549
Views
3
CrossRef citations to date
0
Altmetric
Invited Review

Pathogen contamination of groundwater systems and health risks

, , , , , , , , & show all
Pages 267-289 | Published online: 22 Jul 2023

References

  • Adelodun, B., Ajibade, F. O., Ighalo, J. O., Odey, G., Ibrahim, R. G., Kareem, K. Y., Bakare, H. O., Tiamiyu, A. O., Ajibade, T. F., Abdulkadir, T. S., Adeniran, K. A., & Choi, K. S. (2021). Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. Environmental Research, 192, 110309. https://doi.org/10.1016/j.envres.2020.110309
  • Akoachere, J.-F., Omam, L.-A., & Massalla, T. N. (2013). Assessment of the relationship between bacteriological quality of dug-wells, hygiene behaviour and well characteristics in two cholera endemic localities in Douala, Cameroon. BMC Public Health, 13, 692. https://doi.org/10.1186/1471-2458-13-692
  • Alegbeleye, O. O., & Sant’Ana, A. S. (2020). Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. International Journal of Hygiene and Environmental Health, 227, 113524. https://doi.org/10.1016/j.ijheh.2020.113524
  • Alvear-Daza, J. J., Sanabria, J., Gutiérrez-Zapata, H. M., & Rengifo-Herrera, J. A. (2018). An integrated drinking water production system to remove chemical and microbiological pollution from natural groundwater by a coupled prototype helio-photochemical/H2O2/rapid sand filtration/chlorination powered by photovoltaic cell. Solar Energy, 176, 581–588. https://doi.org/10.1016/j.solener.2018.10.070
  • Andreoli, F. C., & Sabogal-Paz, L. P. (2020). Household slow sand filter to treat groundwater with microbiological risks in rural communities. Water Research, 186, 116352. https://doi.org/10.1016/j.watres.2020.116352
  • Avital, G., Kuperwaser, F., Pountain, A. W., Lacey, K. A., Zwack, E. E., Podkowik, M., Shopsin, B., Torres, V. J., & Yanai, I. (2022). The tempo and mode of gene regulatory programs during bacterial infection. Cell Reports, 41(2), 111477. https://doi.org/10.1016/j.celrep.2022.111477
  • Bae, K.-S., Lee, S., Lee, J.-Y., Kim, J.-H., Joo, Y.-L., Lee, S. H., Chung, H.-M., & You, K.-A. (2022). Development of diagnostic systems for wide range and highly sensitive detection of two waterborne hepatitis viruses from groundwater using the conventional reverse transcription nested PCR assay. Journal of Virological Methods, 299, 114344. https://doi.org/10.1016/j.jviromet.2021.114344
  • Banning, N., Toze, S., & Mee, B. J. (2002). Escherichia coli survival in groundwater and effluent measured using a combination of propidium iodide and the green fluorescent protein. Journal of Applied Microbiology, 93(1), 69–76. https://doi.org/10.1046/j.1365-2672.2002.01670.x
  • Barendregt, J. J., Doi, S. A., Lee, Y. Y., Norman, R. E., & Vos, T. (2013). Meta-analysis of prevalence. Journal of Epidemiology and Community Health, 67(11), 974–978. https://doi.org/10.1136/jech-2013-203104
  • Bivins, A., Greaves, J., Fischer, R., Yinda, K. C., Ahmed, W., Kitajima, M., Munster, V. J., & Bibby, K. (2020). Persistence of SARS-CoV-2 in water and wastewater. Environmental Science & Technology Letters, 7(12), 937–942. https://doi.org/10.1021/acs.estlett.0c00730
  • Blumenthal, U. J., Fleisher, J. M., Esrey, S. A., & Peasey, A. (2001). Epidemiology: A tool for the assessment of risk (pp. 135.). Guidelines, Standards & Health.
  • Borchardt, M. A., Bradbury, K. R., Gotkow, M. B., Cherry, J. A., & Parker, B. L. (2007). Human enteric viruses in groundwater from a confined bed- rock aquifer. Environmental Science & Technology, 41(18), 6606–6612. https://doi.org/10.1021/es071110+
  • Bradford, S. A., & Harvey, R. W. (2017). Future research needs involving pathogens in groundwater. Hydrogeology Journal, 25(4), 931–938. https://doi.org/10.1007/s10040-016-1501-0
  • Bradford, S. A., Morales, V. L., Zhang, W., Harvey, R. W., Packman, A. I., Mohanram, A., & Welty, C. (2013). Transport and fate of microbial pathogens in agricultural settings. Critical Reviews in Environmental Science and Technology, 43(8), 775–893. https://doi.org/10.1080/10643389.2012.710449
  • Bradford, S. A., & Torkzaban, S. (2008). Colloid transport and retention in unsaturated porous media: A review of interface-, collector-, and pore-scale processes and models. Vadose Zone Journal, 7(2), 667–681. https://doi.org/10.2136/vzj2007.0092
  • Bradford, S. A., Torkzaban, S., & Simunek, J. (2011). Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions. Water Resources Research, 47(10), W10503. https://doi.org/10.1029/2011WR010812
  • Bradford, S. A., Wang, Y., Kim, H., Torkzaban, S., & Šimůnek, J. (2014). Modeling microorganism transport and survival in the subsurface. Journal of Environmental Quality, 43(2), 421–440. https://doi.org/10.2134/jeq2013.05.0212
  • Bradford, S. A., Wang, Y., Torkzaban, S., & Šimůnek, J. (2015). Modeling the release of E-coli D21g with transients in water content. Water Resources Research, 51(5), 3303–3316. https://doi.org/10.1002/2014WR016566
  • Brainard, J., Pond, K., & Hunter, P. R. (2017). Censored regression modeling to predict virus inactivation in wastewaters. Environmental Science & Technology, 51(3), 1795–1801. https://doi.org/10.1021/acs.est.6b05190
  • Buckerfield, S. J., Quilliam, R. S., Waldron, S., Naylor, L. A., Li, S., & Oliver, D. M. (2019). Rainfall-driven E. coli transfer to the stream-conduit network observed through increasing spatial scales in mixed land-use paddy farming karst terrain. Water Research, X5, 100038.
