548
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Electrochemical reduction of halogenated organic contaminants using carbon-based cathodes: A review

&
Pages 342-367 | Published online: 30 Jul 2023

References

  • Ai, J., Ma, H., Tobler, D. J., Mangayayam, M. C., Lu, C., van den Berg, F. W. J., Yin, W., & Bruun Hansen, H. C. (2020). Bone char mediated dechlorination of trichloroethylene by green rust. Environmental Science & Technology, 54(6), 3643–3652. https://doi.org/10.1021/acs.est.9b07069
  • Al-Abed, S. R., & Fang, Y. (2006). Influences of pH and current on electrolytic dechlorination of trichloroethylene at a granular-graphite packed electrode. Chemosphere, 64(3), 462–469. https://doi.org/10.1016/j.chemosphere.2005.11.005
  • Al-Abed, S. R., & Fang, Y. (2007). Use of granular graphite for electrolytic dechlorination of trichloroethylene. Environmental Engineering Science, 24(6), 842–851. https://doi.org/10.1089/ees.2005.0096
  • Almassi, S., Li, Z., Xu, W., Pu, C., Zeng, T., & Chaplin, B. P. (2019). Simultaneous adsorption and electrochemical reduction of N-nitrosodimethylamine using carbon-Ti4O7 composite reactive electrochemical membranes. Environmental Science & Technology, 53(2), 928–937. https://doi.org/10.1021/acs.est.8b05933
  • Almassi, S., Samonte, P. R. V., Li, Z., Xu, W., & Chaplin, B. P. (2020). Mechanistic investigation of haloacetic acid reduction using carbon-Ti4O7 composite reactive electrochemical membranes. Environmental Science & Technology, 54(3), 1982–1991. https://doi.org/10.1021/acs.est.9b06744
  • Alonso, F., Beletskaya, I. P., & Yus, M. (2002). Metal-mediated reductive hydrodehalogenation of organic halides. Chemical Reviews, 102(11), 4009–4091. https://doi.org/10.1021/cr0102967
  • Andrieux, C. P., Saveant, J. M., & Su, K. B. (1986). Kinetics of dissociative electron transfer. Direct and mediated electrochemical reductive cleavage of the carbon-halogen bond. The Journal of Physical Chemistry, 90(16), 3815–3823. https://doi.org/10.1021/j100407a059
  • Arnold, W. A., & Roberts, A. L. (1998). Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0). Environmental Science & Technology, 32(19), 3017–3025. https://doi.org/10.1021/es980252o
  • Atkins, P. W. (1997). Physical chemistry (6th ed.). W.H. Freeman.
  • Bagastyo, A. Y., Batstone, D. J., Kristiana, I., Gernjak, W., Joll, C., & Radjenovic, J. (2012). Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH. Water Research, 46(18), 6104–6112. https://doi.org/10.1016/j.watres.2012.08.038
  • Banks, C. E., Davies, T. J., Wildgoose, G. G., & Compton, R. (2005). Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites. Chemical Communications (Cambridge, England), (7), 829–841. https://doi.org/10.1039/B413177K
  • Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods (2nd ed.). John Wiley & Sons, Inc.
  • Bocos, E., Alfaya, E., Iglesias, O., Pazos, M., & Sanromán, Á. M. (2015). Application of a new sandwich of granular activated and fiber carbon as cathode in the electrochemical advanced oxidation treatment of pharmaceutical effluents. Separation and Purification Technology, 151, 243–250. https://doi.org/10.1016/j.seppur.2015.07.048
  • Butkovskyi, A., Jeremiasse, A. W., Hernandez Leal, L., van der Zande, T., Rijnaarts, H., & Zeeman, G. (2014). Electrochemical conversion of micropollutants in gray water. Environmental Science & Technology, 48(3), 1893–1901. https://doi.org/10.1021/es404411p
  • Butler, E. C., & Hayes, K. F. (2000). Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environmental Science & Technology, 34(3), 422–429. https://doi.org/10.1021/es980946x
  • California Office of Environmental Health Hazard Assessment. (2022). Notification levels for chemicals in drinking water. https://oehha.ca.gov/water/notification-levels-chemicals-drinking-water
  • California State Water Resources Control Board. (2022). Perchlorate in drinking water. https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Perchlorate.html
  • Cao, X., Pignatello, J. J., Li, Y., Lattao, C., Chappell, M. A., Chen, N., Miller, L. F., & Mao, J. (2012). Characterization of wood chars produced at different temperatures using advanced solid-state 13C NMR spectroscopic techniques. Energy & Fuels, 26(9), 5983–5991. https://doi.org/10.1021/ef300947s
  • Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science. Processes & Impacts, 16(6), 1182–1203. https://doi.org/10.1039/C3EM00679D
