578
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

A review on emerging homojunction photocatalysts with impressive performances for wastewater detoxification

ORCID Icon &
Pages 290-320 | Published online: 01 Aug 2023

References

  • Ai, L., Jia, D., Guo, N., Xu, M., Zhang, S., Wang, L., & Jia, L. (2020). Cl-doped Bi2S3 homojunction nanorods with rich-defects for collaboratively boosting photocatalyticreduction performance. Applied Surface Science, 529, 147002. https://doi.org/10.1016/j.apsusc.2020.147002
  • Ajma, Z., Ul Haq, M., Naciri, Y., Djellabi, R., Hassan, N., Zaman, S., Murtaza, A., Kumar, A., Al-Sehemi, A. G., Algarni, H., Al-Hartomy, A. O., Dong, R., Hayat, A., & Qadeer, A. (2022). Recent advancement in conjugated polymers based photocatalytic technology forair pollutants abatement: Cases of CO2, NOx, and VOCs. Chemosphere, 308(Pt 2), 136358. https://doi.org/10.1016/j.chemosphere.2022.136358
  • Akhundi, A., Badiei, A., Ziarani, G. M., Habibi-Yangjeh, A., Munoz-Batista, M. J., & Luque, R. (2020). Graphitic carbon nitride-based photocatalysts: Toward efficient organictransformation for value-added chemicals production. Molecular Catalysis, 488, 110902. https://doi.org/10.1016/j.mcat.2020.110902
  • Akhundi, A., Zaker Moshfegh, A., Habibi-Yangjeh, A., & Sillanpää, M. (2022). Simultaneousdual-functional photocatalysis by g-C3N4-based nanostructures. ACS ES&T Engineering, 2(4), 564–585. https://doi.org/10.1021/acsestengg.1c00346
  • Ba, G., Liang, Z., Li, H., Du, N., Liu, J., & Hou, W. (2019). Simultaneous formation ofmesopores and homojunctions in graphite carbon nitride with enhanced optical absorption,charge separation and photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 253, 359–368. https://doi.org/10.1016/j.apcatb.2019.04.084
  • Balakrishnan, A., Chinthala, M., Polagani, R. K., & Vo, D. V. N. (2023). Removal oftetracycline from wastewater using g-C3N4 based photocatalysts: A review. Environmental Research, 216(Pt 3), 114660. https://doi.org/10.1016/j.envres.2022.114660
  • Bao, Y., Song, S., Yao, G., & Jiang, S. (2021). S-scheme photocatalytic systems. Solar RRL, 5(7), 2100118. https://doi.org/10.1002/solr.202100118
  • Cao, J., Pan, C., Ding, Y., Li, W., Lv, K., & Tang, H. (2019). Constructing nitrogen vacancyintroduced g-C3N4 pn homojunction for enhanced photocatalytic activity. Journal of Environmental Chemical Engineering, 7(2), 102984. https://doi.org/10.1016/j.jece.2019.102984
  • Chang, C., Kan, L., Mu, W., Wang, Q., & Lu, S. Y. (2022). Tetragonal/orthorhombic-bismuthtungstate homojunction formed through in situ bismuth induced phase transformation ashighly efficient photocatalyst for pollutant degradation. Journal of Colloid and Interface Science, 607(Pt 1), 269–280. https://doi.org/10.1016/j.jcis.2021.08.167
  • Cheng, X., Shang, Y., Cui, Y., Shi, R., Zhu, Y., & Yang, P. (2020). Enhancedphotoelectrochemical and photocatalytic properties of anatase-TiO2 (B) nanobeltsdecorated with CdS nanoparticles. Solid State Sciences, 99, 106075. https://doi.org/10.1016/j.solidstatesciences.2019.106075
  • Chen, J., Guan, M., Zhang, X., & Gong, X. (2019). Insights into a rutile/brookitehomojunction of titanium dioxide: Separated reactive sites and boosted photocatalyticactivity. RSC Advances, 9(63), 36615–36620. https://doi.org/10.1039/C9RA07483J
  • Chen, T., Liu, T., Zhou, L., Li, M., Meng, Q., Yu, K., Lian, J., & Zhu, W. (2022b). Ternaryboron carbon nitrides hollow nanotubes with tunable pn homojunction for photo-assisteduranium extraction: A combined batch, EXAFS and DFT calculations. Applied Catalysis B: Environmental, 318, 121815. https://doi.org/10.1016/j.apcatb.2022.121815
  • Chen, L., Wang, X., Rao, Z., Tang, Z., Shi, G., Wang, Y., Lu, G., Xie, X., Chen, D., & Sun, J. (2022a). One-pot synthesis of the MIL-100 (Fe) MOF/MOX homojunctions with tunablehierarchical pores for the photocatalytic removal of BTXS. Applied Catalysis B: Environmental, 303, 120885. https://doi.org/10.1016/j.apcatb.2021.120885
  • Cui, Z., Zeng, D., Tang, T., Liu, J., & Xie, C. (2010). Enhanced visible light photocatalyticactivity of QDS modified Bi2WO6 nanostructures. Catalysis Communications, 11(13), 1054–1057. https://doi.org/10.1016/j.catcom.2010.05.010
