642
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Diatoms in wastewater treatment: Potentials, applications, and values of biomass

, , , , & ORCID Icon
Pages 557-580 | Published online: 26 Sep 2023

References

  • Ahirwar, A., Das, S., Das, S., Yang, Y.-H., Bhatia, S. K., Vinayak, V., & Ghangrekar, M. M. (2023). Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. Algal Research, 70, 102973. https://doi.org/10.1016/j.algal.2023.102973
  • Al-Hassany, J. S., Alrubai, G. H., & Jasim, I. (2021). The potential use of the diatom Nitzschia palea (Kützing) W. Smith for the removal of certain pollutants from Al-Rustumeyah wastewater treatment plant in Baghdad-Iraq. IOP Conference Series: Earth and Environmental Science, 779(1), 012114. https://doi.org/10.1088/1755-1315/779/1/012114
  • Amin, S. A., Hmelo, L. R., van Tol, H. M., Durham, B. P., Carlson, L. T., Heal, K. R., Morales, R. L., Berthiaume, C. T., Parker, M. S., Djunaedi, B., Ingalls, A. E., Parsek, M. R., Moran, M. A., & Armbrust, E. V. (2015). Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, 522(7554), 98–101. https://doi.org/10.1038/nature14488
  • Amin, S. A., Parker, M. S., & Armbrust, E. V. (2012). Interactions between diatoms and bacteria. Microbiology and Molecular Biology Reviews: MMBR, 76(3), 667–684. https://doi.org/10.1128/MMBR.00007-12
  • Andrew, S., Wilson, T., Smith, S., Marchetti, A., & Septer, A. N. (2022). A tripartite model system for Southern Ocean diatom-bacterial interactions reveals the coexistence of competing symbiotic strategies. ISME Communications, 2(1), 97. https://doi.org/10.1038/s43705-022-00181-w
  • Azizullah, A., Khan, S., Gao, G., & Gao, K. (2022). The interplay between bisphenol A and algae – A review. Journal of King Saud University-Science, 34(5), 102050. https://doi.org/10.1016/j.jksus.2022.102050
  • Barčauskaitė, K., Drapanauskaitė, D., Silva, M., Murzin, V., Doyeni, M., Urbonavicius, M., Williams, C. F., Supronienė, S., & Baltrusaitis, J. (2021). Low concentrations of Cu2+ in synthetic nutrient containing wastewater inhibit MgCO3-to-struvite transformation. Environmental Science: Water Research & Technology, 7(3), 521–534. https://doi.org/10.1039/D0EW01035A
  • Beardall, J., & Raven, J. A. (2020). Acquisition of inorganic carbon by microalgae and cyanobacteria. In Q. Wang (Ed.), Microbial photosynthesis (pp. 151–168). Springer Nature Singapore.
  • Behrenfeld, M. J., Halsey, K. H., Boss, E., Karp-Boss, L., Milligan, A. J., & Peers, G. (2021). Thoughts on the evolution and ecological niche of diatoms. Ecological Monographs, 91(3), e01457. https://doi.org/10.1002/ecm.1457
  • Bopp, S. K., & Lettieri, T. (2007). Gene regulation in the marine diatom Thalassiosira pseudonana upon exposure to polycyclic aromatic hydrocarbons (PAHs). Gene, 396(2), 293–302. https://doi.org/10.1016/j.gene.2007.03.013
  • Broddrick, J. T., Du, N., Smith, S. R., Tsuji, Y., Jallet, D., Ware, M. A., Peers, G., Matsuda, Y., Dupont, C. L., Mitchell, B. G., Palsson, B. O., & Allen, A. E. (2019). Cross-compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom Phaeodactylum tricornutum. New Phytologist, 222(3), 1364–1379. https://doi.org/10.1111/nph.15685
  • Cabrera-Brufau, M., Arin, L., Sala, M. M., Cermeño, P., & Marrasé, C. (2021). Diatom dominance enhances resistance of phytoplanktonic POM to mesopelagic microbial decomposition. Frontiers in Marine Science, 8, 683354. https://doi.org/10.3389/fmars.2021.683354
  • Chaib, N., Dzizi, S., Kaddeche, H., & Noune, F. (2021). Performance of a fixed-bed bioreactor using diatom biofilms for wastewater bioremediation. CLEAN–Soil, Air, Water, 49, 2000282.