  • Chaplin, B. P. (2019). The prospect of electrochemical technologies advancing worldwide water treatment. Accounts of Chemical Research, 52(3), 596–604. https://doi.org/10.1021/acs.accounts.8b00611
  • Chaplin, B. P., Reinhard, M., Schneider, W. F., Schüth, C., Shapley, J. R., Strathmann, T. J., & Werth, C. J. (2012). Critical review of Pd-based catalytic treatment of priority contaminants in water. Environmental Science & Technology, 46(7), 3655–3670. https://doi.org/10.1021/es204087q
  • Chen, S., Chen, Z., Siahrostami, S., Higgins, D., Nordlund, D., Sokaras, D., Kim, T. R., Liu, Y., Yan, X., Nilsson, E., Sinclair, R., Nørskov, J. K., Jaramillo, T. F., & Bao, Z. (2018). Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. Journal of the American Chemical Society, 140(25), 7851–7859. https://doi.org/10.1021/jacs.8b02798
  • Chen, P., Fryling, M. A., & McCreery, R. L. (1995). Electron transfer kinetics at modified carbon electrode surfaces: The role of specific surface sites. Analytical Chemistry, 67(18), 3115–3122. https://doi.org/10.1021/ac00114a004
  • Cheng, I. F., Fernando, Q., & Korte, N. (1997). Electrochemical dechlorination of 4-chlorophenol to phenol. Environmental Science & Technology, 31(4), 1074–1078. https://doi.org/10.1021/es960602b
  • Chinthaginjala, J. K., Bitter, J. H., & Lefferts, L. (2010). Thin layer of carbon-nano-fibers (CNFs) as catalyst support for fast mass transfer in hydrogenation of nitrite. Applied Catalysis A: General, 383(1–2), 24–32. https://doi.org/10.1016/j.apcata.2010.05.013
  • Choe, J. K., Shapley, J. R., Strathmann, T. J., & Werth, C. J. (2010). Influence of Rhenium speciation on the stability and activity of Re/Pd bimetal catalysts used for perchlorate reduction. Environmental Science & Technology, 44(12), 4716–4721. https://doi.org/10.1021/es100227z
  • Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11–12), 1857–1862. https://doi.org/10.1016/0013-4686(94)85175-1
  • Comninellis, C., & Pulgarin, C. (1993). Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. Journal of Applied Electrochemistry, 23(2), 108–112. https://doi.org/10.1007/BF00246946
  • Costentin, C., Robert, M., & Savéant, J.-M. (2003). Successive removal of chloride ions from organic polychloride pollutants. Mechanisms of reductive electrochemical elimination in aliphatic gem-polychlorides, α,β-polychloroalkenes, and α,β-polychloroalkanes in mildly protic medium. Journal of the American Chemical Society, 125(35), 10729–10739. https://doi.org/10.1021/ja036141t
  • Deng, D., Deng, F., Tang, B., Zhang, J., & Liu, J. (2017). Electrocatalytic reduction of low-concentration thiamphenicol and florfenicol in wastewater with multi-walled carbon nanotubes modified electrode. Journal of Hazardous Materials, 332, 168–175. https://doi.org/10.1016/j.jhazmat.2017.03.013
  • Ding, K., & Xu, W. (2016). Black carbon facilitated dechlorination of DDT and its metabolites by sulfide. Environmental Science & Technology, 50(23), 12976–12983. https://doi.org/10.1021/acs.est.6b03154
  • Ding, L., Zhang, P., Luo, H., Hu, Y., Norouzi Banis, M., Yuan, X., & Liu, N. (2018). Nitrogen-doped carbon materials as metal-free catalyst for the dechlorination of trichloroethylene by sulfide. Environmental Science & Technology, 52(24), 14286–14293. https://doi.org/10.1021/acs.est.8b03565
  • Dolfing, J., & Harrison, B. K. (1992). Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environmental Science & Technology, 26(11), 2213–2218. https://doi.org/10.1021/es00035a021
  • Dunnivant, F. M., Schwarzenbach, R. P., & Macalady, D. L. (1992). Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environmental Science & Technology, 26(11), 2133–2141. https://doi.org/10.1021/es00035a010
  • Durante, C., Huang, B., Isse, A. A., & Gennaro, A. (2012). Electrocatalytic dechlorination of volatile organic compounds at copper cathode. Part II: Polychloroethanes. Applied Catalysis B: Environmental, 126, 355–362. https://doi.org/10.1016/j.apcatb.2012.07.003
  • Durante, C., Isse, A. A., Sandonà, G., & Gennaro, A. (2009). Electrochemical hydrodehalogenation of polychloromethanes at silver and carbon electrodes. Applied Catalysis B: Environmental, 88(3–4), 479–489. https://doi.org/10.1016/j.apcatb.2008.10.010
  • Fang, Y., & Al-Abed, S. R. (2007a). Palladium-facilitated electrolytic dechlorination of 2-chlorobiphenyl using a granular-graphite electrode. Chemosphere, 66(2), 226–233. https://doi.org/10.1016/j.chemosphere.2006.05.057
