726
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Machine learning-based design and monitoring of algae blooms: Recent trends and future perspectives – A short review

, , , & ORCID Icon
Pages 509-532 | Published online: 07 Sep 2023

References

  • Abduljabbar, R. L., Dia, H., & Tsai, P. W. (2021). Development and evaluation of bidirectional LSTM freeway traffic forecasting models using simulation data. Scientific Reports, 11(1), 23899. https://doi.org/10.1038/s41598-021-03282-z
  • Aka, R. J. N., Wu, S., Mohotti, D., Bashir, M. A., & Nasir, A. (2022). Evaluation of a liquid phase plasma discharge process for ammonia oxidation in wastewater: Process optimization and kinetic modeling. Water Research, 224, 119107. https://doi.org/10.1016/j.watres.2022.119107
  • Alharbi, B. (2023). Remote sensing techniques for monitoring algal blooms in the area between Jeddah and Rabigh on the Red Sea Coast. Remote Sensing Applications: Society and Environment, 30, 100935. https://doi.org/10.1016/j.rsase.2023.100935
  • Almuhtaram, H., Zamyadi, A., & Hofmann, R. (2022). Machine learning for outlier detection in algal and cyanobacterial fluorescence signals. Authorea Preprints.
  • Alsulaili, A., & Refaie, A. (2021). Artificial neural network modeling approach for the prediction of five-day biological oxygen demand and wastewater treatment plant performance. Water Supply, 21 (5), 1861–1877. https://doi.org/10.2166/ws.2020.199
  • Aranay, O. M., & Atrey, P. K. (2022). Deep active genetic learning-based assessment of lakes’ water quality using climate data. IEEE Transactions on Sustainable Computing, 7(4), 851–863. https://doi.org/10.1109/TSUSC.2022.3163229
  • Asyikin, M. N. N., Vasanthi, S., Kumar, A. S., & Anurita, S. (2020). Artificial neural network (ANN) modelling of palm oil mill effluent (POME) treatment with natural biocoagulants. Environ. Process, 7 (2), 509–535.
  • Baek, S. S., Pyo, J., Kwon, Y. S., Chun, S. J., Baek, S. H., Ahn, C. Y., Oh, H. M., Kim, Y. O., & Cho, K. H. (2021). Deep learning for simulating harmful algal blooms using ocean numerical model. Frontiers in Marine Science, 8, 729954. https://doi.org/10.3389/fmars.2021.729954
  • Baek, S., Abbas, A., Park, M., & Cho, K. H. (2022). Deep learning-based algorithms for long-term prediction of chlorophyll-A in catchment streams.
  • Baig, M. F., Mustafa, M. R. U., Baig, I., Takaijudin, H. B., & Zeshan, M. T. (2022). Assessment of land use land cover changes and future predictions using CA-ANN simulation for Selangor, Malaysia. Water, 14 (3), 402. https://doi.org/10.3390/w14030402
  • Bao, T., Fu, R., Jiang, Y., Wen, W., Zhang, X., & Wang, S. (2021). Metal-mediated polydopamine nanoparticles–DNA nanomachine coupling electrochemical conversion of metal–organic frameworks for ultrasensitive MicroRNA sensing. Analytical Chemistry, 93(40), 13475–13484. https://doi.org/10.1021/acs.analchem.1c02125
  • Baracchini, T., Wüest, A., & Bouffard, D. (2020). Meteolakes: An operational online three-dimensional forecasting platform for lake hydrodynamics. Water Research, 172, 115529. https://doi.org/10.1016/j.watres.2020.115529
  • Berglund, E. Z., Shafiee, M. E., Xing, L., & Wen, J. (2023). Digital twins for water distribution systems. Journal of Water Resources Planning and Management, 149(3), 2523001. https://doi.org/10.1061/JWRMD5.WRENG-5786
  • Bhagat, S. K., Tung, T. M., & Yaseen, Z. M. (2020). Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. Journal of Cleaner Production, 250, 119473. https://doi.org/10.1016/j.jclepro.2019.119473
  • Boyle, C., Ryan, G., Bhandari, P., Law, K. M., Gong, J., & Creighton, D. (2022). Digital transformation in water organizations. Journal of Water Resources Planning and Management, 148(7), 3122001. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001555
  • Brookfield, A. E., Hansen, A. T., Sullivan, P. L., Czuba, J. A., Kirk, M. F., Li, L., Newcomer, M. E., & Wilkinson, G. (2021). Predicting algal blooms: Are we overlooking groundwater? The Science of the Total Environment, 769, 144442. https://doi.org/10.1016/j.scitotenv.2020.144442
  • Chawla, I., Karthikeyan, L., & Mishra, A. K. (2020). A review of remote sensing applications for water security: Quantity, quality, and extremes. Journal of Hydrology, 585, 124826. https://doi.org/10.1016/j.jhydrol.2020.124826