  • Chan, S. M. N., Luan, T., Wong, M. H., & Tam, N. F. Y. (2006). Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environmental Toxicology and Chemistry, 25(7), 1772–1779. https://doi.org/10.1897/05-354r.1
  • Chen, B., Xue, C., Amoah, P. K., Li, D., Gao, K., & Deng, X. (2019). Impacts of four ionic liquids exposure on a marine diatom Phaeodactylum tricornutum at physiological and biochemical levels. Science of the Total Environment, 665, 492–501. https://doi.org/10.1016/j.scitotenv.2019.02.020
  • Cupo, A., Landi, S., Morra, S., Nuzzo, G., Gallo, C., Manzo, E., Fontana, A., & d’Ippolito, G. (2021). Autotrophic vs. heterotrophic cultivation of the marine diatom Cyclotella cryptica for EPA production. Marine Drugs, 19(7), 355. https://doi.org/10.3390/md19070355
  • Davis, A. K., & Hildebrand, M. (2008). A self-propagating system for Ge incorporation into nanostructured silica. Chemical Communications (Cambridge, England), (37), 4495–4497. https://doi.org/10.1039/b804955f
  • de Haan, D., Aram, L., Peled-Zehavi, H., Addadi, Y., Ben-Joseph, O., Rotkopf, R., Elad, N., Rechav, K., & Gal, A. (2023). Exocytosis of the silicified cell wall of diatoms involves extensive membrane disintegration. Nature Communications, 14(1), 480. https://doi.org/10.1038/s41467-023-36112-z
  • Delalat, B., Sheppard, V. C., Rasi Ghaemi, S., Rao, S., Prestidge, C. A., McPhee, G., Rogers, M.-L., Donoghue, J. F., Pillay, V., Johns, T. G., Kröger, N., & Voelcker, N. H. (2015). Targeted drug delivery using genetically engineered diatom biosilica. Nature Communications, 6(1), 8791. https://doi.org/10.1038/ncomms9791
  • Deng, X.-Y., Hu, X.-L., Cheng, J., Ma, Z.-X., & Gao, K. (2016). Growth inhibition and oxidative stress induced by 1-octyl-3-methylimidazolium bromide on the marine diatom Skeletonema costatum. Ecotoxicology and Environmental Safety, 132, 170–177. https://doi.org/10.1016/j.ecoenv.2016.06.009
  • Deng, Y., Mauri, M., Vallet, M., Staudinger, M., Allen, R. J., & Pohnert, G. (2022). Dynamic diatom-bacteria consortia in synthetic plankton communities. Applied and Environmental Microbiology, 88(22), e01619-22. https://doi.org/10.1128/aem.01619-22
  • Ding, T., Lin, K., Yang, B., Yang, M., & Li, J. (2019). Toxic effects and metabolic fate of carbamazepine in diatom Navicula sp. as influenced by humic acid and nitrogen species. Journal of Hazardous Materials, 378, 120763. https://doi.org/10.1016/j.jhazmat.2019.120763
  • Ding, T., Wang, S., Yang, B., & Li, J. (2020). Biological removal of pharmaceuticals by Navicula sp. and biotransformation of bezafibrate. Chemosphere, 240, 124949. https://doi.org/10.1016/j.chemosphere.2019.124949
  • Ding, T., Yang, M., Zhang, J., Yang, B., Lin, K., Li, J., & Gan, J. (2017). Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. Journal of Hazardous Materials, 330, 127–134. https://doi.org/10.1016/j.jhazmat.2017.02.004
  • Esfandyari, J., Shojaedin-Givi, B., Mozafari-Nia, M., Hashemzadeh, H., & Naderi-Manesh, H. (2019). Diatom biosilica shell manipulation with gold, spion nanoparticles and trastuzumab with aims of diagnostics of her2 cells. Modares Journal of Biotechnology, 10, 581–588.
  • Esumi, K., Isono, R., & Yoshimura, T. (2004). Preparation of PAMAM − and PPI − metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir: The ACS Journal of Surfaces and Colloids, 20(1), 237–243. https://doi.org/10.1021/la035440t
  • Fei, C., Ochsenkühn, M. A., Shibl, A. A., Isaac, A., Wang, C., & Amin, S. A. (2020). Quorum sensing regulates ‘swim-or-stick’ lifestyle in the phycosphere. Environmental Microbiology, 22(11), 4761–4778. https://doi.org/10.1111/1462-2920.15228
  • Feng, F., Li, Y., Latimer, B., Zhang, C., Nair, S. S., & Hu, Z. (2021). Prediction of maximum algal productivity in membrane bioreactors with a light-dependent growth model. Science of the Total Environment, 753, 141922. https://doi.org/10.1016/j.scitotenv.2020.141922
  • Fischer, C., Adam, M., Mueller, A. C., Sperling, E., Wustmann, M., van Pée, K.-H., Kaskel, S., & Brunner, E. (2016). Gold nanoparticle-decorated diatom biosilica: A favorable catalyst for the oxidation of D-glucose. ACS Omega, 1(6), 1253–1261. https://doi.org/10.1021/acsomega.6b00406
  • Fisher, N. L., Halsey, K. H., Suggett, D. J., Pombrol, M., Ralph, P. J., Lutz, A., Sogin, E. M., Raina, J.-B., & Matthews, J. L. (2023). Light-dependent metabolic shifts in the model diatom Thalassiosira pseudonana. Algal Research, 74, 103172. https://doi.org/10.1016/j.algal.2023.103172
  • Fu, W., Shu, Y., Yi, Z., Su, Y., Pan, Y., Zhang, F., & Brynjolfsson, S. (2022). Diatom morphology and adaptation: Current progress and potentials for sustainable development. Sustainable Horizons, 2, 100015. https://doi.org/10.1016/j.horiz.2022.100015
  • Gao, B., Chen, A., Zhang, W., Li, A., & Zhang, C. (2017). Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. Journal of Ocean University of China, 16(5), 916–924. https://doi.org/10.1007/s11802-017-3174-2