  • Fang, Y., & Al-Abed, S. R. (2007b). Modeling the electrolytic dechlorination of trichloroethylene in a granular graphite-packed reactor. Environmental Engineering Science, 24(5), 581–594. https://doi.org/10.1089/ees.2006.0181
  • Fang, G., Gao, J., Liu, C., Dionysiou, D. D., Wang, Y., & Zhou, D. (2014). Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation. Environmental Science & Technology, 48(3), 1902–1910. https://doi.org/10.1021/es4048126
  • Farwell, S. O., Beland, F. A., & Geer, R. D. (1975). Reduction pathways of organohalogen compounds: Part I. Chlorinated benzenes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 61(3), 303–313. https://doi.org/10.1016/S0022-0728(75)80230-0
  • Fernández-Verdejo, D., Sulonen, M. L., Pérez-Trujillo, M., Marco-Urrea, E., Guisasola, A., & Blánquez, P. (2021). Electrochemical dehalogenation of dibromomethane and 1,2-dibromoethane to non-toxic products using a carbon fiber brush electrode. Journal of Chemical Technology & Biotechnology, 96(2), 335–340. https://doi.org/10.1002/jctb.6542
  • Fierro, S., Nagel, T., Baltruschat, H., & Comninellis, C. (2007). Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry. Electrochemistry Communications, 9(8), 1969–1974. https://doi.org/10.1016/j.elecom.2007.05.008
  • Gan, G., Li, X., Wang, L., Fan, S., Li, J., Liang, F., & Chen, A. (2019). Identification of catalytic active sites in nitrogen-doped carbon for electrocatalytic dechlorination of 1,2-dichloroethane. ACS Catalysis, 9(12), 10931–10939. https://doi.org/10.1021/acscatal.9b02853
  • Gan, G., Li, X., Wang, L., Fan, S., Mu, J., Wang, P., & Chen, G. (2020). Active sites in single-atom Fe–Nx–C nanosheets for selective electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Nano, 14(8), 9929–9937. https://doi.org/10.1021/acsnano.0c02783
  • Gao, Y., Zhong, S., Torralba-Sanchez, T. L., Tratnyek, P. G., Weber, E. J., Chen, Y., & Zhang, H. (2021). Quantitative structure activity relationships (QSARs) and machine learning models for abiotic reduction of organic compounds by an aqueous Fe(II) complex. Water Research, 192, 116843. https://doi.org/10.1016/j.watres.2021.116843
  • Garcia-Segura, S., Keller, J., Brillas, E., & Radjenovic, J. (2015). Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. Journal of Hazardous Materials, 283, 551–557. https://doi.org/10.1016/j.jhazmat.2014.10.003
  • Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K., & Westerhoff, P. (2018). Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Applied Catalysis B: Environmental, 236, 546–568. https://doi.org/10.1016/j.apcatb.2018.05.041
  • Gennaro, A., Isse, A. A., Bianchi, C. L., Mussini, P. R., & Rossi, M. (2009). Is glassy carbon a really inert electrode material for the reduction of carbon–halogen bonds? Electrochemistry Communications, 11(10), 1932–1935. https://doi.org/10.1016/j.elecom.2009.08.021
  • He, J., Ela, W. P., Betterton, E. A., Arnold, R. G., & Sáez, A. E. (2004). Reductive dehalogenation of aqueous-phase chlorinated hydrocarbons in an electrochemical reactor. Industrial & Engineering Chemistry Research, 43(25), 7965–7974. https://doi.org/10.1021/ie049568x
  • Holloway, A. F., Wildgoose, G. G., Compton, R. G., Shao, L., & Green, M. L. H. (2008). The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and “super-annealed” multiwalled carbon nanotubes. Journal of Solid State Electrochemistry, 12(10), 1337–1348. https://doi.org/10.1007/s10008-008-0542-2
  • Huang, B., Isse, A. A., Durante, C., Wei, C., & Gennaro, A. (2012). Electrocatalytic properties of transition metals toward reductive dechlorination of polychloroethanes. Electrochimica Acta, 70, 50–61. https://doi.org/10.1016/j.electacta.2012.03.009
  • Huang, B., Long, J., Chen, W., Zhu, Y., Zeng, G., & Lei, C. (2016). Linear free energy relationships of electrochemical and thermodynamic parameters for the electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs). Electrochimica Acta, 208, 195–201. https://doi.org/10.1016/j.electacta.2016.04.182
  • Huang, Y.-F., Wu, D.-Y., Wang, A., Ren, B., Rondinini, S., Tian, Z.-Q., & Amatore, C. (2010). Bridging the gap between electrochemical and organometallic activation: benzyl chloride reduction at silver cathodes. Journal of the American Chemical Society, 132(48), 17199–17210. https://doi.org/10.1021/ja106049c
  • Huang, B., Zhu, Y., Li, J., Zeng, G., & Lei, C. (2017). Uncovering the intrinsic relationship of electrocatalysis and molecular electrochemistry for dissociative electron transfer to polychloroethanes at silver cathode. Electrochimica Acta, 231, 590–600. https://doi.org/10.1016/j.electacta.2017.02.055