  • Chhipi-Shrestha, G., Mian, H. R., Mohammadiun, S., Rodriguez, M., Hewage, K., & Sadiq, R. (2023). Digital water: Artificial intelligence and soft computing applications for drinking water quality assessment. Clean Technologies and Environmental Policy, 25(5), 1409–1438. https://doi.org/10.1007/s10098-023-02477-4
  • Coyne, K. J., Wang, Y., & Johnson, G. (2022). Algicidal bacteria: A review of current knowledge and applications to control harmful algal blooms. Frontiers in Microbiology, 13, 871177. https://doi.org/10.3389/fmicb.2022.871177
  • Cruz, I., Chuenchart, W., Long, F., Surendra, K. C., Renata Santos Andrade, L., Bilal, M., Liu, H., Tavares Figueiredo, R., Khanal, S. K., & Fernando Romanholo Ferreira, L. (2022). Application of machine learning in anaerobic digestion: Perspectives and challenges. Bioresource Technology, 345, 126433. https://doi.org/10.1016/j.biortech.2021.126433
  • Cruz, R. C., Reis Costa, P., Vinga, S., Krippahl, L., & Lopes, M. B. (2021). A review of recent machine learning advances for forecasting harmful algal blooms and shellfish contamination. Journal of Marine Science and Engineering, 9(3), 283. https://doi.org/10.3390/jmse9030283
  • Djork-Arne, C., Thomas, U., & Sepp, H. (2015). Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.
  • Ebrahimzadeh, G., Alimohammadi, M., Kahkah, M. R. R., & Mahvi, A. H. (2021). Relationship between algae diversity and water quality-a case study: Chah Niemeh reservoir Southeast of Iran. Journal of Environmental Health Science & Engineering, 19(1), 437–443. https://doi.org/10.1007/s40201-021-00616-x
  • Echard, J. S. (2021). A review of harmful algal bloom prediction models for lakes and reservoirs.
  • Ensafi, A. A., Khayamian, T., Benvidi, A., & Mirmomtaz, E. (2006). Simultaneous determination of copper, lead and cadmium by cathodic adsorptive stripping voltammetry using artificial neural network. Analytica Chimica Acta, 561(1–2), 225–232. https://doi.org/10.1016/j.aca.2006.01.015
  • Facchini, A., & Termine, A. (2021, September). Towards a taxonomy for the opacity of AI systems. In Conference on philosophy and theory of artificial intelligence (pp. 73–89). Springer International Publishing.
  • Faltin, E. L. (2014). The use of artificial neural networks to describe and predict the presence of harmful algae in the Indian River Lagoon.
  • Fenu, A., Guglielmi, G., Jimenez, J., Spèrandio, M., Saroj, D., Lesjean, B., Brepols, C., Thoeye, C., & Nopens, I. (2010). Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: A critical review with special regard to MBR specificities. Water Research, 44(15), 4272–4294. https://doi.org/10.1016/j.watres.2010.06.007
  • García-Nieto, P. J., García-Gonzalo, E., Lasheras, F. S., Fernández, J. A., & Muñiz, C. D. (2020). A hybrid DE optimized wavelet kernel SVR-based technique for algal atypical proliferation forecast in La Barca reservoir: A case study. Journal of Computational and Applied Mathematics, 366, 112417. https://doi.org/10.1016/j.cam.2019.112417
  • Giambattista, P., Heikki, H., & Tuomas, V. (2016). Taming the waves: Sine as activation function in deep neural networks.
  • Gopi Kiran, M., Das, R., Behera, S. K., Pakshirajan, K., & Das, G. (2021). Modelling a rotating biological contactor treating heavy metal contaminated wastewater using artificial neural network. Water Supply, 21 (5), 1895–1912. https://doi.org/10.2166/ws.2020.304
  • Guzel, H. O. (2019). Prediction of freshwater harmful algal blooms in Western Lake Erie using artificial neural network modeling techniques.
  • Hao, X., Li, Y., Ren, S., Wu, H., & Hao, Y. (2023). The role of digitalization on green economic growth: Does industrial structure optimization and green innovation matter? Journal of Environmental Management, 325(Pt A), 116504. https://doi.org/10.1016/j.jenvman.2022.116504
  • Harley, J. R., Lanphier, K., Kennedy, E., Whitehead, C., & Bidlack, A. (2020). Random forest classification to determine environmental drivers and forecast paralytic shellfish toxins in Southeast Alaska with high temporal resolution. Harmful Algae, 99, 101918. https://doi.org/10.1016/j.hal.2020.101918
  • Hilal, A. M., Althobaiti, M. M., Eisa, T. A. E., Alabdan, R., Hamza, M. A., Motwakel, A., & Negm, N. (2022). An intelligent carbon-based prediction of wastewater treatment plants using machine learning algorithms. Adsorption Science & Technology, 202, 1–9.