  • Ghazvini, M., Kavosi, M., Sharma, R., & Kim, M. (2022). A review on mechanical-based microalgae harvesting methods for biofuel production. Biomass and Bioenergy, 158, 106348. https://doi.org/10.1016/j.biombioe.2022.106348
  • Giri, T., Goutam, U., Arya, A., & Gautam, S. (2022). Effect of nutrients on diatom growth: A Review. Trends in Sciences, 19(2), 1752–1752. https://doi.org/10.48048/tis.2022.1752
  • Golubeva, A., Roychoudhury, P., Dąbek, P., Pryshchepa, O., Pomastowski, P., Pałczyńska, J., Piszczek, P., Gloc, M., Dobrucka, R., Feliczak-Guzik, A., Nowak, I., Buszewski, B., & Witkowski, A. (2023). Removal of the basic and diazo dyes from aqueous solution by the frustules of Halamphora cf. salinicola (Bacillariophyta). Marine Drugs, 21(5), 312. https://doi.org/10.3390/md21050312
  • Govindan, N., Maniam, G. P., Yusoff, M. M., Ab. Rahim, M. H., Chatsungnoen, T., Ramaraj, R., & Chisti, Y. (2020). Statistical optimization of lipid production by the diatom Gyrosigma sp. grown in industrial wastewater. Journal of Applied Phycology, 32(1), 375–387. https://doi.org/10.1007/s10811-019-01971-x
  • Grivalský, T., Střížek, A., Přibyl, P., Lukavský, J., Čegan, R., Hobza, R., & Hrouzek, P. (2021). Comparison of various approaches to detect algal culture contamination: A case study of Chlorella sp. contamination in a Phaeodactylum tricornutum culture. Applied Microbiology and Biotechnology, 105(12), 5189–5200. https://doi.org/10.1007/s00253-021-11396-7
  • Grønning, J., & Kiørboe, T. (2020). Diatom defence: Grazer induction and cost of shell-thickening. Functional Ecology, 34(9), 1790–1801. https://doi.org/10.1111/1365-2435.13635
  • Groß, E., Boersma, M., & Meunier, C. L. (2021). Environmental impacts on single-cell variation within a ubiquitous diatom: The role of growth rate. PLoS One, 16(5), e0251213. https://doi.org/10.1371/journal.pone.0251213
  • Gutierrez Moreno, J. J., Pan, K., Wang, Y., & Li, W. (2020). Computational study of APTES surface functionalization of diatom-like amorphous SiO2 surfaces for heavy metal adsorption. Langmuir: The ACS Journal of Surfaces and Colloids, 36(20), 5680–5689. https://doi.org/10.1021/acs.langmuir.9b03755
  • Harini, A. B., Sarangi, N. V., Nisha, N., & Rajkumar, R. (2023). Cultivation of a marine diatom, Amphora sp., in municipal wastewater for enhancing lipid production toward sustainable biofuel production. South African Journal of Botany, 155, 288–297. https://doi.org/10.1016/j.sajb.2023.02.007
  • Hethnawi, A., Nassar, N. N., Manasrah, A. D., & Vitale, G. (2017). Polyethylenimine-functionalized pyroxene nanoparticles embedded on diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chemical Engineering Journal, 320, 389–404. https://doi.org/10.1016/j.cej.2017.03.057
  • Hong, Y.-W., Yuan, D.-X., Lin, Q.-M., & Yang, T.-L. (2008). Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollution Bulletin, 56(8), 1400–1405. https://doi.org/10.1016/j.marpolbul.2008.05.003
  • Hou, L., Griswold, N., Ji, J., & Hu, Z. (2020). Specific affinity and relative abundance of methanogens in acclimated anaerobic sludge treating low-strength wastewater. Applied Microbiology and Biotechnology, 104(1), 291–302. https://doi.org/10.1007/s00253-019-10149-x
  • Hou, X., & Hu, X. (2022). Self-assembled nanoscale manganese oxides enhance carbon capture by diatoms. Environmental Science & Technology, 56(23), 17215–17226. https://doi.org/10.1021/acs.est.2c04500
  • Hou, L., Kumar, D., Yoo, C. G., Gitsov, I., & Majumder, E. L.-W. (2021). Conversion and removal strategies for microplastics in wastewater treatment plants and landfills. Chemical Engineering Journal, 406, 126715. https://doi.org/10.1016/j.cej.2020.126715
  • Huapaya, K., & Echeveste, P. (2023). Physiological responses of Humboldt current system diatoms to Fe and Cu co-limitation. Marine Environmental Research, 187, 105937. https://doi.org/10.1016/j.marenvres.2023.105937
  • Iwasaki, K., Evenhuis, C., Tamburic, B., Kuzhiumparambil, U., O’Connor, W., Ralph, P., & Szabó, M. (2021). Improving light and CO2 availability to enhance the growth rate of the diatom, Chaetoceros muelleri. Algal Research, 55, 102234. https://doi.org/10.1016/j.algal.2021.102234
  • Jayakumar, S., Bhuyar, P., Pugazhendhi, A., Rahim, M. H. A., Maniam, G. P., & Govindan, N. (2021). Effects of light intensity and nutrients on the lipid content of marine microalga (diatom) Amphiprora sp. for promising biodiesel production. Science of the Total Environment, 768, 145471. https://doi.org/10.1016/j.scitotenv.2021.145471
  • Jiang, J., Huang, J., Zhang, H., Zhang, Z., Du, Y., Cheng, Z., Feng, B., Yao, T., Zhang, A., & Zhao, Z. (2022). Potential integration of wastewater treatment and natural pigment production by Phaeodactylum tricornutum: Microalgal growth, nutrient removal, and fucoxanthin accumulation. Journal of Applied Phycology, 34(3), 1411–1422. https://doi.org/10.1007/s10811-022-02700-7
  • Kabir, A., Nazeer, N., Bissessur, R., & Ahmed, M. (2020). Diatoms embedded, self-assembled carriers for dual delivery of chemotherapeutics in cancer cell lines. International Journal of Pharmaceutics, 573, 118887. https://doi.org/10.1016/j.ijpharm.2019.118887