  • Isse, A. A., Berzi, G., Falciola, L., Rossi, M., Mussini, P. R., & Gennaro, A. (2009). Electrocatalysis and electron transfer mechanisms in the reduction of organic halides at Ag. Journal of Applied Electrochemistry, 39(11), 2217–2225. https://doi.org/10.1007/s10800-008-9768-z
  • Isse, A. A., De Giusti, A., Gennaro, A., Falciola, L., & Mussini, P. R. (2006). Electrochemical reduction of benzyl halides at a silver electrode. Electrochimica Acta, 51(23), 4956–4964. https://doi.org/10.1016/j.electacta.2006.01.039
  • Isse, A. A., Huang, B., Durante, C., & Gennaro, A. (2012). Electrocatalytic dechlorination of volatile organic ­compounds at a copper cathode. Part I: Polychloromethanes. Applied Catalysis B: Environmental, 126, 347–354. https://doi.org/10.1016/j.apcatb.2012.07.004
  • Isse, A. A., Mussini, P. R., & Gennaro, A. (2009). New insights into electrocatalysis and dissociative electron transfer mechanisms: The case of aromatic bromides. The Journal of Physical Chemistry C, 113(33), 14983–14992. https://doi.org/10.1021/jp904797m
  • Isse, A. A., Sandonà, G., Durante, C., & Gennaro, A. (2009). Voltammetric investigation of the dissociative electron transfer to polychloromethanes at catalytic and non-catalytic electrodes. Electrochimica Acta, 54(12), 3235–3243. https://doi.org/10.1016/j.electacta.2008.12.034
  • Jalil, A. A., Triwahyono, S., Razali, N. A. M., Hairom, N. H. H., Idris, A., Muhid, M. N. M., Ismail, A., Yahaya, N. A. M., Ahmad, N. A. L., & Dzinun, H. (2010). Complete electrochemical dechlorination of chlorobenzenes in the presence of various arene mediators. Journal of Hazardous Materials, 174(1–3), 581–585. https://doi.org/10.1016/j.jhazmat.2009.09.091
  • Jasper, J. T., Yang, Y., & Hoffmann, M. R. (2017). Toxic byproduct formation during electrochemical treatment of latrine wastewater. Environmental Science & Technology, 51(12), 7111–7119. https://doi.org/10.1021/acs.est.7b01002
  • Jiang, G., Lan, M., Zhang, Z., Lv, X., Lou, Z., Xu, X., Dong, F., & Zhang, S. (2017). Identification of active hydrogen species on palladium nanoparticles for an enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenol in water. Environmental Science & Technology, 51(13), 7599–7605. https://doi.org/10.1021/acs.est.7b01128
  • Jiang, G., Wang, K., Li, J., Fu, W., Zhang, Z., Johnson, G., Lv, X., Zhang, Y., Zhang, S., & Dong, F. (2018). Electrocatalytic hydrodechlorination of 2,4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution. Chemical Engineering Journal, 348, 26–34. https://doi.org/10.1016/j.cej.2018.04.173
  • King, J. F., & Mitch, W. A. (2022). Electrochemical reduction of halogenated alkanes and alkenes using activated carbon-based cathodes. Environmental Science & Technology, 56(24), 17965–17976. https://doi.org/10.1021/acs.est.2c05608
  • Klüpfel, L., Keiluweit, M., Kleber, M., & Sander, M. (2014). Redox properties of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 48(10), 5601–5611. https://doi.org/10.1021/es500906d
  • Klymenko, O. V., Buriez, O., Labbé, E., Zhan, D.-P., Rondinini, S., Tian, Z.-Q., Svir, I., & Amatore, C. (2014). Uncovering the missing link between molecular electrochemistry and electrocatalysis: Mechanism of the reduction of benzyl chloride at silver cathodes. ChemElectroChem, 1(1), 227–240. https://doi.org/10.1002/celc.201300101
  • Knitt, L. E., Shapley, J. R., & Strathmann, T. J. (2008). Rapid metal-catalyzed hydrodehalogenation of iodinated X-ray contrast media. Environmental Science & Technology, 42(2), 577–583. https://doi.org/10.1021/es071837y
  • Kong, D., Liang, B., Yun, H., Cheng, H., Ma, J., Cui, M., Wang, A., & Ren, N. (2015). Cathodic degradation of antibiotics: Characterization and pathway analysis. Water Research, 72, 281–292. https://doi.org/10.1016/j.watres.2015.01.025
  • Kulikov, S. M., Plekhanov, V. P., Tsyganok, A. I., Schlimm, C., & Heitz, E. (1996). Electrochemical reductive dechlorination of chlororganic compounds on carbon cloth and metal-modified carbon cloth cathodes. Electrochimica Acta, 41(4), 527–531. https://doi.org/10.1016/0013-4686(95)00339-8
  • Lattao, C., Cao, X., Mao, J., Schmidt-Rohr, K., & Pignatello, J. J. (2014). Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars. Environmental Science & Technology, 48(9), 4790–4798. https://doi.org/10.1021/es405096q
  • Lei, C., Liang, F., Li, J., Chen, W., & Huang, B. (2019). Electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs): Effects of molecular structure on the dehalogenation reactivity and mechanisms. Chemical Engineering Journal, 358, 1054–1064. https://doi.org/10.1016/j.cej.2018.10.105