  • Hill, P. R., Kumar, A., Temimi, M., & Bull, D. R. (2019). HABNet: Machine learning, remote sensing based detection and prediction of harmful algal blooms. arXiv preprint arXiv:1912.02305.
  • Holden, J. P. (2016). Harmful algal blooms and hypoxia comprehensive research plan and action strategy: An interagency report. National Science and Technology Council, Subcommittee on Ocean Science and Technology.
  • Hosseinzadeh, A., Baziar, M., Alidadi, H., Zhou, J. L., Altaee, A., Najafpoor, A. A., & Jafarpour, S. (2020). Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions. Bioresource Technology, 303, 122926. https://doi.org/10.1016/j.biortech.2020.122926
  • Hosseinzadeh, A., Zhou, J. L., Altaee, A., Baziar, M., & Li, X. (2020). Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network. Bioresource Technology, 310, 123391. https://doi.org/10.1016/j.biortech.2020.123391
  • Hwangbo, S., Al, R., Chen, X., & Sin, G. (2021). Integrated model for understanding N2O emissions from wastewater treatment plants: A deep learning approach. Environmental Science & Technology, 55 (3), 2143–2151. https://doi.org/10.1021/acs.est.0c05231
  • Izadi, M., Sultan, M., Kadiri, R. E., Ghannadi, A., & Abdelmohsen, K. (2021). A remote sensing and machine learning-based approach to forecast the onset of harmful algal bloom. Remote Sensing, 13(19), 3863. https://doi.org/10.3390/rs13193863
  • Jain, S., Rathee, S., Kumar, A., Sambasivam, A., Boadh, R., Choudhary, T., Kumar, P., & Kumar Singh, P. (2022). Prediction of temperature for various pressure levels using ANN and multiple linear regression techniques: A case study. Materials Today: Proceedings, 56, 194–199. https://doi.org/10.1016/j.matpr.2022.01.067
  • Jauzein, C., Açaf, L., Accoroni, S., Asnaghi, V., Fricke, A., Hachani, M. A., Abboud-Abi Saab, M., Chiantore, M., Mangialajo, L., Totti, C., Zaghmouri, I., & Lemée, R. (2018). Optimization of sampling, cell collection and counting for the monitoring of benthic harmful algal blooms: Application to Ostreopsis spp. blooms in the Mediterranean Sea. Ecological Indicators, 91, 116–127. https://doi.org/10.1016/j.ecolind.2018.03.089
  • Jawad, J., Hawari, A. H., & Zaidi, S. J. (2021). Artificial neural network modeling of wastewater treatment and desalination using membrane processes: A review. Chemical Engineering Journal and the Biochemical Engineering Journal, 419, 129540. https://doi.org/10.1016/j.cej.2021.129540
  • Jeong, B., Chapeta, M. R., Kim, M., Kim, J., Shin, J., & Cha, Y. (2022). Machine learning-based prediction of harmful algal blooms in water supply reservoirs. Water Quality Research Journal, 57(4), 304–318. https://doi.org/10.2166/wqrj.2022.019
  • Jung, S., Yoo, C., & Im, J. (2022). High-resolution seamless daily sea surface temperature based on satellite data fusion and machine learning over Kuroshio Extension. Remote Sensing, 14(3), 575. https://doi.org/10.3390/rs14030575
  • Ke, B., Nguyen, H., Bui, X. N., Bui, H. B., Choi, Y., Zhou, J., Moayedi, H., Costache, R., & Nguyen-Trang, T. (2021). Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models. Chemosphere, 276, 130204. https://doi.org/10.1016/j.chemosphere.2021.130204
  • Khatri, N., Khatri, K. K., & Sharma, A. (2020). Artificial neural network modelling of faecal coliform removal in an intermittent cycle extended aeration system-sequential batch reactor-based wastewater treatment plant. Journal of Water Process Engineering, 37, 101477. https://doi.org/10.1016/j.jwpe.2020.101477
  • Kim, J. H., Shin, J. K., Lee, H., Lee, D. H., Kang, J. H., Cho, K. H., Lee, Y. G., Chon, K., Baek, S. S., & Park, Y. (2021). Improving the performance of machine learning models for early warning of harmful algal blooms using an adaptive synthetic sampling method. Water Research, 207, 117821. https://doi.org/10.1016/j.watres.2021.117821
  • Kim, J., Jonoski, A., & Solomatine, D. P. (2022). A classification-based machine learning approach to the prediction of cyanobacterial blooms in Chilgok Weir, South Korea. Water, 14(4), 542. https://doi.org/10.3390/w14040542