  • Ding, W., Zhang, X., Liu, X., Lu, Q., Wei, M., & Pang, Y. (2021). Structural phase-transitionin CeVO4 nanobelts by P-doping enables better levofloxacin photocatalysis. Journal of Environmental Chemical Engineering, 9(5), 105985. https://doi.org/10.1016/j.jece.2021.105985
  • Domínguez-Espíndola, R. B., Arias, D. M., Rodriguez-Gonzalez, C., & Sebastian, P. J. (2022). A critical review on advances in TiO2-based photocatalytic systems for CO2reduction. Applied Thermal Engineering, 216, 119009. https://doi.org/10.1016/j.applthermaleng.2022.119009
  • Duan, Y., Liang, L., Lv, K., Li, Q., & Li, M. (2018). TiO2 faceted nanocrystals on thenanofibers: Homojunction TiO2 based Z-scheme photocatalyst for air purification. Applied Surface Science, 456, 817–826. https://doi.org/10.1016/j.apsusc.2018.06.128
  • Feng, C., Tang, L., Deng, Y., Wang, J., Tang, W., Liu, Y., Chen, Z., Yu, J., Wang, J., & Liang, Q. (2020). Synthesis of branched WO3@W18O49 homojunction with enhancedinterfacial charge separation and full-spectrum photocatalytic performance. Chemical Engineering Journal, 389, 124474. https://doi.org/10.1016/j.cej.2020.124474
  • Gopinath, K. P., Madhav, N. V., Krishnan, A., Malolan, R., & Rangarajan, G. (2020). Presentapplications of titanium dioxide for the photocatalytic removal of pollutants from water: Areview. Journal of Environmental Management, 270, 110906. https://doi.org/10.1016/j.jenvman.2020.110906
  • Guan, X., Zong, S., & Shen, S. (2022). Homojunction photocatalysts for water splitting. NanoResearch, 15(12), 10171–10184. https://doi.org/10.1007/s12274-022-4704-9
  • Guo, Y., Huang, S., Guo, Y., Ye, Z., Nan, J., Zhou, Q., & Zhu, Y. (2022a). Efficientdegradation of organic pollutants by enhanced interfacial internal electric field induced viavarious crystallinity carbon nitride homojunction. Applied Catalysis B: Environmental, 312, 121388. https://doi.org/10.1016/j.apcatb.2022.121388
  • Guo, Y., Wang, P., Qian, J., Hou, J., Ao, Y., & Wang, C. (2018). Construction of a compositephotocatalyst with significantly enhanced photocatalytic performance through combinationof homo-junction with hetero-junction. Catalysis Science & Technology, 8(2), 486–498. https://doi.org/10.1039/C7CY02027A
  • Guo, Y., Wen, H., Zhong, T., Huang, H., & Lin, Z., 6. (2022b). Core-shell-like BiOBr@BiOBrhomojunction for enhanced photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 644, 128829. https://doi.org/10.1016/j.colsurfa.2022.128829
  • He, B., Feng, M., Chen, X., Cui, Y., Zhao, D., & Sun, J. (2022). Fabrication of potassium iondecorated 1D/2D g-C3N4/g-C3N4 homojunction enabled by dual-ions synergistic strategyfor enhanced photocatalytic activity towards degradation of organic pollutants. Applied Surface Science, 575, 151695. https://doi.org/10.1016/j.apsusc.2021.151695
  • He, H., Huang, X., Liu, C., Li, D., Chen, S., Yan, Z., & Liu, Y. (2023). Internal electric fielddriven BiOBr homojunction to accelerate O2 reduction reaction for the photodegradation oftetracycline. Applied Surface Science, 610, 155493. https://doi.org/10.1016/j.apsusc.2022.155493
  • Hou, J., Sapnik, A. F., & Bennett, T. D. (2020). Metal–organic framework gels andmonoliths. Chemical Science, 11(2), 310–323. https://doi.org/10.1039/C9SC04961D
  • Hu, X., Yu, Y., Chen, D., Xu, W., Fang, J., Liu, Z., Li, R., Yao, L., Qin, J., & Fang, Z. (2022). Anatase/Rutile homojunction quantum dots anchored on g-C3N4 nanosheets for antibioticsdegradation in seawater matrice via coupled adsorption-photocatalysis: Mechanism insightand toxicity evaluation. Chemical Engineering Journal, 432, 134375. https://doi.org/10.1016/j.cej.2021.134375
  • Jeon, J. P., Kweon, D. H., Jang, B. J., Ju, M. J., & Baek, J. B. (2020). Enhancing thephotocatalytic activity of TiO2 catalysts. Advanced Sustainable Systems, 4(12), 2000197. https://doi.org/10.1002/adsu.202000197
  • Ji, M., Di, J., Zhao, J., Chen, C., Zhang, Y., Liu, Z., Li, H., Xia, J., He, M., & Li, H. (2022). Orientated dominating charge separation via crystal facet homojunction inserted intoBiOBr for solar-driven CO2 conversion. Journal of CO2 Utilization, 59, 101957. https://doi.org/10.1016/j.jcou.2022.101957
