M., Klueglein, N., Pearce, C., Rosso, K. M., Appel, E., & Kappler, A. (2015). Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science (New York, NY), 347(6229), 1473–1476. https://doi.org/10.1126/science.aaa4834
  • Cervini-Silva, J., Larson, R. A., Wu, J., & Stucki, J. W. (2001). Transformation of chlorinated aliphatic compounds by ferruginous smectite. Environmental Science & Technology, 35(4), 805–809. https://doi.org/10.1021/es0015592
  • Chamberlain, S. D., Anthony, T. L., Silver, W. L., Eichelmann, E., Hemes, K. S., Oikawa, P. Y., Sturtevant, C., Szutu, D. J., Verfaillie, J. G., & Baldocchi, D. D. (2018). Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Global Change Biology, 24(9), 4107–4121. https://doi.org/10.1111/gcb.14124
  • Chen, N., Fu, Q., Wu, T., Cui, P., Fang, G., Liu, C., Chen, C., Liu, G., Wang, W., Wang, D., Wang, P., & Zhou, D. (2021). Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil. Environmental Science & Technology, 55(20), 14281–14293. https://doi.org/10.1021/acs.est.1c04073
  • Chen, N., Huang, M. Y., Liu, Q., Fang, G. D., Liu, G. X., Sun, Z. Y., Zhou, D. M., Gao, J., & Gu, C. (2019). Transformation of tetracyclines induced by Fe(III)-bearing smectite clays under anoxic dark conditions. Water Research, 165, 114997. https://doi.org/10.1016/j.watres.2019.114997
  • Cuadros, J., Michalski, J. R., Dyar, M. D., & Dekov, V. (2019). Controls on tetrahedral Fe(III) abundance in 2:1 phyllosilicates. American Mineralogist, 104(11), 1608–1619. https://doi.org/10.2138/am-2019-7036
  • Dong, H. L. (2012). Clay-microbe interactions and implications for environmental mitigation. Elements, 8(2), 113–118. https://doi.org/10.2113/gselements.8.2.113
  • Dong, H., Huang, L., Zhao, L., Zeng, Q., Liu, X., Sheng, Y., Shi, L., Wu, G., Jiang, H., Li, F., Zhang, L., Guo, D., Li, G., Hou, W., & Chen, H. (2022). A critical review of mineral-microbe interaction and co-evolution: Mechanisms and applications. National Science Review, 9, nwac128.
  • Dong, H. L., Jaisi, D. P., Kim, J., & Zhang, G. X. (2009). Microbe-clay mineral interactions. American Mineralogist, 94(11–12), 1505–1519. https://doi.org/10.2138/am.2009.3246
  • Dubinsky, E. A., Silver, W. L., & Firestone, M. K. (2010). Tropical forest soil microbial communities couple iron and carbon biogeochemistry. Ecology, 91(9), 2604–2612. https://doi.org/10.1890/09-1365.1
  • Eslinger, E., Highsmith, P., Albers, D., & deMayo, B. (1979). Role of iron reduction in the conversion of smectite to illite in bentonites in the disturbed belt, Montana. Clays and Clay Minerals, 27(5), 327–338. https://doi.org/10.1346/CCMN.1979.0270503
  • Fan, Q., Wang, L., Fu, Y., Li, Q., Liu, Y., Wang, Z., & Zhu, H. (2023). Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review. The Science of the Total Environment, 855, 159003. https://doi.org/10.1016/j.scitotenv.2022.159003
  • Foster, M. D. (1953). Geochemical studies of clay minerals: II—relation between ionic substitution and swelling in montmorillonites. American Mineralogist, 38, 994–1006.