  • Burch, T. (2019). Validation of quantitative microbial risk assessment using epidemiological data from outbreaks of waterborne gastrointestinal disease. Risk Analysis, 39(3), 599–615. https://doi.org/10.1111/risa.13189
  • Burch, T. R., Stokdyk, J. P., Spencer, S. K., Kieke, B. A., Firnstahl, A. D., Muldoon, M. A., & Borchardt, M. A. (2021). Quantitative microbial risk assessment for contaminated private wells in the fractured dolomite aquifer of Kewaunee County, Wisconsin. Environmental Health Perspectives, 129(6), 67003. https://doi.org/10.1289/EHP7815
  • Burchi, S. (2018). Legal principles and legal frameworks related to groundwater. In K. G. Villholth. (Ed.), Advances in groundwater governance (pp. 119–136). CRC Press/Balkema.
  • Carr, V. R., & Chaguza, C. (2021). Metagenomics for surveillance of respiratory pathogens. Nature Reviews Microbiology, 19(5), 285. https://doi.org/10.1038/s41579-021-00541-8
  • Carroll, D., Daszak, P., Wolfe, N. D., Gao, G. F., Morel, C. M., Morzaria, S., Pablos-Méndez, A., Tomori, O., & Mazet, J. A. K. (2018). The global virome project. Science, 359(6378), 872–874. https://doi.org/10.1126/science.aap7463
  • Cesewski, E., & Johnson, B. N. (2020). Electrochemical biosensors for pathogen detection. Biosensors & Bioelectronics, 159, 112214. https://doi.org/10.1016/j.bios.2020.112214
  • ChangeLabSolutions. (2017). Closing the water quality gap – using policy to improve drinking water in federally-unregulated drinking water systems. ChangeLabSolutions.
  • Chen, G., & Walker, S. L. (2007). Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria. Langmuir, 23(13), 7162–7169. https://doi.org/10.1021/la0632833
  • Cheng, T., & Saiers, J. E. (2009). Mobilization and transport of in situ colloids during drainage and imbibition of partially saturated sediments. Water Resources Research, 45(8), 14. https://doi.org/10.1029/2008WR007494
  • Christian, G., & Maria, A. (2015). Groundwater ecosystem services: A review. Freshwater Science, 34, 355–367.
  • Chung, J. W., Foppen, J. W., Gerner, G., Krebs, R., & Lens, P. N. L. (2015). Removal of rotavirus and adenovirus from artificial ground water using hydrochar derived from sewage sludge. Journal of Applied Microbiology, 119(3), 876–884. https://doi.org/10.1111/jam.12863
  • Collier, S. A., Deng, L., Adam, E. A., Benedict, K. M., Beshearse, E. M., Blackstock, A. J., Bruce, B. B., Derado, G., Edens, C., Fullerton, K. E., Gargano, J. W., Geissler, A. L., Hall, A. J., Havelaar, A. H., Hill, V. R., Hoekstra, R. M., Reddy, S. C., Scallan, E., Stokes, E. K., Yoder, J. S., & Beach, M. J. (2021). Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerging Infectious Diseases, 27(1), 140–149. https://doi.org/10.3201/eid2701.190676
  • Constantino, K. E. M. (2019). Exploring groundwater viral transport: Modelling viral emissions from pit-latrines. Wageningen University.
  • Cotruvo, J. A., Dufour, A., Rees, G., Bartram, J., Carr, R., Cliver, D. O., Craun, G. F., & Gannon, V. P. J. (2013). Waterborne zoonoses – identification, causes, and control (pp. 485). World Health Organization.
  • Cui, C., Shu, W., & Li, P. (2016). Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications. Frontiers in Cell and Developmental Biolology, 4, 89.