  • Kim, S., Quiroz-Arita, C., Monroe, E. A., Siccardi, A., Mitchell, J., Huysman, N., & Davis, R. W. (2021). Application of attached algae flow-ways for coupling biomass production with the utilization of dilute non-point source nutrients in the Upper Laguna Madre, TX. Water Research, 191, 116816. https://doi.org/10.1016/j.watres.2021.116816
  • Kong, Y., Zhang, Z., & Peng, Y. (2022). Multi-objective optimization of ultrasonic algae removal technology by using response surface method and non-dominated sorting genetic algorithm-II. Ecotoxicology and Environmental Safety, 230, 113151. https://doi.org/10.1016/j.ecoenv.2021.113151
  • Krishnaraj, A., & Deka, P. C. (2020). Spatial and temporal variations in river water quality of the Middle Ganga Basin using unsupervised machine learning techniques. Environmental Monitoring and Assessment, 192 (12), 744. https://doi.org/10.1007/s10661-020-08624-4
  • Kwon, D. H., Hong, S. M., Abbas, A., Pyo, J., Lee, H. K., Baek, S. S., & Cho, K. H. (2023). Inland harmful algal blooms (HABs) modeling using internet of things (IoT) system and deep learning. Environmental Engineering Research, 28(1), 210280–210280. https://doi.org/10.4491/eer.2021.280
  • Lee, D., Kim, M., Lee, B., Chae, S., Kwon, S., & Kang, S. (2022). Integrated explainable deep learning prediction of harmful algal blooms. Technological Forecasting and Social Change, 185, 122046. https://doi.org/10.1016/j.techfore.2022.122046
  • Lee, S., & Lee, D. (2018). Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models. International Journal of Environmental Research and Public Health, 15(7), 1322. https://doi.org/10.3390/ijerph15071322
  • Li, D., Liu, S., Yang, Y., Guo, L., Lyu, B., Yang, R., Zhang, X., Wang, Y., Yang, F., & Chen, Q. (2022). Metal-algae interaction contributes to the water environment heterogeneity in an urbanized river. Ecological Indicators, 139, 108875. https://doi.org/10.1016/j.ecolind.2022.108875
  • Li, D., Wang, Y., Wang, J., Wang, C., & Duan, Y. (2020). Recent advances in sensor fault diagnosis: A review. Sensors and Actuators A: Physical, 309, 111990. https://doi.org/10.1016/j.sna.2020.111990
  • Li, J., Sharma, K., Li, W., & Yuan, Z. (2022). Swift hydraulic models for real-time control applications in sewer networks. Water Research, 213, 118141. https://doi.org/10.1016/j.watres.2022.118141
  • Li, M. F., Glibert, P. M., & Lyubchich, V. (2021). Machine learning classification algorithms for predicting Karenia brevis blooms on the west Florida shelf. Journal of Marine Science and Engineering, 9(9), 999. https://doi.org/10.3390/jmse9090999
  • Li, X., Li, M., Zhang, Y., & Deng, X. (2021). A new random forest method based on belief decision trees and its application in intention estimation [Paper presentation]. 2021 33rd Chinese Control and Decision Conference (CCDC), 6008–6012. IEEE. https://doi.org/10.1109/CCDC52312.2021.9602761
  • Li, Z., Chio, S. N., Gao, L., & Zhang, P. (2023). Assessing the algal population dynamics using multiple machine learning approaches: Application to Macao reservoirs. Journal of Environmental Management, 334, 117505. https://doi.org/10.1016/j.jenvman.2023.117505
  • Lin, S., Pierson, D. C., & Mesman, J. P. (2023). Prediction of algal blooms via data-driven machine learning models: An evaluation using data from a well-monitored mesotrophic lake. Geoscientific Model Development, 16(1), 35–46. https://doi.org/10.5194/gmd-16-35-2023
  • Liu, H., Yang, J., Zhang, Y., & Yang, C. (2021). Monitoring of wastewater treatment processes using dynamic concurrent kernel partial least squares. Process Safety and Environmental Protection, 147, 274–282. https://doi.org/10.1016/j.psep.2020.09.034
  • Liu, H., Zhang, Y., & Zhang, H. (2020). Prediction of effluent quality in papermaking wastewater treatment processes using dynamic kernel-based extreme learning machine. Process Biochemistry., 97, 72–79. https://doi.org/10.1016/j.procbio.2020.06.020