  • Jiang, J., Xiong, Z., Wang, H., Liao, G., Bai, S., Zou, J., Wu, P., Zhang, P., & Li, X. (2022). Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2evolution. Journal of Materials Science & Technology, 118, 15–24. https://doi.org/10.1016/j.jmst.2021.12.018
  • Kallawar, G. A., Barai, D. P., & Bhanvase, B. A. (2021). Bismuth titanate basedphotocatalysts for degradation of persistent organic compounds in wastewater: Acomprehensive review on synthesis methods, performance as photocatalyst anchallenges. Journal of Cleaner Production, 318, 128563. https://doi.org/10.1016/j.jclepro.2021.128563
  • Kang, X., Dong, G., & Dong, T. (2023). Oxygen vacancy defect engineering of heterophasejunction TiO2: Interfacial/surface oxygen vacancies coadjust the photocatalytic ROSproduction. ACS Applied Energy Materials, 6(2), 1025–1036. https://doi.org/10.1021/acsaem.2c03535
  • Kong, Y., Sun, H., Zhao, X., Gao, B., & Fan, W. (2015). Fabrication of hexagonal/cubictungsten oxide homojunction with improved photocatalytic activity. Applied Catalysis A: General, 505, 447–455. https://doi.org/10.1016/j.apcata.2015.05.015
  • Kumar, A., Khosla, A., Sharma, S. K., Dhiman, P., Sharma, G., Gnanasekaran, L., Naushad, M., Stadler, F. J., & Stadler, F. J. (2023). A review on S-scheme and dual S-schemeheterojunctions for photocatalytic hydrogen evolution, water detoxification and CO2reduction. Fuel, 333, 126267. https://doi.org/10.1016/j.fuel.2022.126267
  • Lee, J., Li, Z., Zhu, L., Xie, S., & Cui, X. (2018). Ti3+ self-doped TiO2 via facile catalytic reduction over Al(acac)3 with enhanced photoelectrochemical and photocatalyticactivities. Applied Catalysis B: Environmental, 224, 715–724. https://doi.org/10.1016/j.apcatb.2017.10.057
  • Liao, Y., Wang, G., Wang, J., Wang, K., Yan, S., & Su, Y. (2021). Nitrogen vacancy inducedin situ g-C3N4 pn homojunction for boosting visible light-driven hydrogenevolution. Journal of Colloid and Interface Science, 587, 110–120. https://doi.org/10.1016/j.jcis.2020.12.009
  • Li, C., Song, T., Xie, C., Shi, W., Wang, D., & Yang, P. (2023a). Two-step polymerizationnanoarchitectonics for superior thin g-C3N4 nanosheets with modulated band gap andenhanced photo-and electro-chemical performance. International Journal of Hydrogen Energy, 48(7), 2677–2688. https://doi.org/10.1016/j.ijhydene.2022.10.171
  • Li, L., Gao, D., Chen, F., Wang, X., & Yu, H. (2023b). Amorphization-crystallizationsynergism on MoSx homojunction for boosting photocatalytic H2 production of TiO2 inalkaline medium. Applied Surface Science, 608, 155173. https://doi.org/10.1016/j.apsusc.2022.155173
  • Li, J., Liu, X., Che, H., Liu, C., & Li, C. (2021). Facile construction of O-dopedcrystalline/non-crystalline g-C3N4 embedded nano-homojunction for efficientlyphotocatalytic H2 evolution. Carbon, 172, 602–612. https://doi.org/10.1016/j.carbon.2020.10.051
  • Lin, D., Gao, M., You, L., Li, Y., Li, Z., Guo, L., Li, T., & Liu, M. (2020). Fabrication ofnovel Ag/AgVO3/WO3 homojunction/heterojunction nanomaterials with highly enhancedphotocatalytic activity-Investigation on type I plus Z-scheme mechanism. Journal of Alloys and Compounds, 846, 156274. https://doi.org/10.1016/j.jallcom.2020.156274
  • Liu, Y., Chen, C., He, Y., Zhang, Z., Li, M., Li, C., Li, C., Chen, X. B., Han, Y., & Shi, Z. (2022a). Rich Indium-Vacancies In2S3 with Atomic p–n Homojunction for BoostingPhotocatalytic Multifunctional Properties. Small (Weinheim an Der Bergstrasse, Germany), 18(34), e2201556. https://doi.org/10.1002/smll.202201556
  • Liu, C., Dong, X., Hao, Y., Wang, X., Ma, H., & Zhang, X. (2017). A novel supramolecularpreorganization route for improving gC3N4/gC3N4 metal-free homojunctionphotocatalysis. New Journal of Chemistry, 41(20), 11872–11880. https://doi.org/10.1039/C7NJ02639K
  • Liu, Y., Gong, Y., Cui, X., Yu, H., Qin, W., Cui, X., & Huo, M. (2022b). Synthesis of O-doped C3N4 decorated with C3N4 quantum dots: Construction of a homo junctionphotocatalyst for the enhanced photocatalytic degradation of tetracycline. Journal of the Taiwan Institute of Chemical Engineers, 138, 104457. https://doi.org/10.1016/j.jtice.2022.104457