  • Foster, M. D. (1954). The relation between composition and swelling in clays. Clays and Clay Minerals, 3(1), 205–220. https://doi.org/10.1346/CCMN.1954.0030117
  • Gabriel, G. V. M., Oliveira, L. C., Barros, D. J., Bento, M. S., Neu, V., Toppa, R. H., Carmo, J. B., & Navarrete, A. A. (2020). Methane emission suppression in flooded soil from Amazonia. Chemosphere, 250, 126263. https://doi.org/10.1016/j.chemosphere.2020.126263
  • Gan, H., Stucki, J. W., & Bailey, G. W. (1992). Reduction of structural iron in ferruginous smectite by free radicals. Clays and Clay Minerals, 40(6), 659–665. https://doi.org/10.1346/CCMN.1992.0400605
  • Gates, W. P., Jaunet, A. M., Tessier, D., Cole, M. A., Wilkinson, H. T., & Stucki, J. W. (1998). Swelling and texture of iron-bearing smectites reduced by bacteria. Clays and Clay Minerals, 46(5), 487–497. https://doi.org/10.1346/CCMN.1998.0460502
  • Gorski, C. A., Aeschbacher, M., Soltermann, D., Voegelin, A., Baeyens, B., Marques Fernandes, M., Hofstetter, T. B., & Sander, M. (2012). Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environmental Science & Technology, 46(17), 9360–9368. https://doi.org/10.1021/es3020138
  • Gorski, C. A., Klupfel, L. E., Voegelin, A., Sander, M., & Hofstetter, T. B. (2013). Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environmental Science & Technology, 47(23), 13477–13485. https://doi.org/10.1021/es403824x
  • Grabb, K. C., Buchwald, C., Hansel, C. M., & Wankel, S. D. (2017). A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide. Geochimica et Cosmochimica Acta, 196, 388–402. https://doi.org/10.1016/j.gca.2016.10.026
  • Gray, H. B., & Winkler, J. R. (2009). Electron flow through proteins. Chemical Physics Letters, 483(1–3), 1–9. https://doi.org/10.1016/j.cplett.2009.10.051
  • Hazen, R. M., Sverjensky, D. A., Azzolini, D., Bish, D. L., Elmore, S. C., Hinnov, L., & Milliken, R. E. (2013). Clay mineral evolution. American Mineralogist, 98(11–12), 2007–2029. https://doi.org/10.2138/am.2013.4425
  • Heenan, J. W., Ntarlagiannis, D., Slater, L. D., Beaver, C. L., Rossbach, S., Revil, A., Atekwana, E. A., & Bekins, B. (2017). Field-scale observations of a transient geobattery resulting from natural attenuation of a crude oil spill. Journal of Geophysical Research: Biogeosciences, 122(4), 918–929. https://doi.org/10.1002/2016JG003596
  • Hofstetter, T. B., Neumann, A., & Schwarzenbach, R. P. (2006). Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Environmental Science & Technology, 40(1), 235–242. https://doi.org/10.1021/es0515147
  • Hofstetter, T. B., Schwarzenbach, R. P., & Haderlein, S. B. (2003). Reactivity of Fe(II) species associated with clay minerals. Environmental Science & Technology, 37(3), 519–528. https://doi.org/10.1021/es025955r
  • Huang, J. Z., Jones, A., Waite, T. D., Chen, Y. L., Huang, X. P., Rosso, K. M., Kappler, A., Mansor, M., Tratnyek, P. G., & Zhang, H. C. (2021). Fe(II) redox chemistry in the environment. Chemical Reviews, 121(13), 8161–8233. https://doi.org/10.1021/acs.chemrev.0c01286
  • Ilgen, A. G., Foster, A. L., & Trainor, T. P. (2012). Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochimica et Cosmochimica Acta, 94, 128–145. https://doi.org/10.1016/j.gca.2012.07.007
  • Ilgen, A., Kukkadapu, R., Dunphy, D., Artyushkova, K., Cerrato, J., Kruichak, J., Janish, M., Sun, C., Argo, J., & Washington, R. (2017). Synthesis and characterization of redox-active ferric nontronite. Chemical Geology, 470, 1–12. https://doi.org/10.1016/j.chemgeo.2017.07.010
  • Ilgen, A. G., Kukkadapu, R. K., Leung, K., & Washington, R. E. (2019). “Switching on” iron in clay minerals. Environmental Science: Nano, 6(6), 1704–1715. https://doi.org/10.1039/C9EN00228F
  • Ilton, E. S., Haiduc, A., Moses, C. O., Heald, S. M., Elbert, D. C., & Veblen, D. R. (2004). Heterogeneous reduction of uranyl by micas: Crystal chemical and solution controls. Geochimica et Cosmochimica Acta, 68(11), 2417–2435. https://doi.org/10.1016/j.gca.2003.08.010
  • Ilton, E. S., Heald, S. M., Smith, S. C., Elbert, D., & Liu, C. (2006). Reduction of uranyl in the interlayer region of low iron micas under anoxic and aerobic conditions. Environmental Science & Technology, 40(16), 5003–5009. https://doi.org/10.1021/es0522478