  • Lemal, D. M. (2004). Perspective on fluorocarbon chemistry. The Journal of Organic Chemistry, 69(1), 1–11. https://doi.org/10.1021/jo0302556
  • Li, T., & Farrell, J. (2000). Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environmental Science & Technology, 34(1), 173–179. https://doi.org/10.1021/es9907358
  • Li, T., & Farrell, J. (2001). Electrochemical investigation of the rate-limiting mechanisms for trichloroethylene and carbon tetrachloride reduction at iron surfaces. Environmental Science & Technology, 35(17), 3560–3565. https://doi.org/10.1021/es0019878
  • Li, C., Hu, C., Song, Y., Sun, Y.-M., Yang, W., & Ma, M. (2022). Active oxygen functional group modification and the combined interface engineering strategy for efficient hydrogen peroxide electrosynthesis. ACS Applied Materials & Interfaces, 14(41), 46695–46707. https://doi.org/10.1021/acsami.2c14780
  • Li, Y., Kemper, J. M., Datuin, G., Akey, A., Mitch, W. A., & Luthy, R. G. (2016). Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system. Water Research, 98, 354–362. https://doi.org/10.1016/J.WATRES.2016.04.019
  • Li, Y., Liu, C., Cui, Y., Walse, S. S., Olver, R., Zilberman, D., & Mitch, W. A. (2016). Development of an activated carbon-based electrode for the capture and rapid electrolytic reductive debromination of methyl bromide from postharvest fumigations. Environmental Science & Technology, 50(20), 11200–11208. https://doi.org/10.1021/acs.est.6b03489
  • Li, Z., Mao, J., Chu, W., & Xu, W. (2019). Probing the surface reactivity of Pyrogenic Carbonaceous Material (PCM) through synthesis of PCM-like conjugated microporous polymers. Environmental Science & Technology, 53(13), 7673–7682. https://doi.org/10.1021/acs.est.9b01772
  • Liu, Z., Betterton, E. A., & Arnold, R. G. (2000). Electrolytic reduction of low molecular weight chlorinated aliphatic compounds: Structural and thermodynamic effects on process kinetics. Environmental Science & Technology, 34(5), 804–811. https://doi.org/10.1021/es991049b
  • Lou, Y.-Y., Fontmorin, J.-M., Amrane, A., Fourcade, F., & Geneste, F. (2021). Metallic nanoparticles for electrocatalytic reduction of halogenated organic compounds: A review. Electrochimica Acta, 377, 138039. https://doi.org/10.1016/j.electacta.2021.138039
  • Lou, Y. Y., Hapiot, P., Floner, D., Fourcade, F., Amrane, A., & Geneste, F. (2020). Efficient dechlorination of α-halocarbonyl and α-haloallyl pollutants by electroreduction on bismuth. Environmental Science & Technology, 54(1), 559–567. https://doi.org/10.1021/acs.est.9b05732
  • Lou, Z., Zhou, J., Sun, M., Xu, J., Yang, K., Lv, D., Zhao, Y., & Xu, X. (2018). MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs. Chemical Engineering Journal, 352, 549–557. https://doi.org/10.1016/j.cej.2018.07.057
  • Ma, H., Xu, Y., Ding, X., Liu, Q., & Ma, C.-A. (2016). Electrocatalytic dechlorination of chloropicolinic acid mixtures by using palladium-modified metal cathodes in aqueous solutions. Electrochimica Acta, 210, 762–772. https://doi.org/10.1016/j.electacta.2016.06.001
  • Mao, R., Huang, C., Zhao, X., Ma, M., & Qu, J. (2019). Dechlorination of triclosan by enhanced atomic hydrogen-mediated electrochemical reduction: Kinetics, mechanism, and toxicity assessment. Applied Catalysis B: Environmental, 241, 120–129. https://doi.org/10.1016/j.apcatb.2018.09.013
  • Mao, R., Lan, H., Yan, L., Zhao, X., Liu, H., & Qu, J. (2018). Enhanced indirect atomic H* reduction at a hybrid Pd/graphene cathode for electrochemical dechlorination under low negative potentials. Environmental Science: Nano, 5(10), 2282–2292. https://doi.org/10.1039/C8EN00727F
  • Mao, R., Li, N., Lan, H., Zhao, X., Liu, H., Qu, J., & Sun, M. (2016). Dechlorination of trichloroacetic acid using a noble metal-free graphene–Cu foam electrode via direct cathodic reduction and atomic H*. Environmental Science & Technology, 50(7), 3829–3837. https://doi.org/10.1021/acs.est.5b05006
  • Marsh, H., & Reinoso, F. R. (2006). Activated carbon. Elsevier.
  • Martin, E. T., McGuire, C. M., Mubarak, M. S., & Peters, D. G. (2016). Electroreductive remediation of halogenated environmental pollutants. Chemical Reviews, 116(24), 15198–15234. https://doi.org/10.1021/acs.chemrev.6b00531
  • McCreery, R. L. (1991). Carbon electrodes: Structural effects on electron transfer kinetics. Electroanalytical Chemistry, 17, 221–374.