  • Liu, Z., Wang, G., Chen, H. S., & Yang, P. (2018). An amorphous/crystalline gC3N4homojunction for visible light photocatalysis reactions with superior activity. Chemical Communications (Cambridge, England), 54(37), 4720–4723. https://doi.org/10.1039/C8CC01824C
  • Liu, C., Xiao, H., Liu, Y., Li, D., He, H., Huang, X., Shen, W., Yan, Z., Dang, Z., & Zhu, R. (2023). Internal electric field induced photocarriers separation of nickel-doped pyrite/pyritehomojunction with rich sulfur vacancies for superior Cr (VI) reduction. Journal of Colloid and Interface Science, 629(Pt B), 847–858. https://doi.org/10.1016/j.jcis.2022.09.129
  • Li, J., Zhou, J., Hao, H., Li, W., & Liu, G. (2017). Exposed specific (040) and (110) facets ofBiVO4 modified with Bi2WO6 nanoparticles for enhanced photocatalyticperformance. New Journal of Chemistry, 41(14), 6922–6927. https://doi.org/10.1039/C7NJ01278K
  • Lv, C., Chen, G., Zhou, X., Zhang, C., Wang, Z., Zhao, B., & Li, D. (2017). Oxygen-inducedBi5+-self-doped Bi4V2O11 with ap–n homojunction toward promoting the photocatalyticperformance. ACS Applied Materials & Interfaces, 9(28), 23748–23755. https://doi.org/10.1021/acsami.7b05302
  • Lyu, J., Gao, J., Zhang, M., Fu, Q., Sun, L., Hu, S., Zhong, J., Wang, S., & Li, J. (2017). Construction of homojunction-adsorption layer on anatase TiO2 to improve photocatalyticmineralization of volatile organic compounds. Applied Catalysis B: Environmental, 202, 664–670. https://doi.org/10.1016/j.apcatb.2016.09.041
  • Ma, P., Zhang, X., Wang, C., Wang, Z., Wang, K., Feng, Y., Wang, J., Zhai, Y., Deng, J., Wang, L., & Zheng, K. (2022). Band alignment of homojunction by anchoring CNquantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxideevolution. Applied Catalysis B: Environmental, 300, 120736. https://doi.org/10.1016/j.apcatb.2021.120736
  • Manna, S., Remya, N., & Singhal, N. (2023). Advancements in S-scheme photocatalyticmaterial for wastewater treatment. Journal of Environmental Chemical Engineering, 11(3), 109838. https://doi.org/10.1016/j.jece.2023.109838
  • Meng, M., Wang, L., Li, C., Xu, K., Chen, Y., Li, J., Gan, Z., Yuan, H., Liu, L., & Li, J. (2023). Boosting charge separation on epitaxial In2O3 octahedron-nanowire crystal facet-based homojunctions for robust photoelectrochemical water splitting. Applied Catalysis B: Environmental, 321, 122071. https://doi.org/10.1016/j.apcatb.2022.122071
  • Meng, Q., Zhou, Y., Chen, G., Hu, Y., Lv, C., Qiang, L., & Xing, W. (2018). Integrating bothhomojunction and heterojunction in QDs self-decorated Bi2MoO6/BCN composites toachieve an efficient photocatalyst for Cr (VI) reduction. Chemical Engineering Journal, 334, 334–343. https://doi.org/10.1016/j.cej.2017.07.134
  • Miao, Z., Wang, G., Li, L., Wang, C., & Zhang, X. (2019). Fabrication of black TiO2/TiO2homojunction for enhanced photocatalytic degradation. Journal of Materials Science, 54(23), 14320–14329. https://doi.org/10.1007/s10853-019-03900-2
  • Mirzaei, A., Eddah, M., Roualdès, S., Ma, D., & Chaker, M. (2021). Multiple-homojunctiongradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole,degradation mechanism, and toxicity assessment. Chemical Engineering Journal, 422, 130507. https://doi.org/10.1016/j.cej.2021.130507
  • Mu, R., Ao, Y., Wu, T., Wang, C., & Wang, P. (2020). Synthesis of novel ternaryheterogeneous anatase-TiO2 (B) biphase nanowires/Bi4O5I2 composite photocatalysts forthe highly efficient degradation of acetaminophen under visible light irradiation. Journal of Hazardous Materials, 382, 121083.https://doi.org/10.1016/j.jhazmat.2019.121083
  • Mustafa, B., Mehmood, T., Wang, Z., Chofreh, A. G., Shen, A., Yang, B., Yuan, J., Wu, C., Liu, Y., Lu, W., Hu, W., Wang, L., & Yu, G. (2022). Next-generation graphene oxideadditives composite membranes for emerging organic micropollutants removal: Separation,adsorption and degradation. Chemosphere, 308(Pt 3), 136333. https://doi.org/10.1016/j.chemosphere.2022.136333
  • Naghdi, S., Shahrestani, M. M., Zendehbad, M., Djahaniani, H., Kazemian, H., & Eder, D. (2023). Recent advances in application of metal-organic frameworks (MOFs) as adsorbentand catalyst in removal of persistent organic pollutants (POPs). Journal of Hazardous Materials, 442, 130127. https://doi.org/10.1016/j.jhazmat.2022.130127