  • Jaisi, D. P., Dong, H. L., & Liu, C. X. (2007b). Kinetic analysis of microbial reduction of Fe(III) in nontronite. Environmental Science & Technology, 41(7), 2437–2444. https://doi.org/10.1021/es0619399
  • Jaisi, D. P., Dong, H., & Liu, C. (2007a). Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochimica et Cosmochimica Acta, 71(5), 1145–1158. https://doi.org/10.1016/j.gca.2006.11.027
  • Jaisi, D. P., Kukkadapu, R. K., Eberl, D. D., & Dong, H. L. (2005). Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite. Geochimica et Cosmochimica Acta, 69(23), 5429–5440. https://doi.org/10.1016/j.gca.2005.07.008
  • Joe-Wong, C., Brown, G. E., & Maher, K. (2017). Kinetics and products of chromium(VI) reduction by iron(II/III)-bearing clay minerals. Environmental Science & Technology, 51(17), 9817–9825. https://doi.org/10.1021/acs.est.7b02934
  • Joe-Wong, C., Weaver, K. L., Brown, S. T., & Maher, K. (2021). Chromium isotope fractionation during reduction of Chromium(VI) by Iron(II/III)-bearing clay minerals. Geochimica et Cosmochimica Acta, 292, 235–253. https://doi.org/10.1016/j.gca.2020.09.034
  • Jones, A. M., Murphy, C. A., Waite, T. D., & Collins, R. N. (2017). Fe(II) interactions with smectites: Temporal changes in redox reactivity and the formation of green rust. Environmental Science & Technology, 51(21), 12573–12582. https://doi.org/10.1021/acs.est.7b01793
  • Kappler, A., Bryce, C., Mansor, M., Lueder, U., Byrne, J. M., & Swanner, E. D. (2021). An evolving view on biogeochemical cycling of iron. Nature Reviews. Microbiology, 19(6), 360–374. https://doi.org/10.1038/s41579-020-00502-7
  • Kashefi, K., Shelobolina, E. S., Elliott, W. C., & Lovley, D. R. (2008). Growth of thermophilic and hyperthermophilic Fe (III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor. Applied and Environmental Microbiology, 74(1), 251–258. https://doi.org/10.1128/AEM.01580-07
  • Kaufhold, S., Stucki, J. W., Finck, N., Steininger, R., Zimina, A., Dohrmann, R., Ufer, K., Pentrak, M., & Pentrakova, L. (2017). Tetrahedral charge and Fe content in dioctahedral smectites. Clay Minerals, 52(1), 51–65. https://doi.org/10.1180/claymin.2017.052.1.03
  • Keri, A., Dahn, R., Krack, M., & Churakov, S. V. (2019). Characterization of structural iron in smectites - An Ab initio based X-ray absorption spectroscopy study. Environmental Science & Technology, 53(12), 6877–6886. https://doi.org/10.1021/acs.est.8b06952
  • Kerisit, S., Rosso, K. M., Dupuis, M., & Valiev, M. (2007). Molecular computational investigation of electron-transfer kinetics across cytochrome − iron oxide interfaces. The Journal of Physical Chemistry C, 111(30), 11363–11375. https://doi.org/10.1021/jp072060y
  • Kim, J., Dong, H. L., Seabaugh, J., Newell, S. W., & Eberl, D. D. (2004). Role of microbes in the smectite-to-illite reaction. Science (New York, NY), 303(5659), 830–832. https://doi.org/10.1126/science.1093245
  • Kim, J., Dong, H. L., Yang, K., Park, H., Elliott, W. C., Spivack, A., Koo, T. H., Kim, G., Morono, Y., Henkel, S., Inagaki, F., Zeng, Q., Hoshino, T., & Heuer, V. B. (2019). Naturally occurring, microbially induced smectite-to-illite reaction. Geology, 47(6), 535–539. https://doi.org/10.1130/G46122.1
  • Kleber, M., Bourg, I. C., Coward, E. K., Hansel, C. M., Myneni, S. C. B., & Nunan, N. (2021). Dynamic interactions at the mineral-organic matter interface. Nature Reviews Earth & Environment, 2(6), 402–421. https://doi.org/10.1038/s43017-021-00162-y
  • Komadel, P., Lear, P. R., & Stucki, J. W. (1990). Reduction and reoxidation of nontronite: Extent of reduction and reaction rates. Clays and Clay Minerals, 38(2), 203–208. https://doi.org/10.1346/CCMN.1990.0380212
  • Kostka, J. E., Dalton, D. D., Skelton, H., Dollhopf, S., & Stucki, J. W. (2002). Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Applied and Environmental Microbiology, 68(12), 6256–6262. https://doi.org/10.1128/AEM.68.12.6256-6262.2002
  • Kostka, J. E., Haefele, E., Viehweger, R., & Stucki, J. W. (1999a). Respiration and dissolution of iron(III)-containing clay minerals by bacteria. Environmental Science & Technology, 33(18), 3127–3133. https://doi.org/10.1021/es990021x
  • Kostka, J. E., Wu, J., Nealson, K. H., & Stucki, J. W. (1999b). The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta, 63(22), 3705–3713. https://doi.org/10.1016/S0016-7037(99)00199-4