  • Kahla, O., Melliti Ben Garali, S., Karray, F., Ben Abdallah, M., Kallel, N., Mhiri, N., Zaghden, H., Barhoumi, B., Pringault, O., Quéméneur, M., Tedetti, M., Sayadi, S., & Sakka Hlaili, A. (2021). Efficiency of benthic diatom-associated bacteria in the removal of benzo(a)pyrene and fluoranthene. Science of the Total Environment, 751, 141399. https://doi.org/10.1016/j.scitotenv.2020.141399
  • Karpagam, R., Jawaharraj, K., Ashokkumar, B., Pugazhendhi, A., & Varalakshmi, P. (2022). A cheap two-step cultivation of Phaeodactylum tricornutum for increased TAG production and differential expression of TAG biosynthesis associated genes. Journal of Biotechnology, 354, 53–62. https://doi.org/10.1016/j.jbiotec.2022.06.002
  • Karp-Boss, L., Gueta, R., & Rousso, I. (2014). Judging diatoms by their cover: Variability in local elasticity of Lithodesmium undulatum undergoing cell division. PLoS One, 9(10), e109089. https://doi.org/10.1371/journal.pone.0109089
  • Kellogg, R. M., Moran, D. M., McIlvin, M. R., Subhas, A. V., Allen, A. E., & Saito, M. A. (2022). Lack of a Zn/Co substitution ability in the polar diatom Chaetoceros neogracile RS19. Limnology and Oceanography, 67(10), 2265–2280. https://doi.org/10.1002/lno.12201
  • Kesaano, M., & Sims, R. (2014). Algal biofilm based technology for wastewater treatment. Algal Research, 5, 231–240. https://doi.org/10.1016/j.algal.2014.02.003
  • Khan, M. J., Ahirwar, A., Schoefs, B., Pugazhendhi, A., Varjani, S., Rajendran, K., Bhatia, S. K., Saratale, G. D., Saratale, R. G., Vinayak, V., & Harish  . (2021a). Insights into diatom microalgal farming for treatment of wastewater and pretreatment of algal cells by ultrasonication for value creation. Environmental research, 201, 111550. https://doi.org/10.1016/j.envres.2021.111550
  • Khan, M. J., Rai, A., Ahirwar, A., Sirotiya, V., Mourya, M., Mishra, S., Schoefs, B., Marchand, J., Bhatia, S. K., Varjani, S., & Vinayak, V. (2021b). Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: Recent trends and innovations. Bioengineered, 12(2), 9531–9549. https://doi.org/10.1080/21655979.2021.1996748
  • Klawonn, I., Van den Wyngaert, S., Parada, A. E., Arandia-Gorostidi, N., Whitehouse, M. J., Grossart, H.-P., & Dekas, A. E. (2021). Characterizing the “fungal shunt”: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proceedings of the National Academy of Sciences of the United States of America, 118(23), e2102225118. https://doi.org/10.1073/pnas.2102225118
  • Korkmaz, A., Kenton, M., Aksin, G., Kahraman, M., & Wachsmann-Hogiu, S. (2018). Inexpensive and flexible SERS substrates on adhesive tape based on biosilica plasmonic nanocomposites. ACS Applied Nano Materials, 1(9), 5316–5326. https://doi.org/10.1021/acsanm.8b01336
  • Kröger, N., & Poulsen, N. (2008). Diatoms–from cell wall biogenesis to nanotechnology. Annual Review of Genetics, 42(1), 83–107. https://doi.org/10.1146/annurev.genet.41.110306.130109
  • Lai, H.-L., Yang, L.-C., Lin, P.-T., Lai, S.-Y., & Wang, M.-Y. (2020). Phagocytosis activity of three sulfated polysaccharides purified from a marine diatom cultured in a semi-continuous system. International Journal of Biological Macromolecules, 155, 951–960. https://doi.org/10.1016/j.ijbiomac.2019.11.054
  • Lamprecht, O., Wagner, B., Derlon, N., & Tlili, A. (2022). Synthetic periphyton as a model system to understand species dynamics in complex microbial freshwater communities. NPJ Biofilms and Microbiomes, 8(1), 61. https://doi.org/10.1038/s41522-022-00322-y
  • Li, M., Liu, D., Wang, S., Guo, H., Losic, D., Deng, L., Wu, S., & Yuan, P. (2023). Efficient removal of Cd2+ by diatom frustules self-modified in situ with intercellular organic components. Environmental Pollution (Barking, Essex: 1987), 319, 121005. https://doi.org/10.1016/j.envpol.2023.121005
  • Litchman, E., Klausmeier, C., & Yoshiyama, K. (2009). Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2665–2670. https://doi.org/10.1073/pnas.0810891106
  • Liu, X., Li, Y., Shen, R., Zhang, M., & Chen, F. (2022b). Reducing nutrient increases diatom biomass in a subtropical eutrophic lake, China – Do the ammonium concentration and nitrate to ammonium ratio play a role? Water Research, 218, 118493. https://doi.org/10.1016/j.watres.2022.118493
  • Liu, S., Storti, M., Finazzi, G., Bowler, C., & Dorrell, R. G. (2022a). A metabolic, phylogenomic and environmental atlas of diatom plastid transporters from the model species Phaeodactylum. Frontiers in Plant Science, 13, 950467. https://doi.org/10.3389/fpls.2022.950467
  • Li, Y., Zhang, C., He, X., & Hu, Z. (2022). Solids retention time dependent, tunable diatom hierarchical micro/nanostructures and their effect on nutrient removal. Water Research, 216, 118346. https://doi.org/10.1016/j.watres.2022.118346
  • Li, Y., Zhang, C., & Hu, Z. (2021). Selective removal of pharmaceuticals and personal care products from water by titanium incorporated hierarchical diatoms in the presence of natural organic matter. Water Research, 189, 116628. https://doi.org/10.1016/j.watres.2020.116628