  • Phang, S. J., Goh, J. M., Tan, L. L., Lee, W. P. C., Ong, W. J., & Chai, S. P. (2021a). Metal-free n/n–junctioned graphitic carbon nitride (gC3N4): A study to elucidate its charge transfermechanism and application for environmental remediation. Environmental Science and Pollution Research International, 28(4), 4388–4403. https://doi.org/10.1007/s11356-020-10814-z
  • Phang, S. J., Lee, J., Wong, V. L., Tan, L. L., & Chai, S. P. (2022). Synergistic effects of thehybridization between boron-doped carbon quantum dots and n/n-type g-C3N4homojunction for boosted visible-light photocatalytic activity. Environmental Science and Pollution Research International, 29(27), 41272–41292. https://doi.org/10.1007/s11356-021-18253-0
  • Phang, S. J., Wong, V. L., Tan, L. L., & Chai, S. P. (2020). Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energygeneration. Applied Materials Today, 20, 100741. https://doi.org/10.1016/j.apmt.2020.100741
  • Praus, P. (2023). Photocatalytic Nitrogen Fixation using Graphitic Carbon Nitride: AReview. ChemistrySelect, 8(1), e202204511. https://doi.org/10.1002/slct.202204511
  • Qian, H., Liu, Z., Guo, Z., Ruan, M., & Ma, J. (2020). Hexagonal phase/cubic phasehomogeneous ZnIn2S4 nn junction photoanode for efficient photoelectrochemical watersplitting. Journal of Alloys and Compounds, 830, 154639. https://doi.org/10.1016/j.jallcom.2020.154639
  • Qiao, Q., Huang, W. Q., Li, Y. Y., Li, B., Hu, W., Peng, W., Fan, X., & Huang, G. F. (2018). In-situ construction of 2D direct Z-scheme gC3N4/gC3N4 homojunction with highphotocatalytic activity. Journal of Materials Science, 53(23), 15882–15894. https://doi.org/10.1007/s10853-018-2762-x
  • Qin, Y., Li, H., Lu, J., Dong, H., Ma, C., Liu, X., Liu, Z., & Yan, Y. (2019). Synthesis of QDsself-modified Bi2MoO6/Bi4Ti3O12 photocatalysts via controlling charge unidirectional flowfor effective degradation of organic pollutants. Journal of Molecular Liquids, 286, 110919. https://doi.org/10.1016/j.molliq.2019.110919
  • Rajbongshi, B. M., & Samdarshi, S. K. (2014). Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum. Applied Catalysis B: Environmental, 144, 435–441. https://doi.org/10.1016/j.apcatb.2013.07.048
  • Rizwan, K., & Bilal, M. (2022). Developments in advanced oxidation processes for removalof microplastics from aqueous matrices. Environmental Science and Pollution Research, 29(58), 86933–86953. https://doi.org/10.1007/s11356-022-23545-0
  • Rojas, S., & Horcajada, P. (2020). Metal–organic frameworks for the removal of emergingorganic contaminants in water. Chemical Reviews, 120(16), 8378–8415. https://doi.org/10.1021/acs.chemrev.9b00797
  • Rostami, M., Badiei, A., Ganjali, M. R., Rahimi-Nasrabadi, M., Naddafi, M., & Karimi-Maleh, H. (2022). Nano-architectural design of TiO2 for high performance photocatalyticdegradation of organic pollutant: A review. Environmental Research, 212(Pt D), 113347. https://doi.org/10.1016/j.envres.2022.113347
  • Ruan, X., Cui, X., Cui, Y., Fan, X., Li, Z., Xie, T., Ba, K., Jia, G., Zhang, H., Zhang, L., Zhang, W., Zhao, X., Leng, J., Jin, S., Singh, D. J., & Zheng, W. (2022). Favorable energyband alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytichydrogen evolution with quantum efficiency exceeding 45.6%. Advanced Energy Materials, 12(16), 2200298. https://doi.org/10.1002/aenm.202200298
  • Sabri, M., Habibi-Yangjeh, A., Rahim Pouran, S., & Wang, C. (2023). Titania-activatedpersulfate for environmental remediation: The-state-of-the-art. Catalysis Reviews, 65(1), 118–173. https://doi.org/10.1080/01614940.2021.1996776
  • Samuel, O., Othman, M. H. D., Kamaludin, R., Kurniawan, T. A., Li, T., Dzinun, H., & Imtiaz, A. (2022). Treatment of oily wastewater using photocatalytic membrane reactors:A critical review. Journal of Environmental Chemical Engineering, 10(6), 108539. https://doi.org/10.1016/j.jece.2022.108539
  • Sayed, M., Zhu, B., Kuang, P., Liu, X., Cheng, B., Ghamdi, A. A. A., Wageh, S., Zhang, L., & Yu, J. (2022). EPR investigation on electron transfer of 2D/3D g-C3N4/ZnO S-schemeheterojunction for enhanced CO2 photoreduction. Advanced Sustainable Systems, 6(1), 2100264. https://doi.org/10.1002/adsu.202100264