  • Latta, D. E., Neumann, A., Premaratne, W. A. P. J., & Scherer, M. M. (2017). Fe(II)-Fe(III) electron transfer in a clay mineral with low Fe content. ACS Earth and Space Chemistry, 1(4), 197–208. https://doi.org/10.1021/acsearthspacechem.7b00013
  • Liao, W. J., Ye, Z. L., Yuan, S. H., Cai, Q. Z., Tong, M., Qian, A., & Cheng, D. (2019a). Effect of coexisting Fe(III) (oxyhydr)oxides on Cr(VI) reduction by Fe(II)-bearing clay minerals. Environmental Science & Technology, 53(23), 13767–13775. https://doi.org/10.1021/acs.est.9b05208
  • Liao, W. J., Yuan, S. H., Liu, X. X., & Tong, M. (2019b). Anoxic storage regenerates reactive Fe(II) in reduced nontronite with short-term oxidation. Geochimica et Cosmochimica Acta, 257, 96–109. https://doi.org/10.1016/j.gca.2019.04.027
  • Li, S., Kappler, A., Haderlein, S. B., & Zhu, Y. G. (2022). Powering biological nitrogen removal from the environment by geobatteries. Trends in Biotechnology, 40(4), 377–380. https://doi.org/10.1016/j.tibtech.2021.10.008
  • Liu, D., Dong, H. L., Bishop, M. E., Wang, H. M., Agrawal, A., Tritschler, S., Eberl, D. D., & Xie, S. C. (2011). Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochimica et Cosmochimica Acta, 75(4), 1057–1071. https://doi.org/10.1016/j.gca.2010.11.009
  • Liu, D., Dong, H., Bishop, M. E., Zhang, J., Wang, H., Xie, S., Wang, S., Huang, L., & Eberl, D. D. (2012). Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Geobiology, 10(2), 150–162. https://doi.org/10.1111/j.1472-4669.2011.00307.x
  • Liu, D., Dong, H. L., Wang, H. M., & Zhao, L. D. (2015). Low-temperature feldspar and illite formation through bioreduction of Fe(III)-bearing smectite by an alkaliphilic bacterium. Chemical Geology, 406, 25–33. https://doi.org/10.1016/j.chemgeo.2015.04.019
  • Liu, X., Dong, H., Zeng, Q., Yang, X., & Zhang, D. (2019). Synergistic effects of reduced nontronite and organic ligands on Cr (VI) reduction. Environmental Science & Technology, 53(23), 13732–13741. https://doi.org/10.1021/acs.est.9b04769
  • Liu, D., Zhang, Q. F., Wu, L. L., Zeng, Q., Dong, H. L., Bishop, M. E., & Wang, H. M. (2016). Humic acid-enhanced illite and talc formation associated with microbial reduction of Fe(III) in nontronite. Chemical Geology, 447, 199–207. https://doi.org/10.1016/j.chemgeo.2016.11.013
  • Li, Y.-L., Vali, H., Sears, S. K., Yang, J., Deng, B., & Zhang, C. L. (2004). Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta, 68(15), 3251–3260. https://doi.org/10.1016/j.gca.2004.03.004
  • Luan, F. B., Gorski, C. A., & Burgos, W. D. (2015a). Linear free energy relationships for the biotic and abiotic reduction of nitroaromatic compounds. Environmental Science & Technology, 49(6), 3557–3565. https://doi.org/10.1021/es5060918
  • Luan, F., Gorski, C. A., & Burgos, W. D. (2014). Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium. Environmental Science & Technology, 48(5), 2750–2758. https://doi.org/10.1021/es404885e
  • Luan, F. B., Liu, Y., Griffin, A. M., Gorski, C. A., & Burgos, W. D. (2015b). Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32. Environmental Science & Technology, 49(3), 1418–1426. https://doi.org/10.1021/es504149y
  • Manceau, A., Drits, V. A., Lanson, B., Chateigner, D., Wu, J., Huo, D., Gates, W. P., & Stucki, J. W. (2000a). Oxidation-reduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite. American Mineralogist, 85(1), 153–172. https://doi.org/10.2138/am-2000-0115
  • Manceau, A., Lanson, B., Drits, V. A., Chateigner, D., Gates, W. P., Wu, J., Huo, D., & Stucki, J. W. (2000b). Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85(1), 133–152. https://doi.org/10.2138/am-2000-0114
  • Martin, R. T., Bailey, S. W., Eberl, D. D., Fanning, D. S., Guggenheim, S., Kodama, H., Pevear, D. R., Środoń, J., & Wicks, F. J. (1991). Report of the clay minerals society nomenclature committee: Revised classification of clay materials. Clays and Clay Minerals, 39(3), 333–335. https://doi.org/10.1346/CCMN.1991.0390315
  • Mayhew, S. G. (1978). The redox potential of dithionite and SO2− from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. European Journal of Biochemistry, 85(2), 535–547. https://doi.org/10.1111/j.1432-1033.1978.tb12269.x
  • McMahon, P. (2001). Aquifer/aquitard interfaces: Mixing zones that enhance biogeochemical reactions. Hydrogeology Journal, 9(1), 34–43. https://doi.org/10.1007/s100400000109
  • Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C., & Kappler, A. (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews. Microbiology, 12(12), 797–808. https://doi.org/10.1038/nrmicro3347
  • Morrison, K. D., Bristow, T. F., & Kennedy, M. J. (2013). The reduction of structural iron in ferruginous smectite via the amino acid cysteine: Implications for an electron shuttling compound. Geochimica et Cosmochimica Acta, 106, 152–163. https://doi.org/10.1016/j.gca.2012.12.006
  • Muller, H., Bosch, J., Griebler, C., Damgaard, L. R., Nielsen, L. P., Lueders, T., & Meckenstock, R. U. (2016). Long-distance electron transfer by cable bacteria in aquifer sediments. The ISME Journal, 10(8), 2010–2019. https://doi.org/10.1038/ismej.2015.250
  • Neal, A. L., Bank, T. L., Hochella, M. F., & Rosso, K. M. (2005). Cell adhesion of Shewanella oneidensis to iron oxide minerals: Effect of different single crystal faces. Geochemical Transactions, 6(4), 77–84. https://doi.org/10.1186/1467-4866-6-77
  • Neumann, A., Hofstetter, T. B., Lussi, M., Cirpka, O. A., Petit, S., & Schwarzenbach, R. P. (2008). Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Environmental Science & Technology, 42(22), 8381–8387. https://doi.org/10.1021/es801840x
  • Neumann, A., Hofstetter, T. B., Skarpeli-Liati, M., & Schwarzenbach, R. P. (2009). Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites. Environmental Science & Technology, 43(11), 4082–4089. https://doi.org/10.1021/es9001967
  • Neumann, A., Olson, T. L., & Scherer, M. M. (2013). Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites. Environmental Science & Technology, 47(13), 6969–6977. https://doi.org/10.1021/es304744v
  • Neumann, A., Petit, S., & Hofstetter, T. B. (2011a). Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy. Geochimica et Cosmochimica Acta, 75(9), 2336–2355. https://doi.org/10.1016/j.gca.2011.02.009
  • Neumann, A., Sander, M., & Hofstetter, T. B. (2011b). Redox properties of structural Fe in smectite clay minerals. In Aquatic redox chemistry (pp. 361–379). ACS Publications.
  • Neumann, A., Wu, L. L., Li, W. Q., Beard, B. L., Johnson, C. M., Rosso, K. M., Frierdich, A. J., & Scherer, M. M. (2015). Atom exchange between aqueous Fe(II) and structural Fe in clay minerals. Environmental Science & Technology, 49(5), 2786–2795. https://doi.org/10.1021/es504984q
  • Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., & Sayama, M. (2010). Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, 463(7284), 1071–1074. https://doi.org/10.1038/nature08790
  • Noel, V., Boye, K., Kukkadapu, R. K., Bone, S., Pacheco, J. S. L., Cardarelli, E., Janot, N., Fendorf, S., Williams, K. H., & Bargar, J. R. (2017). Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin. Science of the Total Environment, 603–604, 663–675. https://doi.org/10.1016/j.scitotenv.2017.01.109
  • Peiffer, S., Kappler, A., Haderlein, S. B., Schmidt, C., Byrne, J. M., Kleindienst, S., Vogt, C., Richnow, H. H., Obst, M., Angenent, L. T., Bryce, C., McCammon, C., & Planer-Friedrich, B. (2021). A biogeochemical-hydrological framework for the role of redox-active compounds in aquatic systems. Nature Geoscience, 14(5), 264–272. https://doi.org/10.1038/s41561-021-00742-z
  • Pentrakova, L., Su, K., Pentrak, M., & Stuck, J. W. (2013). A review of microbial redox interactions with structural Fe in clay minerals. Clay Minerals, 48(3), 543–560. https://doi.org/10.1180/claymin.2013.048.3.10
  • Pfeffer, C., Larsen, S., Song, J., Dong, M. D., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N., & Nielsen, L. P. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature, 491(7423), 218–221. https://doi.org/10.1038/nature11586
  • Qafoku, O., Pearce, C. I., Neumann, A., Kovarik, L., Zhu, M. Q., Ilton, E. S., Bowden, M. E., Resch, C. T., Arey, B. W., Arenholz, E., Felmy, A. R., & Rosso, K. M. (2017). Tc(VII) and Cr(VI) interaction with naturally reduced ferruginous smectite from a redox transition zone. Environmental Science & Technology, 51(16), 9042–9052. https://doi.org/10.1021/acs.est.7b02191
  • Remucal, C. K., & Sedlak, D. L. (2011). The role of iron coordination in the production of reactive oxidants from ferrous iron oxidation by oxygen and hydrogen peroxide. In P. G. Tratnyek (Ed.), Aquatic redox chemistry (ACS Symposium series, pp. 177−197). American Chemical Society.