  • Liu, Y., & Xie, M. (2020). Rebooting data-driven soft-sensors in process industries: A review of kernel methods. Journal of Process Control, 89, 58–73. https://doi.org/10.1016/j.jprocont.2020.03.012
  • Liu, Y., Ramin, P., Flores-Alsina, X., & Gernaey, K. V. (2023). Transforming data into actionable knowledge for fault detection, diagnosis and prognosis in urban wastewater systems with AI techniques: A mini-review. Process Safety and Environmental Protection, 172, 501–512. https://doi.org/10.1016/j.psep.2023.02.043
  • Luo, A., Chen, H., Gao, X., Carvalho, L., Xue, Y., Jin, L., & Yang, J. (2022). Short-term rainfall limits cyanobacterial bloom formation in a shallow eutrophic subtropical urban reservoir in warm season. The Science of the Total Environment, 827, 154172. https://doi.org/10.1016/j.scitotenv.2022.154172
  • Mansoori, A., Zeinalnezhad, M., & Nazarimanesh, L. (2023). Optimization of tree-based machine learning models to predict the length of hospital stay using genetic algorithm. Journal of Healthcare Engineering, 2023, 9673395. https://doi.org/10.1155/2023/9673395
  • Mathai, P. P., Staley, C., & Sadowsky, M. J. (2020). Sequence-enabled community-based microbial source tracking in surface waters using machine learning classification: A review. Journal of Microbiological Methods, 177, 106050. https://doi.org/10.1016/j.mimet.2020.106050
  • Matheri, A. N., Ntuli, F., Ngila, J. C., Seodigeng, T., & Zvinowanda, C. (2021). Performance prediction of trace metals and cod in wastewater treatment using artificial neural network. Computers and Chemical Engineering, 149, 107308. https://doi.org/10.1016/j.compchemeng.2021.107308
  • Meng, S. L., Chen, X., Wang, J., Fan, L. M., Qiu, L. P., Zheng, Y., & Chen, J. Z. (2022). Interaction effects of temperature, light, nutrients and pH on growth and fisheries ecological environment in South China Sea. Frontiers in Environmental Science9, 690191. https://doi.org/10.3389/fenvs.2021.690191
  • Mesellem, H., Hanini, S., Laidi, M., Abdallah, A. E. H., & Mesllem, Y. (2021). Artificial neural network modelling of multi-system dynamic adsorption of organic pollutants on activated carbon. Kemija u industriji, 70 (1-2), 1–12. https://doi.org/10.15255/KUI.2020.011
  • Miao, S., Zhou, C., AlQahtani, S. A., Alrashoud, M., Ghoneim, A., & Lv, Z. (2021). Applying machine learning in intelligent sewage treatment: A case study of chemical plant in sustainable cities. Sustainable Cities and Society, 72, 103009. https://doi.org/10.1016/j.scs.2021.103009
  • Miller, T. R., Tarpey, W., Nuese, J., & Smith, M. (2022). Real-time monitoring of cyanobacterial harmful algal blooms with the panther buoy. ACS ES&T Water, 2(6), 1099–1110. https://doi.org/10.1021/acsestwater.2c00072
  • Mokhtari, H. A., Bagheri, M., Mirbagheri, S. A., & Akbari, A. (2020). Performance evaluation and modelling of an integrated municipal wastewater treatment system using neural networks. Water and Environment Journal, 34(S1), 622–634. https://doi.org/10.1111/wej.12565
  • Molnar, C. (2020). Interpretable machine learning. Lulu Publishers.
  • Mozo, A., Morón-López, J., Vakaruk, S., Pompa-Pernía, Á. G., González-Prieto, Á., Aguilar, J. A. P., Gómez-Canaval, S., & Ortiz, J. M. (2022). Chlorophyll soft-sensor based on machine learning models for algal bloom predictions. Scientific Reports, 12(1), 13529. https://doi.org/10.1038/s41598-022-17299-5
  • Mustafa, H. M., Mustapha, A., Hayder, G., & Salisu, A. (2021, January). Applications of IoT and artificial intelligence in water quality monitoring and prediction: A review. In 2021 6th international conference on inventive computation technologies (ICICT) (pp. 968–975). IEEE. https://doi.org/10.1109/ICICT50816.2021.9358675
  • Newcomer, M. E., Cheng, Y., & Bhoot, V. (2019). Climate and hydrological controls on coastal harmful algal blooms. In AGU Fall Meeting Abstracts, 2019, pp. OS11B-07.