  • McCreery, R. L. (2008). Advanced carbon electrode materials for molecular electrochemistry. Chemical Reviews, 108(7), 2646–2687. https://doi.org/10.1021/cr068076m
  • Michaud, P.-A., Panizza, M., Ouattara, L., Diaco, T., Foti, G., & Comninellis, C. (2003). Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. Journal of Applied Electrochemistry, 33(2), 151–154. https://doi.org/10.1023/A:1024084924058
  • Mishra, D., Liao, Z., & Farrell, J. (2008). Understanding reductive dechlorination of trichloroethene on boron-doped diamond film electrodes. Environmental Science & Technology, 42(24), 9344–9349. https://doi.org/10.1021/es801815z
  • Mochidzuki, K., Soutric, F., Tadokoro, K., Antal, M. J., Tóth, M., Zelei, B., & Várhegyi, G. (2003). Electrical and physical properties of carbonized charcoals. Industrial & Engineering Chemistry Research, 42(21), 5140–5151. https://doi.org/10.1021/ie030358e
  • Mu, Y., Radjenovic, J., Shen, J., Rozendal, R. A., Rabaey, K., & Keller, J. (2011). Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. Environmental Science & Technology, 45(2), 782–788. https://doi.org/10.1021/es1022812
  • Murillo-Gelvez, J., Hickey, K. P., Di Toro, D. M., Allen, H. E., Carbonaro, R. F., & Chiu, P. C. (2019). Experimental validation of hydrogen atom transfer Gibbs free energy as a predictor of nitroaromatic reduction rate constants. Environmental Science & Technology, 53(10), 5816–5827. https://doi.org/10.1021/acs.est.9b00910
  • Oh, S.-Y., Cha, D. K., & Chiu, P. C. (2002). Graphite-mediated reduction of 2,4-dinitrotoluene with elemental iron. Environmental Science & Technology, 36(10), 2178–2184. https://doi.org/10.1021/es011474g
  • Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 109(12), 6541–6569. https://doi.org/10.1021/cr9001319
  • Pérez, G., Fernández-Alba, A. R., Urtiaga, A. M., & Ortiz, I. (2010). Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment. Water Research, 44(9), 2763–2772. https://doi.org/10.1016/j.watres.2010.02.017
  • Perlinger, J. A., Venkatapathy, R., & Harrison, J. F. (2000). Linear free energy relationships for polyhalogenated alkane transformation by electron-transfer mediators in model aqueous systems. The Journal of Physical Chemistry A, 104(12), 2752–2763. https://doi.org/10.1021/jp993273t
  • Peters, D. G., McGuire, C. M., Pasciak, E. M., Peverly, A. A., Strawsine, L. M., Wagoner, E. R., & Barnes, J. T. (2017). Electrochemical dehalogenation of organic pollutants. Journal of the Mexican Chemical Society, 58(3), 287–302. https://doi.org/10.29356/jmcs.v58i3.135
  • Pignatello, J. J., Mitch, W. A., & Xu, W. (2017). Activity and reactivity of pyrogenic carbonaceous matter toward organic compounds. Environmental Science & Technology, 51(16), 8893–8908. https://doi.org/10.1021/acs.est.7b01088
  • Pisarenko, A. N., Stanford, B. D., Yan, D., Gerrity, D., & Snyder, S. A. (2012). Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Research, 46(2), 316–326. https://doi.org/10.1016/j.watres.2011.10.021
  • Pud, A. A., Shapoval, G. S., Kukhar, V. P., Mikulina, O. E., & Gervits, L. L. (1995). Electrochemical reduction of some saturated and unsaturated perfluorocarbons. Electrochimica Acta, 40(9), 1157–1164. https://doi.org/10.1016/0013-4686(95)00030-I
  • Qin, J., Chen, Q., Sun, M., Sun, P., & Shen, G. (2017). Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation. Chemical Engineering Journal, 330, 804–812. https://doi.org/10.1016/j.cej.2017.08.013
  • Radjenovic, J., Bagastyo, A., Rozendal, R. A., Mu, Y., Keller, J., & Rabaey, K. (2011). Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. Water Research, 45(4), 1579–1586. https://doi.org/10.1016/j.watres.2010.11.035
  • Radjenovic, J., Flexer, V., Donose, B. C., Sedlak, D. L., & Keller, J. (2013). Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation. Environmental Science & Technology, 47(23), 13686–13694. https://doi.org/10.1021/es403410p
  • Radjenovic, J., & Sedlak, D. L. (2015). Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environmental Science & Technology, 49(19), 11292–11302. https://doi.org/10.1021/acs.est.5b02414
  • Radjenović, J., Farré, M. J., Mu, Y., Gernjak, W., & Keller, J. (2012). Reductive electrochemical remediation of emerging and regulated disinfection byproducts. Water Research, 46(6), 1705–1714. https://doi.org/10.1016/J.WATRES.2011.12.042
  • Rajic, L., Fallahpour, N., Podlaha, E., & Alshawabkeh, A. (2016). The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution. Chemosphere, 147, 98–104. https://doi.org/10.1016/j.chemosphere.2015.12.095
  • Rajic, L., Nazari, R., Fallahpour, N., & Alshawabkeh, A. N. (2016). Electrochemical degradation of trichloroethylene in aqueous solution by bipolar graphite electrodes. Journal of Environmental Chemical Engineering, 4(1), 197–202. https://doi.org/10.1016/j.jece.2015.10.030