  • Ribeiro, F. R., Fabris, J. D., Kostka, J. E., Komadel, P., & Stucki, J. W. (2009). Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite. Pure and Applied Chemistry, 81(8), 1499–1509. https://doi.org/10.1351/PAC-CON-08-11-16
  • Rodhe, H. (1990). A Comparison of the contribution of various gases to the greenhouse effect. Science (New York, NY), 248(4960), 1217–1219. https://doi.org/10.1126/science.248.4960.1217
  • Rosso, K. M., & Ilton, E. S. (2003). Charge transport in micas: The kinetics of FeII/III electron transfer in the octahedral sheet. The Journal of Chemical Physics, 119(17), 9207–9218. https://doi.org/10.1063/1.1612912
  • Satpathy, A., Catalano, J. G., & Giammar, D. E. (2022). Reduction of U(VI) on chemically reduced montmorillonite and surface complexation modeling of adsorbed U(IV). Environmental Science & Technology, 56(7), 4111–4120. https://doi.org/10.1021/acs.est.1c06814
  • Schaefer, M. V., Gorski, C. A., & Scherer, M. M. (2011). Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral. Environmental Science & Technology, 45(2), 540–545. https://doi.org/10.1021/es102560m
  • Shelobolina, E., Konishi, H., Xu, H. F., Benzine, J., Xiong, M. Y., Wu, T., Blothe, M., & Roden, E. (2012a). Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil. Frontiers in Microbiology, 3, 134. https://doi.org/10.3389/fmicb.2012.00134
  • Shelobolina, E., Xu, H. F., Konishi, H., Kukkadapu, R., Wu, T., Blothe, M., & Roden, E. (2012b). Microbial lithotrophic oxidation of structural Fe(II) in biotite. Applied and Environmental Microbiology, 78(16), 5746–5752. https://doi.org/10.1128/AEM.01034-12
  • Shen, S., & Stucki, J. W. (1994). Effects of iron oxidation state on the fate and behavior of potassium in soils. In Soil testing: Prospects for improving nutrient recommendations (pp. 173–185). SSSA Special Publication, Soil Science Society of America.
  • Sheng, Y. Z., Dong, H. L., Kukkadapu, R. K., Ni, S. S., Zeng, Q., Hu, J. L., Coffin, E., Zhao, S., Sommer, A. J., McCarrick, R. M., & Lorigan, G. A. (2021). Lignin-enhanced reduction of structural Fe(III) in nontronite: Dual roles of lignin as electron shuttle and donor. Geochimica et Cosmochimica Acta, 307, 1–21. https://doi.org/10.1016/j.gca.2021.05.037
  • Shi, L., Dong, H. L., Reguera, G., Beyenal, H., Lu, A. H., Liu, J., Yu, H. Q., & Fredrickson, J. K. (2016b). Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews. Microbiology, 14(10), 651–662. https://doi.org/10.1038/nrmicro.2016.93
  • Shi, B. J., Liu, K., Wu, L. L., Li, W. Q., Smeaton, C. M., Beard, B. L., Johnson, C. M., Roden, E. E., & Van Cappellen, P. (2016a). Iron isotope fractionations reveal a finite bioavailable Fe pool for structural Fe(III) reduction in nontronite. Environmental Science & Technology, 50(16), 8661–8669. https://doi.org/10.1021/acs.est.6b02019
  • Simonnin, P., Song, D., Alexandrov, V., Bylaska, E. J., & Rosso, K. M. (2021). Modeling electron transfer in iron-bearing phyllosilicate minerals. In I. Sainz-Diaz (Ed.), Computational modeling in clay mineralogy (Association Internationale pour l’Étude des Argiles (AIPEA) Educational series, pp. 141–174). Digilabs.
  • Stucki, J. W. (2011). A review of the effects of iron redox cycles on smectite properties. Comptes Rendus Geoscience, 343(2–3), 199–209. https://doi.org/10.1016/j.crte.2010.10.008
  • Stucki, J. W. (2006). Properties and behaviour of iron in clay minerals. In F. Bergaya, B. K. G. Theng & G. Lagaly (Eds.), Handbook of clay science (pp. 423–475). Elsevier.