  • Shan, Y., Yin, Z., Zhu, J., Li, X., Dou, W., Wang, Y., Liu, C., Deng, H., & Dai, N. (2022). Few-layered MoS2 based vertical van der waals p-n homojunction by highly-efficient N2plasma implantation. Advanced Electronic Materials, 8(10), 2200299. https://doi.org/10.1002/aelm.202200299
  • Shao, Z., Meng, X., Lai, H., Zhang, D., Pu, X., Su, C., Li, H., Ren, X., & Geng, Y. (2021). Coralline-like Ni2P decorated novel tetrapod-bundle Cd0.9Zn0.1S ZB/WZhomojunctions for highly efficient visible-light photocatalytic hydrogenevolution. Chinese Journal of Catalysis, 42(3), 439–449. https://doi.org/10.1016/S18722067(20)63597-5
  • Shen, R., Ding, Y., Li, S., Zhang, P., Xiang, Q., Ng, Y. H., & Li, X. (2021b). Constructinglow-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids forefficient photocatalytic H2 evolution. Chinese Journal of Catalysis, 42(1), 25–36. https://doi.org/10.1016/S1872-2067(20)63600-2
  • Shen, H., Fu, F., Xue, W., Yang, X., Ajmal, S., Zhen, Y., Guo, L., Wang, D., & Chi, R. (2021a). In situ fabrication of Bi2MoO6/Bi2MoO6-x homojunction photocatalyst forsimultaneous photocatalytic phenol degradation and Cr (VI) reduction. Journal of Colloid and Interface Science, 599, 741–751. https://doi.org/10.1016/j.jcis.2021.04.122
  • Shifu, C., Xiaoling, Y., Huaye, Z., & Wei, L. (2010). Preparation and photocatalyticactivity evaluation of composite Fe–TiO2/TiO2 photocatalyst. Journal of the Electrochemical Society, 157(5), K96–K102. https://doi.org/10.1149/1.3328177
  • Song, Y., Wang, Y., Yang, P., & Li, J. (2020). Photo-and electro-catalysis evolution ofsuperior thin g-C3N4 nanosheets with their microstructure and NiFe oxidecomposite. Materials Characterization, 169, 110655. https://doi.org/10.1016/j.matchar.2020.110655
  • Sun, Y., Kumar, V., & Kim, K. H. (2023). The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: Effect of metallic and non-metallicmodifications. Separation and Purification Technology, 305, 122413. https://doi.org/10.1016/j.seppur.2022.122413
  • Sun, H., Shi, Y., Shi, W., & Guo, F. (2022). High-crystalline/amorphous g-C3N4 S-schemehomojunction for boosted photocatalytic H2 production in water/simulated seawater:Interfacial charge transfer and mechanism insight. Applied Surface Science, 593, 153281. https://doi.org/10.1016/j.apsusc.2022.153281
  • Sun, Y., Wang, W., Zhang, L., & Zhang, Z. (2012). Design and controllable synthesis of α-/γ-Bi2O3 homojunction with synergetic effect on photocatalytic activity. Chemical Engineering Journal, 211-212, 161–167. https://doi.org/10.1016/j.cej.2012.09.084
  • Suresh, R., Rajendran, S., Dutta, K., Khoo, K. S., & Soto-Moscoso, M. (2023). Anoverview on light assisted techniques for waste-derived hydrogen fuel towards aviationindustry. Fuel, 334, 126645. https://doi.org/10.1016/j.fuel.2022.126645
  • Tan, S., Xing, Z., Zhang, J., Li, Z., Wu, X., Cui, J., Kuang, J., Yin, J., & Zhou, W. (2017). Meso-g-C3N4/g-C3N4 nanosheets laminated homojunctions as efficient visible-light-driven photocatalysts. International Journal of Hydrogen Energy, 42(41), 25969–25979. https://doi.org/10.1016/j.ijhydene.2017.08.202
  • Vega-Mendoza, M. S., Luévano-Hipólito, E., & Torres-Martínez, L. M. (2021). Design andfabrication of photocatalytic coatings with α/β-Bi2O3 and recycled-fly ash forenvironmental remediation and solar fuel generation. Ceramics International, 47(19), 26907–26918. https://doi.org/10.1016/j.ceramint.2021.06.100
  • Velempini, T., Prabakaran, E., & Pillay, K. (2021). Recent developments in the use of metaloxides for photocatalytic degradation of pharmaceutical pollutants in water–areview. Materials Today Chemistry, 19, 100380. https://doi.org/10.1016/j.mtchem.2020.100380
  • Vidyasagar, D., Gupta, A., Balapure, A., Ghugal, S. G., Shende, A. G., & Umare, S. S. (2019). 2D/2D Wg-C3N4/g-C3N4 composite as “Adsorb and Shuttle” modelphotocatalyst for pollution mitigation. Journal of Photochemistry and Photobiology A: Chemistry, 370, 117–126. https://doi.org/10.1016/j.jphotochem.2018.10.038
  • Wang, H., Hu, Y. L., Song, G. L., & Zheng, D. J. (2022a). Intrinsic and extrinsic doping toconstruct hematite nanorod pn homojunctions for highly efficient PEC watersplitting. Chemical Engineering Journal, 435, 135016. https://doi.org/10.1016/j.cej.2022.135016