  • Lu, X., Yu, W., Chen, B., Ma, Z., Chen, G., Ge, F., An, S., & Han, W. (2023). Imbalanced phytoplankton C, N, P and its relationship with seawater nutrients in Xiamen Bay, China. Marine Pollution Bulletin, 187, 114566. https://doi.org/10.1016/j.marpolbul.2022.114566
  • Lynn, S. G., Price, D. J., Birge, W. J., & Kilham, S. S. (2007). Effect of nutrient availability on the uptake of PCB congener 2, 2′, 6, 6′-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquatic Toxicology (Amsterdam, Netherlands), 83(1), 24–32. https://doi.org/10.1016/j.aquatox.2007.03.007
  • Ma, Q., Chen, L., & Zhang, L. (2023). Effects of phosphate on the toxicity and bioaccumulation of arsenate in marine diatom Skeletonema costatum. Science of the Total Environment, 857(Pt 2), 159566. https://doi.org/10.1016/j.scitotenv.2022.159566
  • Marella, T. K., Bhattacharjya, R., & Tiwari, A. (2021). Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms. Microbial Cell Factories, 20(1), 135. https://doi.org/10.1186/s12934-021-01627-x
  • Marella, T. K., López-Pacheco, I. Y., Parra-Saldívar, R., Dixit, S., & Tiwari, A. (2020a). Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Science of the Total Environment, 724, 137960. https://doi.org/10.1016/j.scitotenv.2020.137960
  • Marella, T. K., Parine, N. R., & Tiwari, A. (2018). Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water. Saudi Journal of Biological Sciences, 25(4), 704–709. https://doi.org/10.1016/j.sjbs.2017.05.011
  • Marella, T. K., Saxena, A., & Tiwari, A. (2020b). Diatom mediated heavy metal remediation: A review. Bioresource Technology, 305, 123068. https://doi.org/10.1016/j.biortech.2020.123068
  • Martinez-Rabert, E., Smith, C. J., Sloan, W. T., & González-Cabaleiro, R. (2022). Biochemistry shapes growth kinetics of nitrifiers and defines their activity under specific environmental conditions. Biotechnology and Bioengineering, 119(5), 1290–1300. https://doi.org/10.1002/bit.28045
  • Mayzel, B., Aram, L., Varsano, N., Wolf, S. G., & Gal, A. (2021). Structural evidence for extracellular silica formation by diatoms. Nature Communications, 12(1), 4639. https://doi.org/10.1038/s41467-021-24944-6
  • Mesquita, A. F., Jesus, F., Gonçalves, F. J., & Gonçalves, A. M. (2023). Ecotoxicological and biochemical effects of a binary mixture of pesticides on the marine diatom Thalassiosira weissflogii in a scenario of global warming. Science of the Total Environment, 876, 162737. https://doi.org/10.1016/j.scitotenv.2023.162737
  • Meyer, N., Rydzyk, A., & Pohnert, G. (2022). Pronounced uptake and metabolism of organic substrates by diatoms revealed by pulse-labeling metabolomics. Frontiers in Marine Science, 9, 821167. https://doi.org/10.3389/fmars.2022.821167
  • Mishra, B., & Tiwari, A. (2022). Sustainable aquaculture wastewater remediation through diatom and biomass valorization. In S. Varjani. (Ed.), Biomass, Biofuels, Biochemicals (pp. 181–202). Elsevier.
  • Moravek, A., Sims, R., & Miller, C. (2023). Next generation sequencing of RABR biofilms for more efficient wastewater treatment. Poster presented at Institute of Biological Engineering Annual Conference, April 13 to 15, 2023. Iowa State University, Iowa, United States.
  • Moreno, C. M., Gong, W., Cohen, N. R., DeLong, K., & Marchetti, A. (2020). Interactive effects of iron and light limitation on the molecular physiology of the Southern Ocean diatom Fragilariopsis kerguelensis. Limnology and Oceanography, 65(7), 1511–1531. https://doi.org/10.1002/lno.11404
  • Nagai, T., & De Schamphelaere, K. A. (2016). The effect of binary mixtures of zinc, copper, cadmium, and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions. Environmental Toxicology and Chemistry, 35(11), 2765–2773. https://doi.org/10.1002/etc.3445
  • Neury-Ormanni, J., Vedrenne, J., & Morin, S. (2020). Benthic diatom growth kinetics under combined pressures of microalgal competition, predation and chemical stressors. Science of the Total Environment, 734, 139484. https://doi.org/10.1016/j.scitotenv.2020.139484
  • Nowicka, B. (2022). Heavy metal-induced stress in eukaryotic algae–mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environmental Science and Pollution Research International, 29(12), 16860–16911. https://doi.org/10.1007/s11356-021-18419-w
  • Nur, M. M. A., Muizelaar, W., Boelen, P., & Buma, A. (2019a). Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent. Journal of Applied Phycology, 31(1), 111–122. https://doi.org/10.1007/s10811-018-1563-6
  • Nur, M. M. A., Swaminathan, M. K., Boelen, P., & Buma, A. (2019b). Sulfated exopolysaccharide production and nutrient removal by the marine diatom Phaeodactylum tricornutum growing on palm oil mill effluent. Journal of Applied Phycology, 31(4), 2335–2348. https://doi.org/10.1007/s10811-019-01780-2
  • Ogunjemilusi, R. (2021). Investigating the ecotoxicity of metals and metal-oxide nanoparticles in the benthic microalga Cylindrotheca closterium [Ph.D. thesis]. University of Bristol.