  • Cui, Q., Huang, Y., Wang, H., & Fang, T. (2019). Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environmental Pollution, 249, 24–35. https://doi.org/10.1016/j.envpol.2019.02.094
  • Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A., Hartmann, J., & Lehner, B. (2019). Global patterns and dynamics of climate–groundwater interactions. Nature Climate Change, 9(2), 137–141. https://doi.org/10.1038/s41558-018-0386-4
  • Cutter, S. L., Solecki, W., Bragado, N., Carmin, J., Fragkias, M., Ruth, M., Wilbanks, T., et al. (2014). Urban systems, infrastructure, and vulnerability. In J. Melillo (Ed.), Climate change impacts in the United States: The third national climate assessment (pp. 282–296). U. S. Global Change Research Program.
  • Dean, K., Wissler, A., Hernandez-Suarez, J. S., Nejadhashemi, A. P., & Mitchell, J. (2020). Modeling the persistence of viruses in untreated groundwater. Science of the Total Environment, 717, 134599. https://doi.org/10.1016/j.scitotenv.2019.134599
  • Du, B., Gu, Y., Chen, G., Wang, G., & Liu, L. (2020). Flagellar motility mediates early-stage biofilm formation in oligotrophic aquatic environment. Ecotoxicology and Environmental Safety, 194, 110340. https://doi.org/10.1016/j.ecoenv.2020.110340
  • Environment Agency. (2019). Manual for the production of groundwater source protection zones. UK: Environment Agency.
  • EPA. (2001). Protocol for developing pathogen TMDLs. Office of Water, U. S. Environmental Protection Agency.
  • EPA. (2018). Edition of the drinking water standards and health advisories tables. Office of Water, U.S. Environmental Protection Agency.
  • Erostate, M., Huneau, F., Garel, E., Ghiotti, S., Vystavna, Y., Garrido, M., & Pasqualini, V. (2020). Groundwater dependent ecosystems in coastal Mediterranean regions: Characterization, challenges and management for their protection. Water Research, 172, 115461. https://doi.org/10.1016/j.watres.2019.115461
  • EU. (2021). Waste water surveillance: COVID-19. https://ec.europa.eu/environment/water/water-urbanwaste/info/index_en.htm
  • Fayer, R., et al. (2004). Waterborne zoonotic protozoa. In J. A. Cotruvo (Ed.), Waterborne zoonoses: Identification causes and control (pp. 255–282). World Health Organization, IWA Publishing.
  • Ferrara, G., & De Vanna, A. C. (2016). Fluorescence in situ hybridization for melanoma diagnosis: A review and a reappraisal. The American Journal of Dermatopathology, 38(4), 253–269. https://doi.org/10.1097/DAD.0000000000000380
  • Foddai, A. C. G., & Grant, I. R. (2020). Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Applied Microbiology and Biotechnology, 104(10), 4281–4288. https://doi.org/10.1007/s00253-020-10542-x
  • Foster, S., Gathu, J., Eichholz, M., & Hirata, R. (2020). Climate change: The utility groundwater role in supply security. The Source.
  • Franzosa, E. A., Morgan, X. C., Segata, N., Waldron, L., Reyes, J., Earl, A. M., Giannoukos, G., Boylan, M. R., Ciulla, D., Gevers, D., Izard, J., Garrett, W. S., Chan, A. T., & Huttenhower, C. (2014). Relating the metatranscriptome and metagenome of the human gut. Proceedings of the National Academy of Sciences of the United States of America, 111(22), E2329–2338. https://doi.org/10.1073/pnas.1319284111
  • Frickmann, H., Zautner, A. E., Moter, A., Kikhney, J., Hagen, R. M., Stender, H., & Poppert, S. (2017). Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: A review. Critical Reviews in Microbiology, 43(3), 263–293. https://doi.org/10.3109/1040841X.2016.1169990
  • Garibyan, L., & Avashia, N. (2013). Polymerase chain reaction. The Journal of Investigative Dermatology, 133(3), 1–4. https://doi.org/10.1038/jid.2013.1
  • Garner, E., Davis, B. C., Milligan, E., Blair, M. F., Keenum, I., Maile-Moskowitz, A., Pan, J., Gnegy, M., Liguori, K., Gupta, S., Prussin, A. J., Marr, L. C., Heath, L. S., Vikesland, P. J., Zhang, L., & Pruden, A. (2021). Next generation sequencing approaches to evaluate water and wastewater quality. Water Research, 194, 116907.
  • Genter, F., Willetts, J., & Foster, T. (2021). Faecal contamination of groundwater self-supply in low- and middle income countries: Systematic review and meta-analysis. Water Research, 201, 117350. https://doi.org/10.1016/j.watres.2021.117350
  • Gerba, C. P., Pepper, I. L., & Newby, D. T. (2015). Microbial transport in the subsurface. In I. L. Pepper, C. P. Gerba, & Terry J. Gentry (Eds.), Environmental microbiology (pp. 319–337). Elsevier.
  • Gordon, C., & Toze, S. (2003). Influence of groundwater characteristics on the survival of enteric viruses. Journal of Applied Microbiology, 95(3), 536–544. https://doi.org/10.1046/j.1365-2672.2003.02010.x
  • Gray, N. F., et al. (2014). Chapter thirty-five – filtration methods. In S. L. Percival (Ed.), Microbiology of waterborne diseases (2nd ed., pp. 631–650). Academic Press.