  • Newhart, K. B., Holloway, R. W., Hering, A. S., & Cath, T. Y. (2019). Data-driven performance analyses of wastewater treatment plants: A review. Water Research, 157, 498–513. https://doi.org/10.1016/j.watres.2019.03.030
  • Ni, J., Liu, R., Li, Y., Tang, G., & Shi, P. (2022). An improved transfer learning model for cyanobacterial bloom concentration prediction. Water, 14(8), 1300. https://doi.org/10.3390/w14081300
  • Ni, J., Liu, R., Tang, G., & Xie, Y. (2022). An improved attention-based bidirectional LSTM model for cyanobacterial bloom prediction. International Journal of Control, Automation and Systems, 20(10), 3445–3455. https://doi.org/10.1007/s12555-021-0802-9
  • Nourani, V., Asghari, P., & Sharghi, E. (2021). Artificial intelligence-based ensemble modeling of wastewater treatment plant using jittered data. Journal of Cleaner Production, 291, 125772. https://doi.org/10.1016/j.jclepro.2020.125772
  • Paliwal, M., Patel, M., Kandale, N., & Anute, N. (2021). Impact of artificial intelligence and machine learning on business operations. Journal of Management Research and Analysis, 8(2), 69–74. https://doi.org/10.18231/j.jmra.2021.015
  • Park, J., Lee, W. H., Kim, K. T., Park, C. Y., Lee, S., & Heo, T. Y. (2022). Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. The Science of the Total Environment, 832, 155070. https://doi.org/10.1016/j.scitotenv.2022.155070
  • Park, S., & Sin, Y. (2021). Artificial neural network (ANN) modeling analysis of algal blooms in an estuary with episodic and anthropogenic freshwater inputs. Applied Sciences, 11(15), 6921. https://doi.org/10.3390/app11156921
  • Park, Y., Lee, H. K., Shin, J. K., Chon, K., Kim, S., Cho, K. H., Kim, J. H., & Baek, S. S. (2021). A machine learning approach for early warning of cyanobacterial bloom outbreaks in a freshwater reservoir. Journal of Environmental Management, 288, 112415. https://doi.org/10.1016/j.jenvman.2021.112415
  • Pattnaik, B. S., Pattanayak, A. S., Udgata, S. K., & Panda, A. K. (2021). Machine learning based soft sensor model for BOD estimation using intelligence at edge. Complex & Intelligent Systems, 7 (2), 961–976. https://doi.org/10.1007/s40747-020-00259-9
  • Pham, Q. B., Gaya, M. S., Abba, S. I., Abdulkadir, R. A., Esmaili, P., Linh, N. T. T., Sharma, C., Malik, A., Khoi, D. N., Dung, T. D., & Linh, D. Q. (2020). Modelling of Bunus regional sewage treatment plant using machine learning approaches. Desalination and Water Treatment, 203, 80–90. https://doi.org/10.5004/dwt.2020.26160
  • Picos-Benítez, A. R., Martínez-Vargas, B. L., Duron-Torres, S. M., Brillas, E., & Peralta-Hernández, J. M. (2020). The use of artificial intelligence models in the prediction of optimum operational conditions for the treatment of dye wastewaters with similar structural characteristics. Process Safety and Environmental Protection, 143, 36–44. https://doi.org/10.1016/j.psep.2020.06.020
  • Pondichery V. K., & D. Shankar. (2021). Forecasting algae blooms in aquaculture using mussels’ openings data.
  • Priyadarshini, E., Priyadarshini, S. S., & Pradhan, N. (2019). Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Applied Microbiology and Biotechnology, 103(8), 3297–3316. https://doi.org/10.1007/s00253-019-09685-3
  • Reguera, B., Alonso, R., Moreira, Á., Méndez, S., & DechraouiBottein, M. Y. (2016). Guide for designing and implementing a plan to monitor toxin-producing microalgae.
  • Sabapathipillai, G., Kuganesan, S., & Kuganesan, T. (2023). Smart water dam transformation in industry 4.0. In 16th WCEAM proceedings (pp. 118–129). Springer International Publishing.