  • Orefice, I., Musella, M., Smerilli, A., Sansone, C., Chandrasekaran, R., Corato, F., & Brunet, C. (2019). Role of nutrient concentrations and water movement on diatom’s productivity in culture. Scientific Reports, 9(1), 1479. https://doi.org/10.1038/s41598-018-37611-6
  • Oruganti, R. K., Katam, K., Show, P. L., Gadhamshetty, V., Upadhyayula, V. K. K., & Bhattacharyya, D. (2022). A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered, 13(4), 10412–10453. https://doi.org/10.1080/21655979.2022.2056823
  • Pančić, M., Torres, R. R., Almeda, R., & Kiørboe, T. (2019). Silicified cell walls as a defensive trait in diatoms. Proceedings. Biological Sciences, 286(1901), 20190184. https://doi.org/10.1098/rspb.2019.0184
  • Pandey, L. K., Han, T., & Gaur, J. (2015). Response of a phytoplanktonic assemblage to copper and zinc enrichment in microcosm. Ecotoxicology (London, England), 24(3), 573–582. https://doi.org/10.1007/s10646-014-1405-5
  • Pierella Karlusich, J. J., Bowler, C., & Biswas, H. (2021). Carbon dioxide concentration mechanisms in natural populations of marine diatoms: Insights from Tara oceans. Frontiers in Plant Science, 12, 657821. https://doi.org/10.3389/fpls.2021.657821
  • Qin, T., Gutu, T., Jiao, J., Chang, C.-H., & Rorrer, G. L. (2008). Photoluminescence of silica nanostructures from bioreactor culture of marine diatom Nitzschia frustulum. Journal of Nanoscience and Nanotechnology, 8(5), 2392–2398. https://doi.org/10.1166/jnn.2008.241
  • Rai, A., Sirotiya, V., Mourya, M., Khan, M. J., Ahirwar, A., Sharma, A. K., Kawatra, R., Marchand, J., Schoefs, B., Varjani, S., & Vinayak, V. (2022). Sustainable treatment of dye wastewater by recycling microalgal and diatom biogenic materials: Biorefinery perspectives. Chemosphere, 305, 135371. https://doi.org/10.1016/j.chemosphere.2022.135371
  • Raven, J., & Waite, A. (2004). The evolution of silicification in diatoms: Inescapable sinking and sinking as escape? New Phytologist, 162(1), 45–61. https://doi.org/10.1111/j.1469-8137.2004.01022.x
  • Reid, A., Buchanan, F., Julius, M., & Walsh, P. (2021). A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair. Journal of Materials Chemistry. B, 9(34), 6728–6737. https://doi.org/10.1039/d1tb00322d
  • Roychoudhury, P., Bose, R., Dąbek, P., & Witkowski, A. (2022). Photonic nano-/microstructured diatom based biosilica in metal modification and removal—A review. Materials, 15(19), 6597. https://doi.org/10.3390/ma15196597
  • Rue, E., & Bruland, K. (2001). Domoic acid binds iron and copper: A possible role for the toxin produced by the marine diatom Pseudo-nitzschia. Marine Chemistry, 76(1–2), 127–134. https://doi.org/10.1016/S0304-4203(01)00053-6
  • Sasirekha, R., Sheena, T. S., Deepika, M. S., Santhanam, P., Townley, H. E., Jeganathan, K., Kumar, S. D., & Premkumar, K. (2019). Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy. Materials Science & Engineering. C, Materials for Biological Applications, 94, 56–64. https://doi.org/10.1016/j.msec.2018.09.009
  • Sato, R., Maeda, Y., Yoshino, T., Tanaka, T., & Matsumoto, M. (2014). Seasonal variation of biomass and oil production of the oleaginous diatom Fistulifera sp. in outdoor vertical bubble column and raceway-type bioreactors. Journal of Bioscience and Bioengineering, 117(6), 720–724. https://doi.org/10.1016/j.jbiosc.2013.11.017
  • Savio, S., Farrotti, S., Di Giulio, A., De Santis, S., Ellwood, N., Ceschin, S., & Congestri, R. (2022). Functionalization of frustules of the diatom Staurosirella pinnata for nickel (Ni) adsorption from contaminated aqueous solutions. Frontiers in Marine Science, 9, 889832. https://doi.org/10.3389/fmars.2022.889832
  • Saxena, A., Singh, P. K., Bhatnagar, A., & Tiwari, A. (2022). Growth of marine diatoms on aquaculture wastewater supplemented with nanosilica. Bioresource Technology, 344(Pt A), 126210. https://doi.org/10.1016/j.biortech.2021.126210
  • Sayanova, O., Mimouni, V., Ulmann, L., Morant-Manceau, A., Pasquet, V., Schoefs, B., & Napier, J. A. (2017). Modulation of lipid biosynthesis by stress in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1728), 20160407. https://doi.org/10.1098/rstb.2016.0407
  • Sbihi, K., Cherifi, O., Bertrand, M., & El Gharmali, A. (2014). Biosorption of metals (Cd, Cu and Zn) by the freshwater diatom Planothidium lanceolatum: A laboratory study. Diatom Research, 29(1), 55–63. https://doi.org/10.1080/0269249X.2013.872193
  • Scarsini, M., Thiriet-Rupert, S., Veidl, B., Mondeguer, F., Hu, H., Marchand, J., & Schoefs, B. (2021). The transition toward nitrogen deprivation in diatoms requires chloroplast stand-by and deep metabolic reshuffling. Frontiers in Plant Science, 12, 760516. https://doi.org/10.3389/fpls.2021.760516
  • Sen, J., Dhawan, P., De, P., & Mazumder, N. (2022). Effects of light on physico-chemical properties of diatoms. In. N. Mazumder & R. Gordon (Eds.), Diatom microscopy (pp. 307–334). John Wiley & Sons.