  • Gu, W., Deng, X., Lee, M., Sucu, Y. D., Arevalo, S., Stryke, D., Federman, S., Gopez, A., Reyes, K., Zorn, K., Sample, H., Yu, G., Ishpuniani, G., Briggs, B., Chow, E. D., Berger, A., Wilson, M. R., Wang, C., Hsu, E., … Chiu, C. Y. (2021). Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nature Medicine, 27(1), 115–124. https://doi.org/10.1038/s41591-020-1105-z
  • Hara-Kudoa, Y., Konishi, N., Ohtsukac, K., Hiramatsu, R., Tanaka, H., Konuma, H., & Takatori, K. (2008). Detection of verotoxigenic Escherichia coli O157 and O26 in food by plating methods and LAMP method: A collaborative study. International Journal of Food Microbiology, 122, 156–161.
  • Harris, R. L., Vetter, M. C. Y. L., van Heerden, E., Cason, E., Vermeulen, J. G., Taneja, A., Kieft, T. L., DeCoste, C. J., Laevsky, G. S., & Onstott, T. C. (2022). FISH-TAMB, a fixation-free mRNA fluorescent labeling technique to target transcriptionally active members in microbial communities. Microbial Ecology, 84(1), 182–197. https://doi.org/10.1007/s00248-021-01809-5
  • He, S., Huang, Y., Ma, Y., Yu, H., Pang, B., Liu, X., Yin, C., Wang, X., Wei, Y., Tian, Y., Zhao, C., Xu, K., Wang, J., Lv, C., Song, X., & Jin, M. (2022). Detection of four foodborne pathogens based on magnetic separation multiplex PCR and capillary electrophoresis. Biotechnology Journal, 17(1), 2100335. https://doi.org/10.1002/biot.202100335
  • Health Canada. (2022). Guidance on waterborne pathogens in drinking water. (Report No. H144-107/2022E-PDF). Canada Commons.
  • Helmecke, M., Fries, E., & Schulte, C. (2020). Regulating water reuse for agricultural irrigation: Risks related to organic micro-contaminants. Environmental Sciences Europe, 32(1), 4. https://doi.org/10.1186/s12302-019-0283-0
  • Hilpert, M., Rasmuson, A., & Johnson, W. P. (2017). A binomial modeling approach for upscaling colloid transport under unfavorable conditions: Emergent prediction of extended tailing. Water Resources Research, 53(7), 5626–5644. https://doi.org/10.1002/2016WR020123
  • Hornstra, L. M., Schijven, J. F., Waade, A., Prat, G. S., Smits, F. J. C., Cirkel, G., Stuyfzand, P. J., & Medema, G. J. (2018). Transport of bacteriophage MS2 and PRD1 in saturated dune sand under suboxic conditions. Water Research, 139, 158–167. https://doi.org/10.1016/j.watres.2018.03.054
  • Huang, W. E., Lim, B., Hsu, C.-C., Xiong, D., Wu, W., Yu, Y., Jia, H., Wang, Y., Zeng, Y., Ji, M., Chang, H., Zhang, X., Wang, H., & Cui, Z. (2020). RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microbial Biotechnology, 13(4), 950–961. https://doi.org/10.1111/1751-7915.13586
  • Hunt, R. J., & Johnson, W. P. (2017). Pathogen transport in groundwater systems: Contrasts with traditional solute transport. Hydrogeology Journal, 25(4), 921–930. https://doi.org/10.1007/s10040-016-1502-z
  • Hynds, P. D., Thomas, M. K., & Pintar, K. D. M. (2014). Contamination of groundwater systems in the US and Canada by enteric pathogens, 1990–2013: A review and pooled-analysis. PLOS One, 9(5), e93301. https://doi.org/10.1371/journal.pone.0093301
  • Jiang, S-c., & Bai, B. (2018). Influence of particle shape on the suspended particle transport and deposition in porous media. Rock and Soil Mechanics, 39, 2043–2051.