  • Schäfer, B., Beck, C., Rhys, H., Soteriou, H., Jennings, P., Beechey, A., & Heppell, C. M. (2022). Machine learning approach towards explaining water quality dynamics in an urbanised river. Scientific Reports, 12(1), 12346. https://doi.org/10.1038/s41598-022-16342-9
  • Shahbeik, H., Shafizadeh, A., Nadian, M. H., Jeddi, D., Mirjalili, S., Yang, Y., Lam, S. S., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2023). Using evolutionary machine learning to characterize and optimize co-pyrolysis of biomass feedstocks and polymeric wastes. Journal of Cleaner Production, 387, 135881. https://doi.org/10.1016/j.jclepro.2023.135881
  • Shakil, A., Khalighi, A., Pudlo, P., Leclerc, C., Laplace, D., Hamon, F., & Boudonne, A. (2022). Outlier detection in non-stationary time series applied to sewer network monitoring. Internet of Things, 21, 100654. https://doi.org/10.1016/j.iot.2022.100654
  • Shao, S. Y., Sun, W. J., Yan, R. Q., Wang, P., & Gao, R. X. (2017). A deep learning approach for fault diagnosis of induction motors in manufacturing. Chinese Journal of Mechanical Engineering, 30(6), 1347–1356. https://doi.org/10.1007/s10033-017-0189-y
  • Shen, J., Qin, Q., Wang, Y., & Sisson, M. (2019). A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading. Ecological Modelling, 398, 44–54. https://doi.org/10.1016/j.ecolmodel.2019.02.005
  • Shi, X., Qi, M., Tang, H., & Han, X. (2015). Spatial and temporal nutrient variations in the Yellow Sea and their effects on Ulva prolifera blooms. Estuarine, Coastal and Shelf Science, 163, 36–43. https://doi.org/10.1016/j.ecss.2015.02.007
  • Shin, Y., Kim, T., Hong, S., Lee, S., Lee, E., Hong, S., Lee, C., Kim, T., Park, M. S., Park, J., & Heo, T. Y. (2020). Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods. Water, 12(6), 1822. https://doi.org/10.3390/w12061822
  • Shokri Dariyan, F., Eslami, A., Aghayani, E., Pourakbar, M., & Oghazyan, A. (2022). Comparison of artificial neural network and multi-kinetic models to predict optimum retention time for dairy wastewater treatment in the integrated fixed-film activated sludge. International Journal of Environmental and Analytical Chemistry, 102(16), 4594–4608. https://doi.org/10.1080/03067319.2020.1785442
  • Singh, N. K., Yadav, M., Singh, V., Padhiyar, H., Kumar, V., Bhatia, S. K., & Show, P. L. (2022). Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems. Bioresource Technology, 369, 128486. https://doi.org/10.1016/j.biortech.2022.128486
  • Song, K., Zhu, S., Lu, Y., Dao, G., Wu, Y., Chen, Z., Wang, S., Liu, J., Zhou, W., & Hu, H. Y. (2022). Modelling the thresholds of nitrogen/phosphorus concentration and hydraulic retention time for bloom control in reclaimed water landscape. Frontiers of Environmental Science & Engineering, 16(10), 129. https://doi.org/10.1007/s11783-022-1564-1
  • Sundui, B., Ramirez Calderon, O. A., Abdeldayem, O. M. L., Azaro-Gil, J., Rene, E. R., & Sambuu, U. (2021). Applications of machine learning algorithms for biological wastewater treatment: Updates and perspectives. Clean Technologies and Environmental Policy, 23 (1), 127–143. https://doi.org/10.1007/s10098-020-01993-x
  • Tang, Y., Feng, Y., Fung, S., Xomchuk, V. R., Jiang, M., Moore, T., & Beckler, J. (2022). Spatiotemporal deep-learning-based algal bloom prediction for Lake Okeechobee using multisource data fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 8318–8331. https://doi.org/10.1109/JSTARS.2022.3208620
  • Taoufik, N., Boumya, W., Achak, M., Chennouk, H., Dewil, R., & Barka, N. (2022). The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning. The Science of the Total Environment, 807(Pt 1), 150554. https://doi.org/10.1016/j.scitotenv.2021.150554
  • Teimoori, S., Olya, M. H., & Miller, C. (2022). Groundwater level monitoring networks design with machine learning methods.
  • Therrien, J. D., Nicolaï, N., & Vanrolleghem, P. A. (2020). A critical review of the data pipeline: How wastewater system operation flows from data to intelligence. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 82 (12), 2613–2634. https://doi.org/10.2166/wst.2020.393
  • Townhill, B. L., Tinker, J., Jones, M., Pitois, S., Creach, V., Simpson, S. D., Dye, S., Bear, E., & Pinnegar, J. K. (2019). Harmful algal blooms and climate change: Exploring future distribution changes. ICES Journal of Marine Science, 76(1), 353–353. https://doi.org/10.1093/icesjms/fsy203
  • Turek, M., Was, J., & Dydo, P. (2009). Brackish water desalination in RO–single pass EDR system. Desalination and Water Treatment, 7(1-3), 263–266. https://doi.org/10.5004/dwt.2009.710
  • Valbi, E., Ricci, F., Capellacci, S., Casabianca, S., Scardi, M., & Penna, A. (2019). A model predicting the PSP toxic dinoflagellate Alexandrium minutum occurrence in the coastal waters of the NW Adriatic Sea. Scientific Reports, 9(1), 4166. https://doi.org/10.1038/s41598-019-40664-w