  • Wang, X., Sayed, M., Ruzimuradov, O., Zhang, J., Fan, Y., Li, X., Bai, X., & Low, J. (2022b). A review of step-scheme photocatalysts. Applied Materials Today, 29, 101609. https://doi.org/10.1016/j.apmt.2022.101609
  • Wang, R., Wan, J., Jia, J., Xue, W., Hu, X., Liu, E., & Fan, J. (2018a). Synthesis of In2Se3homojunction photocatalyst with α and γ phases for efficient photocatalyticperformance. Materials & Design, 151, 74–82. https://doi.org/10.1016/j.matdes.2018.04.052
  • Wang, X., Xia, R., Muhire, E., Jiang, S., Huo, X., & Gao, M. (2018b). Highly enhancedphotocatalytic performance of TiO2 nanosheets through constructing TiO2/TiO2 quantumdots homojunction. Applied Surface Science, 459, 9–15. https://doi.org/10.1016/j.apsusc.2018.06.293
  • Wei, W., Zhang, Q., Li, Z., Guo, Z., Guo, W., Wang, T., & Wei, A. (2021). Cyano groupmodulated porous carbon nitride assisted by silver nanowire for boosting photoreductionof aqueous Cr (VI). Journal of Environmental Chemical Engineering, 9(4), 105490. https://doi.org/10.1016/j.jece.2021.105490
  • Wu, S., Mu, Z., Fu, G., Zhang, J., & Wang, Y. (2022a). Multi-regulation of chargeseparation and band structure by a novel O-doped g-C3N4 nanosheets homojunction forenhanced photodegradation performance. Journal of Alloys and Compounds, 918, 165793. https://doi.org/10.1016/j.jallcom.2022.165793
  • Xiang, D., Chen, J., Wang, Y., Zhu, Q., Lu, G., & Zhang, X. (2022). Enhanced chargeseparation and transfer capacity of heterojunctions by constructing homojunctions forvisible light photocatalytic degradation of toluene. Catalysis Letters, 1–11. https://doi.org/10.1007/s10562-022-04122-z
  • Xie, Y., Luo, S., Huang, H., Huang, Z., Liu, Y., Fang, M., Wu, X., & Min, X. (2018). Construction of an Ag3PO4 morphological homojunction for enhanced photocatalyticperformance and mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 546, 99–106. https://doi.org/10.1016/j.colsurfa.2018.02.065
  • Xing, J., Wang, N., Li, X., Wang, J., Taiwaikuli, M., Huang, X., Wang, T., Zhou, L., & Hao, H. (2022a). Synthesis and modifications of g-C3N4-based materials and theirapplications in wastewater pollutants removal. Journal of Environmental Chemical Engineering, 10(6), 108782. https://doi.org/10.1016/j.jece.2022.108782
  • Xing, W., Zhang, Y., Zou, J., Zhang, T., Liu, C., Wu, G., & Chen, G. (2022b). Sulfur-doped2D/3D carbon nitride-based van der Waals homojunction with superior photocatalytichydrogen evolution and wastewater purification. International Journal of Hydrogen Energy, 47(25), 12559–12568. https://doi.org/10.1016/j.ijhydene.2022.02.006
  • Xue, Y., Tang, W., Gu, H., Wei, M., Guo, E., Lu, Q., & Pang, Y. (2022). FlexibleBi2MoO6/N-doped carbon nanofiber membrane enables tetracycline photocatalysis forenvironmentally safe growth of Vigna radiata. Journal of Alloys and Compounds, 902, 163860. https://doi.org/10.1016/j.jallcom.2022.163860
  • Xu, T., Xia, Z., Li, H., Niu, P., Wang, S., & Li, L. (2023). Constructing Crystallineg-C3N4/g-C3N4−xSx Isotype Heterostructure for Efficient Photocatalytic andPiezocatalytic Performances. Energy & Environmental Materials, 6(2), 1–9. https://doi.org/10.1002/eem2.12306
  • Xu, Q., Zhang, L., Cheng, B., Fan, J., & Yu, J. (2020b). S-scheme heterojunctionphotocatalyst. Chem, 6(7), 1543–1559. https://doi.org/10.1016/j.chempr.2020.06.010
  • Xu, J., Zhu, J., & Chen, M. (2020a). Simultaneous removal of ceftriaxone sodium and Cr(VI) by a novel multi-junction (pn junction combined with homojunction) compositephotocatalyst: BiOI nanosheets modified cake-like anatase-rutile TiO2. Journal of Molecular Liquids, 320, 114479. https://doi.org/10.1016/j.molliq.2020.114479
  • Yang, Y., Chen, Y., Li, Z., Tang, S., Li, Y., Fu, Z., Yang, S., Yang, M., & Xie, H. (2022). Homojunction type of carbon nitride as a robust photo-catalyst for reduction conversionof CO2 in water vapor under visible light. Chemical Engineering Journal, 430, 132668. https://doi.org/10.1016/j.cej.2021.132668
  • Ye, B., Han, X., Yan, M., Zhang, H., Xi, F., Dong, X., & Liu, J. (2017). Fabrication ofmetal-free two dimensional/two dimensional homojunction photocatalyst using variouscarbon nitride nanosheets as building blocks. Journal of Colloid and Interface Science, 507, 209–216. https://doi.org/10.1016/j.jcis.2017.08.002