  • John, D. E., & Rose, J. B. (2005). Review of factors affecting microbial survival in groundwater. Environmental Science & Technology, 39(19), 7345–7356. https://doi.org/10.1021/es047995w
  • Kalhor, K., Ghasemizadeh, R., Rajic, L., & Alshawabkeh, A. (2019). Assessment of groundwater quality and remediation in karst aquifers: A review. Groundwater for Sustainable Development, 8, 104–121. https://doi.org/10.1016/j.gsd.2018.10.004
  • Khalil, I., Walker, R., K., Porter, C., Muhib, F., Chilengi, R., Cravioto, A., Guerrant, R., Svennerholm, A.-M., Qadri, F., Baqar, S., Kosek, M., Kang, G., Lanata, C., Armah, G., Wierzba, T., Hasso-Agopsowicz, M., Giersing, B., & Bourgeois, A. L. (2021). Enterotoxigenic Escherichia coli (ETEC) vaccines: Priority activities to enable product development, licensure, and global access. Vaccine, 39(31), 4266–4277. https://doi.org/10.1016/j.vaccine.2021.04.018
  • Kim, H. N., & Walker, S. L. (2009). Escherichia coli transport in porous media: Influence of cell strain, solution chemistry, and temperature. Colloids and Surfaces B Biointerfaces, 71(1), 160–167. https://doi.org/10.1016/j.colsurfb.2009.02.002
  • Knabe, D., Guadagnini, A., Riva, M., & Engelhardt, I. (2021). Uncertainty analysis and identification of key parameters controlling bacteria transport within a riverbank filtration scenario. Water Resources Research, 57(4), e2020WR027911. https://doi.org/10.1029/2020WR027911
  • Ko, K. K. K., Chng, K. R., & Nagarajan, N. (2022). Metagenomics-enabled microbial surveillance. Nature Microbiology, 7(4), 486–496. https://doi.org/10.1038/s41564-022-01089-w
  • Kovaka, S., Fan, Y., Ni, B., Timp, W., & Schatz, M. C. (2021). Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nature Biotechnology, 39(4), 431–441. https://doi.org/10.1038/s41587-020-0731-9
  • Kratochvil, C. J., Evans, L., Ribner, B. S., Lowe, J. J., Harvey, M. C., Hunt, R. C., Tumpey, A. J., Fagan, R. P., Schwedhelm, M. M., Bell, S., Maher, J., Kraft, C. S., Cagliuso, N. V., Sr., Vanairsdale, S., Vasa, A., & Smith, P. W. (2017). The National Ebola Training and Education Center: Preparing the United States for ebola and other special pathogens. Health Security, 15(3), 253–260. https://doi.org/10.1089/hs.2017.0005
  • Krauss, S., & Griebler, C. (2011). Pathogenic microorganisms and viruses in groundwater. Acatech.
  • Kumar, M., Thakur, A. K., Mazumder, P., Kuroda, K., Mohapatra, S., Rinklebe, J., Ramanathan, A., Cetecioglu, Z., Jain, S., Tyagi, V. K., Gikas, P., Chakraborty, S., Tahmidul Islam, M., Ahmad, A., Shah, A. V., Patel, A. K., Watanabe, T., Vithanage, M., Bibby, K., Kitajima, M., & Bhattacharya, P. (2020). Frontier review on the propensity and repercussion of SARS-CoV-2 migration to aquatic environment. Journal of Hazardous Materials Letters, 1, 100001. https://doi.org/10.1016/j.hazl.2020.100001
  • Kvitsand, H. M. L., Ilyas, A., & Osterhus, S. W. (2015). Rapid bacteriophage MS2 transport in an oxic sandy aquifer in cold climate: Field experiments and modeling. Water Resources Research, 51(12), 9725–9745. https://doi.org/10.1002/2015WR017863
  • Kwong, L. H., Ercumen, A., Pickering, A. J., Arsenault, J. E., Islam, M., Parvez, S. M., Unicomb, L., Rahman, M., Davis, J., & Luby, S. P. (2020). Ingestion of fecal bacteria along multiple pathways by young children in rural Bangladesh participating in a cluster-randomized trial of water, sanitation, and hygiene interventions (WASH Benefits). Environmental Science & Technology, 54(21), 13828–13838. https://doi.org/10.1021/acs.est.0c02606
  • La Rosa, G., Bonadonna, L., Lucentini, L., Kenmoe, S., & Suffredini, E. (2020). Coronavirus in water environments: Occurrence, persistence and concentration methods – A scoping review. Water Research, 179, 115899. https://doi.org/10.1016/j.watres.2020.115899
  • Lake, I. R., & Barker, G. C. (2018). Climate change, foodborne pathogens and Illness in higher-income countries. Current Environmental Health Reports, 5(1), 187–196. https://doi.org/10.1007/s40572-018-0189-9
  • Lazouskaya, V., Wang, L. P., Or, D., Wang, G., Caplan, J. L., & Jin, Y. (2013). Colloid mobilization by fluid displacement fronts in channels. Journal of Colloid and Interface Science, 406, 44–50. https://doi.org/10.1016/j.jcis.2013.05.078
  • Leidel, L., Groseclose, S. L., Burney, B., Navin, P., & Wooster, M. (2013). CDC’s Emergency Management Program activities – worldwide, 2003–2012. Morbidity and Mortality Weekly Report, 62, 709–713.