  • Sharma, N., Simon, D. P., Diaz-Garza, A. M., Fantino, E., Messaabi, A., Meddeb-Mouelhi, F., Germain, H., & Desgagné-Penix, I. (2021). Diatoms biotechnology: Various industrial applications for a greener tomorrow. Frontiers in Marine Science, 8, 636613. https://doi.org/10.3389/fmars.2021.636613
  • Singh, P. K., Bhattacharjya, R., Mishra, B., Saxena, A., & Tiwari, A. (2022a). A multifaceted approach towards valorizing diatom Thalassiosira weissflogii, cultivated on diluted municipal wastewater for enhanced biodiesel production. Fuel, 328, 125311. https://doi.org/10.1016/j.fuel.2022.125311
  • Singh, P. K., Bhattacharjya, R., Saxena, A., Mishra, B., & Tiwari, A. (2021). Utilization of wastewater as nutrient media and biomass valorization in marine Chrysophytes-Chaetoceros and Isochrysis. Energy Conversion and Management: X, 10, 100062. https://doi.org/10.1016/j.ecmx.2020.100062
  • Singh, P. K., Bhattacharjya, R., Saxena, A., Thakur, I. S., & Tiwari, A. (2022b). Envisaging the role of pharmaceutical contaminant 17-β estradiol on growth and lipid productivity of marine diatom Chaetoceros gracilis. Bioresource Technology, 346, 126642. https://doi.org/10.1016/j.biortech.2021.126642
  • Singh, P. K., Saxena, A., Tyagi, R., Sindhu, R., Binod, P., & Tiwari, A. (2023). Biomass valorization of agriculture wastewater grown freshwater diatom Nitzschia sp. for metabolites, antibacterial activity, and biofertilizer. Bioresource Technology, 377, 128976. https://doi.org/10.1016/j.biortech.2023.128976
  • Sisman-Aydin, G. (2022). Comparative study on phycoremediation performance of three native microalgae for primary-treated municipal wastewater. Environmental Technology & Innovation, 28, 102932. https://doi.org/10.1016/j.eti.2022.102932
  • Sittmann, J., Bae, M., Mevers, E., Li, M., Quinn, A., Sriram, G., Clardy, J., & Liu, Z. (2021). Bacterial diketopiperazines stimulate diatom growth and lipid accumulation. Plant Physiology, 186(2), 1159–1170. https://doi.org/10.1093/plphys/kiab080
  • Solé, A., & Matamoros, V. (2016). Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads. Chemosphere, 164, 516–523. https://doi.org/10.1016/j.chemosphere.2016.08.047
  • Sriram, G., Bhat, M. P., Kigga, M., Uthappa, U., Jung, H.-Y., Kumeria, T., & Kurkuri, M. D. (2019). Amine activated diatom xerogel hybrid material for efficient removal of hazardous dye. Materials Chemistry and Physics, 235, 121738. https://doi.org/10.1016/j.matchemphys.2019.121738
  • Stief, P., Schauberger, C., Lund, M. B., Greve, A., Abed, R. M. M., Al-Najjar, M. A. A., Attard, K., Bonaglia, S., Deutzmann, J. S., Franco-Cisterna, B., García-Robledo, E., Holtappels, M., John, U., Maciute, A., Magee, M. J., Pors, R., Santl-Temkiv, T., Scherwass, A., Sevilgen, D. S., … Kamp, A. (2022). Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems. Communications Earth & Environment, 3(1), 154. https://doi.org/10.1038/s43247-022-00485-8
  • Stock, W., Blommaert, L., De Troch, M., Mangelinckx, S., Willems, A., Vyverman, W., & Sabbe, K. (2019). Host specificity in diatom–bacteria interactions alleviates antagonistic effects. FEMS Microbiology Ecology, 95(11), fiz171. https://doi.org/10.1093/femsec/fiz171
  • Su, Y., Lundholm, N., Friis, S. M., & Ellegaard, M. (2015). Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths. Nano Research, 8(7), 2363–2372. https://doi.org/10.1007/s12274-015-0746-6
  • Sun, H., Li, T., Lei, F., Lyu, S., Yang, Y., Li, B., Han, H., Wu, B., Huang, J., Zhang, C., Li, D., & Sun, D. (2021). Fast self-healing superhydrophobic thermal energy storage coatings fabricated by bio-based beeswax and artificially cultivated diatom frustules. ACS Applied Materials & Interfaces, 13(40), 48088–48100. https://doi.org/10.1021/acsami.1c14065
  • Su, Y., Qi, H., Hou, Y., Gao, M., Li, J., Cai, M., Zhu, X., Chen, M., Ge, C., Fu, D., Wang, Z., & Peng, L. (2022). Combined effects of microplastics and benzo[a]pyrene on the marine diatom Chaetoceros muelleri. Frontiers in Marine Science, 8, 779321. https://doi.org/10.3389/fmars.2021.779321
  • Tiwari, A., & Marella, T. K. (2019). Potential and application of diatoms for industry-specific wastewater treatment. In S. K. Gupta and F. Bux (Eds.), Application of microalgae in wastewater treatment: Volume 1: Domestic and industrial wastewater treatment (pp. 321–339). Springer Nature Switzerland.
  • Ur Rahman, S., Li, Y., Hussain, S., Hussain, B., Khan, W-u-D., Riaz, L., Nadeem Ashraf, M., Athar Khaliq, M., Du, Z., & Cheng, H. (2023). Role of phytohormones in heavy metal tolerance in plants: A review. Ecological Indicators, 146, 109844. https://doi.org/10.1016/j.ecolind.2022.109844
  • Veronesiv, D., D’Imporzano, G., Salati, S., & Adani, F. (2017). Pre-treated digestate as culture media for producing algal biomass. Ecological Engineering, 105, 335–340. https://doi.org/10.1016/j.ecoleng.2017.05.007
  • Villanova, V., & Spetea, C. (2021). Mixotrophy in diatoms: Molecular mechanism and industrial potential. Physiologia Plantarum, 173(2), 603–611. https://doi.org/10.1111/ppl.13471
  • Wang, X., Bao, K., Cao, W., Zhao, Y., & Hu, C. W. (2017). Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology. Scientific Reports, 7(1), 5426. https://doi.org/10.1038/s41598-017-05841-9