  • Ren, S., Usman, M., Tsang, D. C. W., O-Thong, S., Angelidaki, I., Zhu, X., Zhang, S., & Luo, G. (2020). Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups. Environmental Science & Technology, 54(9), 5755–5766. https://doi.org/10.1021/acs.est.0c00112
  • Rodrigo, M. A., Oturan, N., & Oturan, M. A. (2014). Electrochemically assisted remediation of pesticides in soils and water: A review. Chemical Reviews, 114(17), 8720–8745. https://doi.org/10.1021/cr500077e
  • Rondinini, S., Mussini, P. R., Muttini, P., & Sello, G. (2001). Silver as a powerful electrocatalyst for organic halide reduction: The critical role of molecular structure. Electrochimica Acta, 46(20–21), 3245–3258. https://doi.org/10.1016/S0013-4686(01)00616-8
  • Saveant, J. M. (1987). A simple model for the kinetics of dissociative electron transfer in polar solvents. Application to the homogeneous and heterogeneous reduction of alkyl halides. Journal of the American Chemical Society, 109(22), 6788–6795. https://doi.org/10.1021/ja00256a037
  • Scherer, M. M., Balko, B. A., Gallagher, D. A., & Tratnyek, P. G. (1998). Correlation analysis of rate constants for dechlorination by zero-valent iron. Environmental Science & Technology, 32(19), 3026–3033. https://doi.org/10.1021/es9802551
  • Schwarzenbach, R. P., Stierli, R., Lanz, K., & Zeyer, J. (1990). Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environmental Science & Technology, 24(10), 1566–1574. https://doi.org/10.1021/es00080a017
  • Shiell, T. B., Wong, S., Yang, W., Tanner, C. A., Haberl, B., Elliman, R. G., McKenzie, D. R., McCulloch, D. G., & Bradby, J. E. (2019). The composition, structure and properties of four different glassy carbons. Journal of Non-Crystalline Solids, 522, 119561. https://doi.org/10.1016/j.jnoncrysol.2019.119561
  • Song, S., Liu, Q., Fang, J., & Yu, W. (2019). Enhanced electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid on in situ prepared Pd-anchored Ni(OH) 2 bifunctional electrodes: Synergistic effect between H* formation on Ni(OH) 2 and dechlorination steps on Pd. Catalysis Science & Technology, 9(18), 5130–5141. https://doi.org/10.1039/C9CY01359H
  • Sonoyama, N., & Sakata, T. (1999). Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode. Environmental Science & Technology, 33(19), 3438–3442. https://doi.org/10.1021/es980903g
  • Souza, F., Quijorna, S., Lanza, M. R. V., Sáez, C., Cañizares, P., & Rodrigo, M. A. (2017). Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide. Catalysis Today, 280, 192–198. https://doi.org/10.1016/j.cattod.2016.04.030
  • Sun, T., Levin, B. D. A., Guzman, J. J. L., Enders, A., Muller, D. A., Angenent, L. T., & Lehmann, J. (2017). Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications, 8(1), 14873. https://doi.org/10.1038/ncomms14873
  • Sun, T., Levin, B. D. A., Schmidt, M. P., Guzman, J. J. L., Enders, A., Martínez, C. E., Muller, D. A., Angenent, L. T., & Lehmann, J. (2018). Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon. Environmental Science & Technology, 52(15), 8538–8547. https://doi.org/10.1021/acs.est.8b02340
  • Sures, B., Zimmermann, S., Messerschmidt, J., & von Bohlen, A. (2002). Relevance and analysis of traffic related platinum group metals (Pt, Pd, Rh) in the aquatic biosphere, with emphasis on palladium. Ecotoxicology (London, England), 11(5), 385–392. https://doi.org/10.1023/A:1020517624371
  • Tenent, R. C., & Wipf, D. O. (2009). Local electron transfer rate measurements on modified and unmodified glassy carbon electrodes. Journal of Solid State Electrochemistry, 13(4), 583–590. https://doi.org/10.1007/s10008-008-0689-x
  • Totten, L. A., & Roberts, A. L. (2001). Calculated one- and two-electron reduction potentials and related molecular descriptors for reduction of alkyl and vinyl halides in water. Critical Reviews in Environmental Science and Technology, 31(2), 175–221. https://search.proquest.com/docview/219184801?accountid=14026 https://doi.org/10.1080/20016491089208
  • Trellu, C., Coetsier, C., Rouch, J., Esmilaire, R., Rivallin, M., Cretin, M., & Causserand, C. (2018). Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO2. Water Research, 131, 310–319. https://doi.org/10.1016/j.watres.2017.12.070
  • U.S. Environmental Protection Agency. (2022). National primary drinking water regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations
  • U.S. Environmental Protection Agency. (2021). Integrated risk information page. https://www.epa.gov/iris
  • Vanýsek, P. (2012). Electrochemical series. In Handbook of chemistry and physics (93rd ed., pp. 5–80). CRC Press.