  • Levy, K., Woster, A. P., Goldstein, R. S., & Carlton, E. J. (2016). Untangling the impacts of climate change on waterborne diseases: A systematic review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environmental Science & Technology, 50(10), 4905–4922. https://doi.org/10.1021/acs.est.5b06186
  • Li, P., Niu, W., Li, H., Lei, H., Liu, W., Zhao, X., Guo, L., Zou, D., Yuan, X., Liu, H., Yuan, J., & Bai, C. (2015). Rapid detection of Acinetobacter baumannii and molecular epidemiology of carbapenem-resistant A. baumannii in two comprehensive hospitals of Beijing, China. Frontiers in Microbiology, 6, 997. https://doi.org/10.3389/fmicb.2015.00997
  • Lu, X., Lee Yu, H., Lin, H., Cao, Y., & Hsing, I. M. (2022). Rapid and highly specific detection of communicable pathogens using one-pot loop probe-mediated isothermal amplification (oLAMP). Sensors and Actuators B Chemical, 357, 131385. https://doi.org/10.1016/j.snb.2022.131385
  • Masciopinto, C., De Giglio, O., Scrascia, M., Fortunato, F., La Rosa, G., Suffredini, E., Pazzani, C., Prato, R., & Montagna, M. T. (2019). Human health risk assessment for the occurrence of enteric viruses in drinking water from wells: Role of flood runoff injections. The Science of the Total Environment, 666, 559–571. https://doi.org/10.1016/j.scitotenv.2019.02.107
  • Mechlem, K. (2016). Groundwater governance: The role of legal frameworks at the local and national level – Established practice and emerging trends. Water, 8(8), 347. https://doi.org/10.3390/w8080347
  • Morsi, R. E., Alsabagh, A. M., Nasr, S. A., & Zaki, M. M. (2017). Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics. International Journal of Biological Macromolecules, 97, 264–269. https://doi.org/10.1016/j.ijbiomac.2017.01.032
  • Mukherjee, M., Hu, Y., Tan, C. H., Rice, S. A., & Cao, B. (2018). Engineering a light-responsive, quorum quenching biofilm to mitigate biofouling on water purification membranes. Science Advances, 4(12), eaau1459. https://doi.org/10.1126/sciadv.aau1459
  • Murphy, H. M., Prioleau, M. D., Borchardt, M. A., & Hynds, P. D. (2017). Review: Epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeol Journal, 25, 981–1001.
  • Murphy, H. M., Thomas, M. K., Schmidt, P. J., Medeiros, D. T., Mc, F. S., & Pintar, K. D. (2016). Estimating the burden of acute gastrointestinal illness due to Giardia, Cryptosporidium, Campylobacter, E. coli O157 and norovirus associated with private wells and small water systems in Canada. Epidemiology and Infection, 144(7), 1355–1370. https://doi.org/10.1017/S0950268815002071
  • Murray, R. T., Cruz-Cano, R., Nasko, D., Blythe, D., Ryan, P., Boyle, M. M., Wilson, S. M., & Sapkota, A. R. (2020). Association between private drinking water wells and the incidence of Campylobacteriosis in Maryland: An ecological analysis using Foodborne Diseases Active Surveillance Network (FoodNet) data (2007–2016). Environmental Research, 188, 109773. https://doi.org/10.1016/j.envres.2020.109773
  • Naddeo, V., & Liu, H. (2020). Editorial perspectives: 2019 novel coronavirus (SARS-COV-2): what is its fate in urban water cycle and how can the water research community respond? Environmental Science, 6(5), 1213–1216. https://doi.org/10.1039/D0EW90015J
  • Nisa, I., Qasim, M., Driessen, A., Nijland, J., Bari, F., Haroon, M., Rahman, H., Yasin, N., Khan, T. A., Hussain, M., & Ullah, W. (2020). Molecular epidemiology of Shigella flexneri isolated from pediatrics in a diarrhea-endemic area of Khyber Pakhtunkhwa, Pakistan. European Journal of Clinical Microbiology & Infectious Diseases, 39(5), 971–985. https://doi.org/10.1007/s10096-020-03811-0
  • O’Connor, D. R. (2002). Report of the walkerton inquiry: The events of May 2000 and related issues.
  • Ojha, A. (2020). Nanomaterials for removal of waterborne pathogens: Opportunities and challenges. In V. Prasad (Ed.), Waterborne Pathogens (pp. 385–432). Butterworth-Heinemann.
  • Oliva, G., Sahr, T., & Buchrieser, C. (2018). The life cycle of L. pneumophila: Cellular differentiation is linked to virulence and metabolism. Frontiers in Cellular and Infection Microbiology, 8, 3. https://doi.org/10.3389/fcimb.2018.00003
  • Omarova, A., Tussupova, K., Berndtsson, R., Kalishev, M., & Sharapatova, K. (2018). Protozoan parasites in drinking water: A system approach for improved water, sanitation and hygiene in developing countries. International Journal of Environmental Research and Public Health, 15, 495. https://doi.org/10.3390/ijerph15030495
  • Oudega, T. J., Lindner, G., Derx, J., Farnleitner, A. H., Sommer, R., Blaschke, A. P., & Stevenson, M. E. (2021). Upscaling transport of Bacillus subtilis endospores and Coliphage phiX174 in heterogeneous porous media from the column to the field scale. Environmental Science & Technology, 55(16), 11060–11069. https://doi.org/10.1021/acs.est.1c01892
  • Palatnick, A., Zhou, B., Ghedin, E., & Schatz, M. C. (2020). iGenomics: Comprehensive DNA sequence analysis on your smartphone. GigaScience, 9, giaa138. https://doi.org/10.1093/gigascience/giaa138