  • Wang, H., Chen, F., Mi, T., Liu, Q., Yu, Z., & Zhen, Y. (2020). Responses of marine diatom Skeletonema marinoi to nutrient deficiency: programmed cell death. Applied and Environmental Microbiology, 86(3), e02460-19. https://doi.org/10.1128/AEM.02460-19
  • Wang, J., Tian, Z., Huo, Y., Yang, M., Zheng, X., & Zhang, Y. (2018). Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. Journal of Environmental Sciences (China), 67, 309–317. https://doi.org/10.1016/j.jes.2017.09.014
  • Wang, Z., Wang, C., Li, W., Wang, M., & Xiao, L. (2021b). Interspecies competition between Scrippsiella acuminata and three marine diatoms: Growth inhibition and allelopathic effects. Aquatic Toxicology (Amsterdam, Netherlands), 237, 105878. https://doi.org/10.1016/j.aquatox.2021.105878
  • Wang, Q., Zhang, C., Jung, H., Liu, P., Patel, D., Pavlostathis, S. G., & Tang, Y. (2021a). Transformation and mobility of Cu, Zn, and Cr in sewage sludge during anaerobic digestion with pre-or interstage hydrothermal treatment. Environmental Science & Technology, 55(3), 1615–1625. https://doi.org/10.1021/acs.est.0c05164
  • Wang, Z., Zhao, Y., Ge, Z., Zhang, H., & Sun, S. (2016). Selection of microalgae for simultaneous biogas upgrading and biogas slurry nutrient reduction under various photoperiods. Journal of Chemical Technology & Biotechnology, 91(7), 1982–1989. https://doi.org/10.1002/jctb.4788
  • Wu, Y., Yuan, Y., Yuan, H., Zhang, W., & Zhang, L. (2019). Predicting cadmium toxicity with the kinetics of phytochelatin induction in a marine diatom. Aquatic Toxicology (Amsterdam, Netherlands), 207, 101–109. https://doi.org/10.1016/j.aquatox.2018.12.008
  • Wysokowski, M., Bartczak, P., Żółtowska-Aksamitowska, S., Chudzińska, A., Piasecki, A., Langer, E., Bazhenov, V. V., Petrenko, I., Noga, T., Stelling, A. L., Ehrlich, H., & Jesionowski, T. (2017). Adhesive stalks of diatom Didymosphenia geminata as a novel biological adsorbent for hazardous metals removal. CLEAN–Soil, Air, Water, 45(11), 1600678. https://doi.org/10.1002/clen.201600678
  • Xing, R., l. Ma, W., Shao, Y., Cao, X., Su, C., Song, H., Su, Q., & Zhou, G. (2018). Growth and potential purification ability of Nitzschia sp. benthic diatoms in sea cucumber aquaculture wastewater. Aquaculture Research, 49(8), 2644–2652. https://doi.org/10.1111/are.13722
  • Xu, K., Zou, X., Xue, Y., Qu, Y., & Li, Y. (2021). The impact of seasonal variations about temperature and photoperiod on the treatment of municipal wastewater by algae-bacteria system in lab-scale. Algal Research, 54, 102175. https://doi.org/10.1016/j.algal.2020.102175
  • Yang, Y., Chen, Z., Zhang, J., Wu, S., Yang, L., Chen, L., & Shao, Y. (2021). The challenge of micropollutants in surface water of the Yangtze River. Science of the Total Environment, 780, 146537. https://doi.org/10.1016/j.scitotenv.2021.146537
  • Yang, C., Feng, C., Li, Y., Cao, Z., Sun, Y., Li, X., Zhang, L., Zhou, C., & Han, J. (2023). Morphological and physicochemical characteristics, biological functions, and biomedical applications of diatom frustule. Algal Research, 72, 103104. https://doi.org/10.1016/j.algal.2023.103104
  • Yano, R., Ohara, S., & Koike, K. (2023). High light stress under phosphorus limitation in summer may accelerate diatom shift from Skeletonema to Chaetoceros in an oligotrophic coastal area of Japan. Frontiers in Marine Science, 10, 1095762. https://doi.org/10.3389/fmars.2023.1095762
  • Zamani-Ahmadmahmoodi, R., Malekabadi, M. B., Rahimi, R., & Johari, S. A. (2020). Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata. Environmental Monitoring and Assessment, 192(6), 330. https://doi.org/10.1007/s10661-020-8222-5
  • Zepernick, B. N., Gann, E. R., Martin, R. M., Pound, H. L., Krausfeldt, L. E., Chaffin, J. D., & Wilhelm, S. W. (2021). Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom Fragilaria crotonensis and natural diatoms in Lake Erie. Frontiers in Microbiology, 12, 598736. https://doi.org/10.3389/fmicb.2021.598736
  • Zhang, S., Liu, H., Ke, Y., & Li, B. (2017). Effect of the silica content of diatoms on protozoan grazing. Frontiers in Marine Science, 4, 202. https://doi.org/10.3389/fmars.2017.00202
  • Zhang, J. Y., Ni, W. M., Zhu, Y. M., & Pan, Y. D. (2013). Effects of different nitrogen species on sensitivity and photosynthetic stress of three common freshwater diatoms. Aquatic Ecology, 47(1), 25–35. https://doi.org/10.1007/s10452-012-9422-z
  • Zhao, Y., Tang, X., Lv, M., Liu, Q., Li, J., Zhang, B., Li, L., Zhang, X., & Zhao, Y. (2020). The molecular response mechanisms of a diatom Thalassiosira pseudonana to the toxicity of BDE-47 based on whole transcriptome analysis. Aquatic Toxicology (Amsterdam, Netherlands), 229, 105669. https://doi.org/10.1016/j.aquatox.2020.105669
  • Zhou, Q., Sun, H., Jia, L., Wu, W., & Wang, J. (2022b). Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: A review. Chemosphere, 296, 134054. https://doi.org/10.1016/j.chemosphere.2022.134054
  • Zhou, B., Zou, Y., Ma, J., Li, Y., & Pan, K. (2022a). Toxicity and bioaccumulation of copper in Phaeodactylum tricornutum under different macronutrient conditions. Frontiers in Marine Science, 9, 907114. https://doi.org/10.3389/fmars.2022.907114
  • Zulu, N. N., Zienkiewicz, K., Vollheyde, K., & Feussner, I. (2018). Current trends to comprehend lipid metabolism in diatoms. Progress in Lipid Research, 70, 1–16. https://doi.org/10.1016/j.plipres.2018.03.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.