  • Viet, N. D., Jang, D., Yoon, Y., & Jang, A. (2022). Enhancement of membrane system performance using artificial intelligence technologies for sustainable water and wastewater treatment: A critical review. Critical Reviews in Environmental Science and Technology, 52 (20), 3689–3719. https://doi.org/10.1080/10643389.2021.1940031
  • Vishwakarma, R., Dhaka, V., Ariyadasa, T. U., & Malik, A. (2022). Exploring algal technologies for a circular bio-based economy in rural sector. Journal of Cleaner Production, 354, 131653. https://doi.org/10.1016/j.jclepro.2022.131653
  • Wang, J., Yan, B., Zhang, H., Huang, L., Wang, H., Lan, Q., Yin, M., Zhu, Z., Yan, X., Zhu, A., Fu, C., & Wu, Y. (2022). Heavy metals exacerbate the effect of temperature on the growth of Chlorella sp.: Implications on algal blooms and management. Processes, 10(12), 2638. https://doi.org/10.3390/pr10122638
  • Wang, L., Zhang, T., Jin, X., Xu, J., Wang, X., Zhang, H., Yu, J., Sun, Q., Zhao, Z., & Xie, Y. (2020). An approach of recursive timing deep belief network for algal bloom forecasting. Neural Computing and Applications, 32(1), 163–171. https://doi.org/10.1007/s00521-018-3790-9
  • Wang, Q., Sun, L., Zhu, Y., Wang, S., Duan, C., Yang, C., Zhang, Y., Liu, D., Zhao, L., & Tang, J. (2022). Hysteresis effects of meteorological variation-induced algal blooms: A case study based on satellite-observed data from Dianchi Lake, China (1988–2020). The Science of the Total Environment, 812, 152558. https://doi.org/10.1016/j.scitotenv.2021.152558
  • Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S. O., Trick, C. G., Kudela, R. M., Ishikawa, A., Bernard, S., Wulff, A., Anderson, D. M., & Cochlan, W. P. (2015). Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae, 49, 68–93. https://doi.org/10.1016/j.hal.2015.07.009
  • Wen, J., Yang, J., Li, Y., & Gao, L. (2022). Harmful algal bloom warning based on machine learning in maritime site monitoring. Knowledge-Based Systems, 245, 108569. https://doi.org/10.1016/j.knosys.2022.108569
  • Xi, N., Zang, M., Lin, R., Sun, Y., & Mei, G. (2023). Spatiotemporal prediction of landslide displacement using deep learning approaches based on monitored time-series displacement data: A case in the Huanglianshu landslide. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 17(1), 98–113. https://doi.org/10.1080/17499518.2023.2172186
  • Yang, K., Luo, Y., Chen, K., Yang, Y., Shang, C., Yu, Z., Xu, J., & Zhao, Y. (2020). Spatial–temporal variations in urbanization in Kunming and their impact on urban lake water quality. Land Degradation & Development, 31(11), 1392–1407. https://doi.org/10.1002/ldr.3543
  • Yang, Z., Wei, C., Liu, D., Lin, Q., Huang, Y., Wang, C., Ji, D., Ma, J., & Yang, H. (2022). The influence of hydraulic characteristics on algal bloom in three gorges reservoir, China: A combination of cultural experiments and field monitoring. Water Research, 211, 118030. https://doi.org/10.1016/j.watres.2021.118030
  • Yaqub, M., Asif, H., Kim, S., & Lee, W. (2020). Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network. Journal of Water Process Engineering, 37, 101388. https://doi.org/10.1016/j.jwpe.2020.101388
  • Yi, H. S., Lee, B., Park, S., Kwak, K. C., & An, K. G. (2019). Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine. Environmental Engineering Research, 24(3), 404–411. https://doi.org/10.4491/eer.2018.245
  • Yu, P., Gao, R., Zhang, D., & Liu, Z. P. (2021). Predicting coastal algal blooms with environmental factors by machine learning methods. Ecological Indicators, 123, 107334. https://doi.org/10.1016/j.ecolind.2020.107334
  • Zhang, L., Lin, J., & Karim, R. (2018). Adaptive kernel density-based anomaly detection for nonlinear systems. Knowledge-Based Systems, 139, 50–63. https://doi.org/10.1016/j.knosys.2017.10.009
  • Zhao, L., Dai, T., Qiao, Z., Sun, P., Hao, J., & Yang, Y. (2020). Application of artificial intelligence to wastewater treatment: a bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Safety and Environment Protection, 133, 169–182. https://doi.org/10.1016/j.psep.2019.11.014
  • Zheng, L., Wang, H., Liu, C., Zhang, S., Ding, A., Xie, E., Li, J., & Wang, S. (2021). Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models. Journal of Environmental Management, 295, 113060. https://doi.org/10.1016/j.jenvman.2021.113060
  • Zhou, F., Park, J. H., & Liu, Y. (2016). Differential feature based hierarchical PCA fault detection method for dynamic fault. Neurocomputing, 202, 27–35. https://doi.org/10.1016/j.neucom.2016.03.007
  • Zhou, J., Huang, F., Shen, W., Liu, Z., Corriou, J. P., & Seferlis, P. (2021). Sub-period division strategies combined with multiway principle component analysis for fault diagnosis on sequence batch reactor of wastewater treatment process in paper mill. Process Safety and Environmental Protection, 146, 9–19. https://doi.org/10.1016/j.psep.2020.08.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.