  • Rusiñol, M., Hundesa, A., Cárdenas-Youngs, Y., Fernández-Bravo, A., Pérez-Cataluña, A., Moreno-Mesonero, L., Moreno, Y., Calvo, M., Alonso, J. L., Figueras, M. J., Araujo, R., Bofill-Mas, S., & Girones, R. (2020). Microbiological contamination of conventional and reclaimed irrigation water: Evaluation and management measures. The Science of the Total Environment, 710, 136298. https://doi.org/10.1016/j.scitotenv.2019.136298
  • Ryan, E. M., & Tartakovsky, A. M. (2011). A hybrid micro-scale model for transport in connected macro-pores in porous media. Journal of Contaminant Hydrology, 126(1–2), 61–71. https://doi.org/10.1016/j.jconhyd.2011.06.005
  • Saxena, S., & Den, W. (2022). In situ treatment technologies for pit latrines to mitigate groundwater contamination by fecal pathogens: A review of recent technical advances. Journal of Water, Sanitation and Hygiene for Development, 12(1), 102–115. https://doi.org/10.2166/washdev.2021.184
  • Schijven, J. F., Sadeghi, G., & Hassanizadeh, S. M. (2016). Long-term inactivation of bacteriophage PRD1 as a function of temperature, pH, sodium and calcium concentration. Water Research, 103, 66–73. https://doi.org/10.1016/j.watres.2016.07.010
  • Sidhu, J., & Toze, S. (2012). Assessment of pathogen survival potential during managed aquifer recharge with diffusion chambers. Journal of Applied Microbiology, 113(3), 693–700. https://doi.org/10.1111/j.1365-2672.2012.05360.x
  • Simpson, M. W. M., Allen, D. M., & Journeay, M. M. (2014). Assessing risk to groundwater quality using an integrated risk framework. Environmental Earth Sciences, 71(11), 4939–4956. https://doi.org/10.1007/s12665-013-2886-x
  • Sorensen, J., P. R., Aldous, P., Bunting, S. Y., McNally, S., Townsend, B. R., Barnett, M. J., Harding, T., La Ragione, R. M., Stuart, M. E., Tipper, H. J., & Pedley, S. (2021). Seasonality of enteric viruses in groundwater-derived public water sources. Water Research, 207, 117813. https://doi.org/10.1016/j.watres.2021.117813
  • Spatola Rossi, C., Coulon, F., Ma, S., Zhang, Y. S., & Yang, Z. (2023). Microfluidics for rapid detection of live pathogens. Advanced Functional Materials, 33(21), 2212081. https://doi.org/10.1002/adfm.202212081
  • Stokdyk, J. P., Firnstahl, A. D., Walsh, J. F., Spencer, S. K., de Lambert, J. R., Anderson, A. C., Rezania, L. W., Kieke, B. A., Jr., & Borchardt, M. A. (2020). Viral, bacterial, and protozoan pathogens and fecal markers in wells supplying groundwater to public water systems in Minnesota, USA. Water Research, 178, 115814. https://doi.org/10.1016/j.watres.2020.115814
  • Taylor, R., Cronin, A., Pedley, S., Barker, J., & Atkinson, T. (2004). The implications of groundwater velocity variations on microbial transport and wellhead protection–review of field evidence. FEMS Microbiology Ecology, 49(1), 17–26. https://doi.org/10.1016/j.femsec.2004.02.018
  • Texas Commisson on Environmental Quaility. (2022). Groundwater rule – Texas Commission on Environmental Quality. www.tceq.texas.gov
  • Tortorello, M. L. (2003). Indicator organisms for safety and quality—uses and methods for detection: minireview. Journal of AOAC International, 86(6), 1208–1217. https://doi.org/10.1093/jaoac/86.6.1208
  • Tufenkji, N. (2007). Colloid and microbe migration in granular environments: A discussion of modelling methods. In F. H. Frimmel, F. Von Der Kammer, & H. C. Flemming (Eds.), Colloidal transport in porous (pp. 119–142). Springer.
  • United Nations. (2022). The United Nations world water development report: Groundwater: Making the invisible visible. UNESCO.
  • U. S. EPA. (2015). The revised total coliform rule: A guide for small public water systems. U. S. Department of Environmental Protection Agency.
  • Váradi, L., Luo, J. L., Hibbs, D. E., Perry, J. D., Anderson, R. J., Orenga, S., & Groundwater, P. W. (2017). Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chemical Society Reviews, 46(16), 4818–4832. https://doi.org/10.1039/c6cs00693k
  • Venugopal, A., Ganesan, H., Sudalaimuthu Raja, S. S., Govindasamy, V., Arunachalam, M., Narayanasamy, A., Sivaprakash, P., Rahman, P., Gopalakrishnan, A. V., Siama, Z., & Vellingiri, B. (2020). Novel wastewater surveillance strategy for early detection of coronavirus disease 2019 hotspots. Current Opinion in Environmental Science & Health, 17, 8–13. https://doi.org/10.1016/j.coesh.2020.05.003
  • Vidic, J., & Manzano, M. (2021). Electrochemical biosensors for rapid pathogen detection. Current Opinion in Electrochemistry, 29, 100750. https://doi.org/10.1016/j.coelec.2021.100750
  • Vries, H., Kleibusch, E., Hermes, G. D. A., Brink, P., & Plugge, C. M. (2021). Biofouling control: The impact of biofilm dispersal and membrane flushing. Water Research, 198, 117163. https://doi.org/10.1016/j.watres.2021.117163
  • Wan, K., Zheng, S., Ye, C., Hu, D., Zhang, Y., Dao, H., Chen, S., & Yu, X. (2021). Ancient oriental wisdom still works: Removing ARGs in drinking water by boiling as compared to chlorination. Water Research, 209, 117902. https://doi.org/10.1016/j.watres.2021.117902
  • Wan Rosely, W. I. H., & Voulvoulis, N. (2022). Systems thinking for the sustainability transformation of urban water systems. Reviews in Environmental Science and Technology, 1, 1064–3389.