  • Yu, J., Low, J., Xiao, W., Zhou, P., & Jaroniec, M. (2014). Enhanced photocatalytic CO2 reduction activity of anatase TiO2 by coexposed {001} and {101} facets. Journal of the American Chemical Society, 136(25), 8839–8842. https://doi.org/10.1021/ja5044787
  • Yuan, F., Yang, R., Li, C., Tan, Y., Zhang, X., Zheng, S., & Sun, Z. (2022). Enhancedvisible-light degradation performance toward gaseous formaldehyde using oxygenvacancy-rich TiO2-x/TiO2 supported by natural diatomite. Building and Environment, 219, 109216. https://doi.org/10.1016/j.buildenv.2022.109216
  • Zeshan, M., Bhatti, I. A., Mohsin, M., Iqbal, M., Amjed, N., Nisar, J., AlMasoud, N., & Alomar, T. S. (2022). Remediation of pesticides using TiO2 based photocatalyticstrategies: A review. Chemosphere, 300, 134525. https://doi.org/10.1016/j.chemosphere.2022.134525
  • Zhang, L., Hou, S., Wang, T., Liu, S., Gao, X., Wang, C., & Wang, G. (2022b). Recentadvances in application of graphitic carbon nitride-based catalysts for photocatalyticnitrogen fixation. Small (Weinheim an Der Bergstrasse, Germany), 18(28), e2202252. https://doi.org/10.1002/smll.202202252
  • Zhang, L., Liang, B., Zhao, H., Yang, J., Jiao, M., & Liu, Y. (2023a). Core-shell structuredZnO homojunction for enhanced photocatalysis. Inorganic Chemistry Communications, 148, 110281. https://doi.org/10.1016/j.inoche.2022.110281
  • Zhang, Y., Liu, Z., Guo, C., Chen, T., Guo, C., Lu, Y., & Wang, J. (2022d). CdS (ZB)/CdS(WZ)/Ni-BTC photocatalytic selective oxidation of benzyl alcohol to benzaldehydecoupled with hydrogen evolution. Applied Surface Science, 571, 151284. https://doi.org/10.1016/j.apsusc.2021.151284
  • Zhang, M., Tang, L., Duan, A., Zhang, Y., Xiao, F., Zhu, Y., Wang, J., Feng, C., & Yin, N. (2023b). Adjusting charge kinetics of conjugated polymers via integration of LSPReffect with homojunction. Chemical Engineering Journal, 452, 139068. https://doi.org/10.1016/j.cej.2022.139068
  • Zhang, R., Zhang, A., Cao, Y., Wang, S., Dong, F., & Zhou, Y. (2020). Mo-doped carbonnitride homojunction to promote oxygen activation for enhanced photocatalyticperformance. Chemical Engineering Journal, 401, 126028. https://doi.org/10.1016/j.cej.2020.126028
  • Zhang, G. H., Zhang, H. R., He, J. G., Jiang, Y. C., Zhang, H. L., Zhou, Q. B., & Cao, J. L. (2022a). Facile construction Z-scheme anatase/rutile TiO2/g-C3N4 hybrid for efficientphotocatalytic H2 evolution under visible-light irradiation. Ceramics International, 48(24), 36644–36654. https://doi.org/10.1016/j.ceramint.2022.08.224
  • Zhang, L., Zhang, J., Yu, H., & Yu, J. (2022c). Emerging S-scheme photocatalyst. Advanced Materials (Deerfield Beach, Fla.), 34(11), e2107668. https://doi.org/10.1002/adma.202107668
  • Zhao, J., Xiong, Z., Zhao, Y., Chen, X., & Zhang, J. (2023). Two-dimensionalheterostructures for photocatalytic CO2 reduction. Environmental Research, 216(Pt 3), 114699. https://doi.org/10.1016/j.envres.2022.114699
  • Zheng, Y., Liu, Y., Guo, X., Zhang, W., Wang, Y., Zhang, M., Li, R., Peng, Z., Xie, H., & Huang, Y. (2021). In-situ construction of morphology-controllable 0D/1D g-C3N4homojunction with enhanced photocatalytic activity. Applied Surface Science, 563, 150317. https://doi.org/10.1016/j.apsusc.2021.150317
  • Zhou, Q., Li, L., Zhang, X., Yang, H., Cheng, Y., Che, H., Wang, L., & Cao, Y. (2020). Construction of heterojunction and homojunction to improve the photocatalyticperformance of ZnO quantum dots sensitization three-dimensional ordered hollowsphere ZrO2–TiO2 arrays. International Journal of Hydrogen Energy, 45(56), 31812–31824. https://doi.org/10.1016/j.ijhydene.2020.08.157
  • Zhu, B., Cheng, B., Zhang, L., & Yu, J. (2019). Review on DFT calculation ofs-triazine-based carbon nitride. Carbon Energy, 1(1), 32–56. https://doi.org/10.1002/cey2.1
  • Zou, Y., Zou, H., Ao, Z., Lv, Y., Chen, N., & Huang, Y. (2023). N-doped porous carboncoated g-C3N4/g-C3N4 heterojunction for polysulfide restriction and catalytic conversiontowards enhanced lithium-sulfur batteries. Journal of Alloys and Compounds, 940, 168772. https://doi.org/10.1016/j.jallcom.2023.168772

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.