  • Stucki, J. W., Komadel, P., & Wilkinson, H. T. (1987). Microbial reduction of structural iron(III) in smectites. Soil Science Society of America Journal, 51(6), 1663–1665. https://doi.org/10.2136/sssaj1987.03615995005100060047x
  • Stucki, J. W., & Kostka, J. E. (2006). Microbial reduction of iron in smectite. Comptes Rendus Geoscience, 338(6–7), 468–475. https://doi.org/10.1016/j.crte.2006.04.010
  • Stucki, J. W., Low, P. F., Roth, C. B., & Golden, D. C. (1984). Effects of oxidation-state of octahedral iron on clay swelling. Clays and Clay Minerals, 32(5), 357–362. https://doi.org/10.1346/CCMN.1984.0320503
  • Stucki, J. W., & Roth, C. B. (1977). Oxidation-reduction mechanism for structural iron in nontronite. Soil Science Society of America Journal, 41(4), 808–814. https://doi.org/10.2136/sssaj1977.03615995004100040041x
  • Sun, Z., Guo, Y., Li, C., Cao, C., Yuan, P., Zou, F., Wang, J., Jia, P., & Wang, J. (2019). Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environmental Science and Pollution Research International, 26(12), 11710–11718. https://doi.org/10.1007/s11356-019-04572-w
  • Sun, Z. Y., Huang, M. Y., Liu, C., Fang, G. D., Chen, N., Zhou, D. M., & Gao, J. (2020). The formation of •OH with Fe-bearing smectite clays and low-molecular-weight thiols: Implication of As(III) removal. Water Research, 174, 115631. https://doi.org/10.1016/j.watres.2020.115631
  • Teh, Y. A., Dubinsky, E. A., Silver, W. L., & Carlson, C. M. (2008). Suppression of methanogenesis by dissimilatory Fe(III)-reducing bacteria in tropical rain forest soils: Implications for ecosystem methane flux. Global Change Biology, 14(2), 413–422. https://doi.org/10.1111/j.1365-2486.2007.01487.x
  • Tong, M., Yuan, S. H., Ma, S. C., Jin, M. G., Liu, D., Cheng, D., Liu, X. X., Gan, Y. Q., & Wang, Y. X. (2016). Production of abundant hydroxyl radicals from oxygenation of subsurface sediments. Environmental Science & Technology, 50(1), 214–221. https://doi.org/10.1021/acs.est.5b04323
  • Trusiak, A., Treibergs, L. A., Kling, G. W., & Cory, R. M. (2018). The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters. Geochimica et Cosmochimica Acta, 224, 80–95. https://doi.org/10.1016/j.gca.2017.12.022
  • Tung, H. C., Price, P. B., Bramall, N. E., & Vrdoljak, G. (2006). Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology, 6(1), 69–86. https://doi.org/10.1089/ast.2006.6.69
  • Vargas, M., Kashefi, K., Blunt-Harris, E. L., & Lovley, D. R. (1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature, 395(6697), 65–67. https://doi.org/10.1038/25720
  • Wang, X., Dong, H., Zeng, Q., Xia, Q., Zhang, L., & Zhou, Z. (2017). Reduced iron-containing clay minerals as antibacterial agents. Environmental Science & Technology, 51(13), 7639–7647. https://doi.org/10.1021/acs.est.7b00726
  • Wang, Y., Jin, X., Peng, A. N., & Gu, C. (2020). Transformation and toxicity of environmental contaminants as influenced by Fe containing clay minerals: A review. Bulletin of Environmental Contamination and Toxicology, 104(1), 8–14. https://doi.org/10.1007/s00128-019-02747-2
  • Warr, L. N. (2022). Earth’s clay mineral inventory and its climate interaction: A quantitative assessment. Earth-Science Reviews, 234, 104198. https://doi.org/10.1016/j.earscirev.2022.104198
  • Wu, J., Low, P. F., & Roth, C. B. (1989). Effects of octahedral-iron reduction and swelling pressure on interlayer distances in Na-nontronite. Clays and Clay Minerals, 37, 211–218.
  • Xia, Q., Jin, Q., Chen, Y., Zhang, L., Li, X., He, S., Guo, D., Liu, J., & Dong, H. (2022). Combined effects of Fe(III)-bearing nontronite and organic ligands on biogenic U(IV) oxidation. Environmental Science & Technology, 56(3), 1983–1993. https://doi.org/10.1021/acs.est.1c04946
  • Xie, W. J., Yuan, S. H., Tong, M., Ma, S. C., Liao, W. J., Zhang, N., & Chen, C. M. (2020). Contaminant degradation by •OH during sediment oxygenation: Dependence on Fe(II) species. Environmental Science & Technology, 54(5), 2975–2984. https://doi.org/10.1021/acs.est.9b04870
  • Yang, J. J., Kukkadapu, R. K., Dong, H. L., Shelobolina, E. S., Zhang, J., & Kim, J. (2012). Effects of redox cycling of iron in nontronite on reduction of technetium. Chemical Geology, 291, 206–216. https://doi.org/10.1016/j.chemgeo.2011.10.013
  • Yong, S. N., Lim, S., Ho, C. L., Chieng, S., & Kuan, S. H. (2022). Mechanisms of microbial-based iron reduction of clay minerals: Current understanding and latest developments. Applied Clay Science, 228, 106653. https://doi.org/10.1016/j.clay.2022.106653
  • Yu, C., Zhang, Y., Lu, Y., Qian, A., Zhang, P., Cui, Y., & Yuan, S. (2021). Mechanistic insight into humic acid-enhanced hydroxyl radical production from Fe(II)-bearing clay mineral oxygenation. Environmental Science & Technology, 55, 13366–13375.