  • Wang, C. Z., Wang, R. Y., Huo, Z. L., Xie, E., & Dahlke, H. E. (2020). Colloid transport through soil and other porous media under transient flow conditions-A review. Wiley Interdisciplinary Reviews-Water, 7, 33.
  • Wang, Y., Yuan, S., Shi, J., Ma, T., Xie, X., Deng, Y., Du, Y., Gan, Y., Guo, Z., Dong, Y., Zheng, C., & Jiang, G. (2023). Groundwater quality and health: Making the invisible visible. Environmental Science & Technology, 57(13), 5125–5136. https://doi.org/10.1021/acs.est.2c08061
  • Weiskerger, C. J., Brandao, J., Ahmed, W., Aslan, A., Avolio, L., Badgley, B. D., Boehm, A. B., Edge, T. A., Fleisher, J. M., Heaney, C. D., Jordao, L., Kinzelman, J. L., Klaus, J. S., Kleinheinz, G. T., Nshimyimana, J. P., Phanikumar, M. S., Piggot, A. M., Robinson, C., Sadowsky, M. J., … Harwood, V. J. (2019). Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Research, 162, 456–470. https://doi.org/10.1016/j.watres.2019.07.006
  • WHO. (2006). Meeting the MDG drinking water and sanitation target: The urban and rural challenge of the decade. World Health Organization.
  • WHO. (2016). Quantitative microbial risk assessment: Application for water safety management. World Health Organization.
  • WHO. (2017a). Microbial fact sheets. In Guidelines for drinking-water quality: Fourth edition with incorporating the first addendum. World Health Organization.
  • WHO. (2017b). Protecting groundwater for health: Managing the quality of drinking-water sources. IWA Publishing.
  • WHO. (2019). Surveillance and outbreak management of water-related infectious diseases associated with water-supply systems. World Health Organization.
  • WHO. (2022). Guidelines for drinking‑water quality: Fourth edition incorporating the first and second addenda. World Health Organization.
  • WHO, JPM, & UNICEF. (2017). Progress on drinking water, sanitation and hygiene: 2017 Update and SDG baselines. World Health Organization.
  • WHO & UNICEF. (2019). Joint monitoring programme for water supply, sanitation and hygiene: estimates on the use of water, sanitation and hygiene by country (2000–2017). World Health Organization.
  • Wisconsin Department of Health Services. (2022). Bacteria (E. coli) 2019. In Recommended public health groundwater quality standards-scientific support documents for cycle 10 substances (pp. 166–186). Wisconsin Department of Health Service.
  • World Bank Group. (2017). Reducing inequalities in water supply, sanitation, and hygiene in the era of the sustainable development goals. Synthesis report of the WASH poverty diagnostic initiative. World Bank.
  • Xu, C., Akakuru, O. U., Zheng, J., & Wu, A. (2019). Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Frontiers in Bioengineering and Biotechnology, 7, 141. https://doi.org/10.3389/fbioe.2019.00141
  • Yang, M., Liu, X., Luo, Y., Pearlstein, A. J., Wang, S., Dillow, H., Reed, K., Jia, Z., Sharma, A., Zhou, B., Pearlstein, D., Yu, H., & Zhang, B. (2021). Machine learning-enabled non-destructive paper chromogenic array detection of multiplexed viable pathogens on food. Nature Food, 2(2), 110–117. https://doi.org/10.1038/s43016-021-00229-5
  • Ye, Y. (2018). The detection and fate of enveloped viruses in water environments (pp. 132). University of Michigan.
  • You, J., Wang, L., Zhao, Y., & Bao, W. (2021). A review of amino-functionalized magnetic nanoparticles for water treatment: Features and prospects. Journal of Cleaner Production, 281, 124668. https://doi.org/10.1016/j.jclepro.2020.124668
  • Yuan, H., & Shapiro, A. A. (2011). A mathematical model for non-monotonic deposition profiles in deep bed filtration systems. Chemical Engineering Journal, 166(1), 105–115. https://doi.org/10.1016/j.cej.2010.10.036
  • Zhang, W., Chai, J., Li, S., Wang, X., Wu, S., Liang, Z., Baloch, M. Y. J., Silva, L. F., & Zhang, D. (2022). Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: What we know or not? Geoscience Frontiers, 13(6), 101346. https://doi.org/10.1016/j.gsf.2021.101346
  • Zhong, H., Jiang, Y., Zeng, G., Liu, Z., Liu, L., Liu, Y., Yang, X., Lai, M., & He, Y. (2015). Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces. Journal of Hazardous Materials, 285, 383–388. https://doi.org/10.1016/j.jhazmat.2014.11.050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.