  • Vettorazzi, N. R., Sereno, L., Katoh, M., Ota, M., & Otero, L. (2008). Correlation between the distribution of oxide functional groups and electrocatalytic activity of glassy carbon surface. Journal of the Electrochemical Society, 155(5), F110. https://doi.org/10.1149/1.2895065
  • Wan, Z., Sun, Y., W., Tsang, D. C., Hou, D., Cao, X., Zhang, S., Gao, B., & Sik Ok, Y. (2020). Sustainable remediation with an electroactive biochar system: Mechanisms and perspectives. Green Chemistry, 22(9), 2688–2711. https://doi.org/10.1039/D0GC00717J
  • Wang, A., Huang, Y.-F., Sur, U. K., Wu, D.-Y., Ren, B., Rondinini, S., Amatore, C., & Tian, Z.-Q. (2010). In situ identification of intermediates of benzyl chloride reduction at a silver electrode by SERS coupled with DFT calculations. Journal of the American Chemical Society, 132(28), 9534–9536. https://doi.org/10.1021/ja1024639
  • Wang, Y., & Lu, X. (2014). Study on the effect of electrochemical dechlorination reduction of hexachlorobenzene using different cathodes. Journal of Analytical Methods in Chemistry, 2014, 371510. https://doi.org/10.1155/2014/371510
  • Wei, C., Yin, S., Fu, H., Qu, X., Mitch, W. A., & Zhu, D. (2020). Sulfide-induced reduction of nitrobenzene mediated by different size fractions of rice straw-derived black carbon: A key role played by reactive polysulfide species. The Science of the Total Environment, 748, 141365. https://doi.org/10.1016/j.scitotenv.2020.141365
  • Weng, C., Chuang, Y.-H., Davey, B., & Mitch, W. A. (2020). Reductive electrochemical activation of hydrogen peroxide as an advanced oxidation process for treatment of reverse osmosis permeate during potable reuse. Environmental Science & Technology, 54(19), 12593–12601. https://doi.org/10.1021/acs.est.0c02144
  • Williams, C. K., McCarver, G. A., Lashgari, A., Vogiatzis, K. D., & Jiang, J. (2021). Electrocatalytic dechlorination of dichloromethane in water using a heterogenized molecular copper complex. Inorganic Chemistry, 60(7), 4915–4923. https://doi.org/10.1021/acs.inorgchem.0c03833
  • Wu, Y., Gan, L., Zhang, S., Song, H., Lu, C., Li, W., Wang, Z., Jiang, B., & Li, A. (2018). Carbon-nanotube-doped Pd-Ni bimetallic three-dimensional electrode for electrocatalytic hydrodechlorination of 4-chlorophenol: Enhanced activity and stability. Journal of Hazardous Materials, 356, 17–25. https://doi.org/10.1016/j.jhazmat.2018.05.034
  • Xu, Y., Ma, H., Ge, T., Chu, Y., & Ma, C.-A. (2016). Rhodium-catalyzed electrochemical hydrodefluorination: A mild approach for the degradation of fluoroaromatic pollutants. Electrochemistry Communications, 66, 16–20. https://doi.org/10.1016/j.elecom.2016.02.012
  • Xu, W., Pignatello, J. J., & Mitch, W. A. (2013). Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation on carbon surfaces by sulfides. Environmental Science & Technology, 47(13), 7129–7136. https://doi.org/10.1021/es4012367
  • Xu, W., Pignatello, J. J., & Mitch, W. A. (2015). Reduction of nitroaromatics sorbed to black carbon by direct reaction with sorbed sulfides. Environmental Science & Technology, 49(6), 3419–3426. https://doi.org/10.1021/es5045198
  • Yang, L., Chen, Z., Ma, T., Zhang, S., Dai, W., Xiao, X., Luo, X., Zou, J., Tu, X., Yang, L., & Luo, S. (2021). Efficient electrochemical dehalogenation of florfenicol without discharging toxic intermediates via direct electron transfer over electrochromic WO3. Chemical Engineering Journal, 412, 127481. https://doi.org/10.1016/j.cej.2020.127481
  • Yang, Y., Li, Y., Walse, S. S., & Mitch, W. A. (2015). Destruction of methyl bromide sorbed to activated carbon by thiosulfate or electrolysis. Environmental Science & Technology, 49(7), 4515–4521. https://doi.org/10.1021/es505709c
  • Yang, H.-H., & McCreery, R. L. (2000). Elucidation of the mechanism of dioxygen reduction on metal-free carbon electrodes. Journal of the Electrochemical Society, 147(9), 3420. https://doi.org/10.1149/1.1393915
  • Ye, J., & Chiu, P. C. (2006). Transport of atomic hydrogen through graphite and its reaction with azoaromatic compounds. Environmental Science & Technology, 40(12), 3959–3964. https://doi.org/10.1021/es060038x
  • Yin, H., Cao, X., Lei, C., Chen, W., & Huang, B. (2020). Insights into electroreductive dehalogenation mechanisms of chlorinated environmental pollutants. ChemElectroChem, 7(8), 1825–1837. https://doi.org/10.1002/celc.202000067
  • Yu, L., Yuan, Y., Tang, J., Wang, Y., & Zhou, S. (2015). Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Scientific Reports, 5(1), 16221. https://doi.org/10.1038/srep16221
  • Zhang, N., Blowers, P., & Farrell, J. (2005). Ab initio study of carbon − chlorine bond cleavage in carbon tetrachloride. Environmental Science & Technology, 39(2), 612–617. https://doi.org/10.1021/es049480a
  • Zhao, X., Li, A., Mao, R., Liu, H., & Qu, J. (2014). Electrochemical removal of haloacetic acids in a three-dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode. Water Research, 51, 134–143. https://doi.org/10.1016/j.watres.2013.12.028
  • Zhao, Q.-L., Zhang, Z.-L., Bao, L., & Pang, D.-W. (2008). Surface structure-related electrochemical behaviors of glassy carbon electrodes. Electrochemistry Communications, 10(2), 181–185. https://doi.org/10.1016/j.elecom.2007.11.017
  • Zhou, W., Rajic, L., Chen, L., Kou, K., Ding, Y., Meng, X., Wang, Y., Mulaw, B., Gao, J., Qin, Y., & Alshawabkeh, A. N. (2019). Activated carbon as effective cathode material in iron-free Electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption. Electrochimica Acta, 296, 317–326. https://doi.org/10.1016/j.electacta.2018.11.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.