  • Yuan, S. H., Liu, X. X., Liao, W. J., Zhang, P., Wang, X. M., & Tong, M. (2018). Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals. Geochimica et Cosmochimica Acta, 223, 422–436. https://doi.org/10.1016/j.gca.2017.12.025
  • Zeng, Q., Dong, H. L., & Wang, X. (2019). Effect of ligands on the production of oxidants from oxygenation of reduced Fe-bearing clay mineral nontronite. Geochimica et Cosmochimica Acta, 251, 136–156. https://doi.org/10.1016/j.gca.2019.02.032
  • Zeng, Q., Wang, X., Liu, X. L., Huang, L. Q., Hu, J. L., Chu, R., Tolic, N., & Dong, H. L. (2020). Mutual interactions between reduced Fe-bearing clay minerals and humic acids under dark, oxygenated conditions: Hydroxyl radical generation and humic acid transformation. Environmental Science & Technology, 54(23), 15013–15023. https://doi.org/10.1021/acs.est.0c04463
  • Zhang, L. M., Chen, Y., Xia, Q. Y., Kemner, K. M., Shen, Y. H., O’Loughlin, E. J., Pan, Z. Z., Wang, Q. H., Huang, Y., Dong, H. L., & Boyanov, M. I. (2021a). Combined effects of Fe(III)-bearing clay minerals and organic ligands on U(VI) bioreduction and U(IV) speciation. Environmental Science & Technology, 55(9), 5929–5938. https://doi.org/10.1021/acs.est.0c08645
  • Zhang, L., Dong, H., Kukkadapu, R. K., Jin, Q., & Kovarik, L. (2019). Electron transfer between sorbed Fe(II) and structural Fe(III) in smectites and its effect on nitrate-dependent iron oxidation by Pseudogulbenkiania sp. strain 2002. Geochimica et Cosmochimica Acta, 265, 132–147. https://doi.org/10.1016/j.gca.2019.08.042
  • Zhang, J., Dong, H. L., Liu, D., & Agrawal, A. (2013). Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus. Geochimica et Cosmochimica Acta, 106, 203–215. https://doi.org/10.1016/j.gca.2012.12.031
  • Zhang, L. J., & Jun, Y. S. (2018). The role of Fe-bearing phyllosilicates in DTPMP degradation under high-temperature and high-pressure conditions. Environmental Science & Technology, 52(16), 9522–9530. https://doi.org/10.1021/acs.est.8b02552
  • Zhang, G. X., Senko, J. M., Kelly, S. D., Tan, H., Kemner, K. M., & Burgos, W. D. (2009). Microbial reduction of iron(III)-rich nontronite and uranium(VI). Geochimica et Cosmochimica Acta, 73(12), 3523–3538. https://doi.org/10.1016/j.gca.2009.03.030
  • Zhang, N., Tong, M., & Yuan, S. (2021b). Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions. The Science of the Total Environment, 801, 149637. https://doi.org/10.1016/j.scitotenv.2021.149637
  • Zhang, Y. T., Tong, M., Yuan, S. H., Qian, A., & Liu, H. (2020). Interplay between iron species transformation and hydroxyl radicals production in soils and sediments during anoxic-oxic cycles. Geoderma, 370, 114351. https://doi.org/10.1016/j.geoderma.2020.114351
  • Zhao, L. D., Dong, H. L., Edelmann, R. E., Zeng, Q., & Agrawal, A. (2017). Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation. Geochimica et Cosmochimica Acta, 200, 353–366. https://doi.org/10.1016/j.gca.2017.01.004
  • Zhao, L. D., Dong, H. L., Kukkadapu, R., Agrawal, A., Liu, D., Zhang, J., & Edelmann, R. E. (2013). Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp Strain 2002. Geochimica et Cosmochimica Acta, 119, 231–247. https://doi.org/10.1016/j.gca.2013.05.033
  • Zhao, L., Dong, H., Kukkadapu, R. K., Zeng, Q., Edelmann, R. E., Pentrák, M., & Agrawal, A. (2015). Biological redox cycling of iron in nontronite and its potential application in nitrate removal. Environmental Science & Technology, 49(9), 5493–5501. https://doi.org/10.1021/acs.est.5b00131
  • Zhao, S. M., Jin, Q. S., Sheng, Y. Z., Agrawal, A., Guo, D. Y., & Dong, H. L. (2020). Promotion of microbial oxidation of structural Fe(II) in nontronite by oxalate and NTA. Environmental Science & Technology, 54(20), 13026–13035. https://doi.org/10.1021/acs.est.0c03702
  • Zhao, G., Wu, B., Zheng, X., Chen, B., Kappler, A., & Chu, C. (2022). Tide-triggered production of reactive oxygen species in coastal soils. Environmental Science & Technology, 56(16), 11888–11896. https://doi.org/10.1021/acs.est.2c03142
  • Zhou, N., Kupper, R. J., Catalano, J. G., Thompson, A., & Chan, C. S. (2022). Biological oxidation of Fe(II)-bearing smectite by microaerophilic iron oxidizer sideroxydans lithotrophicus using dual Mto and Cyc2 iron oxidation pathways. Environmental Science & Technology, 56(23), 17443–17453. https://doi.org/10.1021/acs.est.2c05142
  • Zuo, H. Y., Kukkadapu, R., Zhu, Z. H., Ni, S. S., Huang, L. Q., Zeng, Q., Liu, C. X., & Dong, H. L. (2020). Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32. The Science of the Total Environment, 741, 140213. https://doi.org/10.1016/j.scitotenv.2020.140213

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.