351
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

What innovative nitrite furnishing processes can be coupled with anammox for excellent nitrogen removal?

, , , &
Pages 1195-1217 | Published online: 18 Jan 2024

References

  • Arquiaga, M. C., Canter, L. W., & Sabatini, D. A. (1993). Microbiology of high-sodium-nitrite-waste-water treatment. Environmental Pollution (Barking, Essex: 1987), 81(1), 1–6. https://doi.org/10.1016/0269-7491(93)90021-f
  • Bai, Y. H., Chang, Y. Y., Liang, J. S., Chen, C., & Qu, J. H. (2016). Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters. Water Research, 106, 126–134. https://doi.org/10.1016/j.watres.2016.09.040
  • Bai, Y., Su, J., Ali, A., Wen, Q., Chang, Q., Gao, Z., & Wang, Y. (2022). Efficient removal of nitrate, manganese, and tetracycline in a novel loofah immobilized bioreactor: Performance, microbial diversity, and functional genes. Bioresource Technology, 344(Pt B), 126228. https://doi.org/10.1016/j.biortech.2021.126228
  • Bai, Y., Wang, S., Zhussupbekova, A., Shvets, I. V., Lee, P. H., & Zhan, X. (2023). High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: Nutrients removal performance and microbial characterization. Water Research, 231, 119619. https://doi.org/10.1016/j.watres.2023.119619
  • Bi, Z., Zhang, W., Song, G., & Huang, Y. (2019). Iron-dependent nitrate reduction by anammox consortia in continuous-flow reactors: A novel prospective scheme for autotrophic nitrogen removal. The Science of the Total Environment, 692, 582–588. https://doi.org/10.1016/j.scitotenv.2019.07.078
  • Cai, C., Hu, S. H., Guo, J. H., Shi, Y., Xie, G. J., & Yuan, Z. G. (2015). Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate. Water Research, 87, 211–217. https://doi.org/10.1016/j.watres.2015.09.026
  • Cai, C., Zhang, X. Q., Wu, M. X., Liu, T., Lai, C. Y., Frank, J., He, B. Q., Marcellin, E., Guo, J. H., Hu, S. H., & Yuan, Z. G. (2021). Roles and opportunities for microbial anaerobic oxidation of methane in natural and engineered systems. Energy & Environmental Science, 14(9), 4803–4830. https://doi.org/10.1039/D1EE00708D
  • Chan, O. C., Claus, P., Casper, P., Ulrich, A., Lueders, T., & Conrad, R. (2005). Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environmental Microbiology, 7(8), 1139–1149. https://doi.org/10.1111/j.1462-2920.2005.00790.x
  • Chen, X. M., Guo, J. H., Xie, G. J., Yuan, Z. G., & Ni, B. J. (2016). Achieving complete nitrogen removal by coupling nitritation-anammox and methane-dependent denitrification: A model-based study. Biotechnology and Bioengineering, 113(5), 1035–1045. https://doi.org/10.1002/bit.25866
  • Chen, F. M., Li, X., Gu, C. W., Huang, Y., & Yuan, Y. (2018). Selectivity control of nitrite and nitrate with the reaction of S-0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process. Bioresource Technology, 266, 211–219. https://doi.org/10.1016/j.biortech.2018.06.062
  • Chen, F., Li, X., Yuan, Y., & Huang, Y. (2019). An efficient way to enhance the total nitrogen removal efficiency of the Anammox process by S0-based short-cut autotrophic denitrification. Journal of Environmental Sciences (China), 81, 214–224. https://doi.org/10.1016/j.jes.2019.01.010
  • Chen, J., Zhou, Z. C., & Gu, J. D. (2014). Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Applied Microbiology and Biotechnology, 98(12), 5685–5696. https://doi.org/10.1007/s00253-014-5733-4
  • Della Rocca, C., Belgiorno, V., & Meriç, S. (2006). An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochemistry, 41(5), 1022–1028. https://doi.org/10.1016/j.procbio.2005.11.002
  • Ding, Z. W., Ding, J., Fu, L., Zhang, F., & Zeng, R. J. (2014). Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Applied Microbiology and Biotechnology, 98(24), 10211–10221. https://doi.org/10.1007/s00253-014-5936-8
  • Ding, Z. W., Lu, Y. Z., Fu, L., Ding, J., & Zeng, R. J. (2017). Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor. Applied Microbiology and Biotechnology, 101(1), 437–446. https://doi.org/10.1007/s00253-016-7908-7
  • Du, R., Peng, Y. Z., Cao, S. B., Li, B. K., Wang, S. Y., & Niu, M. (2016). Mechanisms and microbial structure of partial denitrification with high nitrite accumulation. Applied Microbiology and Biotechnology, 100(4), 2011–2021. https://doi.org/10.1007/s00253-015-7052-9
  • Epsztein, R., Beliavski, M., Tarre, S., & Green, M. (2016). High-rate hydrogenotrophic denitrification in a pressurized reactor. Chemical Engineering Journal, 286, 578–584. https://doi.org/10.1016/j.cej.2015.11.004
  • Erikson, K. M., & Aschner, M. (2019). Manganese: Its role in disease and health. Metal Ions in Life Sciences, 19, 253–266.
  • Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J., Janssen-Megens, E. M., Francoijs, K. J., … Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543–548. https://doi.org/10.1038/nature08883
  • Ettwig, K. F., Shima, S., van de Pas-Schoonen, K. T., Kahnt, J., Medema, M. H., Op den Camp, H. J., Jetten, M. S., & Strous, M. (2008). Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environmental Microbiology, 10(11), 3164–3173. https://doi.org/10.1111/j.1462-2920.2008.01724.x
  • Fernandes, S. O., Javanaud, C., Aigle, A., Michotey, V. D., Guasco, S., Deborde, J., Deflandre, B., Anschutz, P., & Bonin, P. C. (2015). Anaerobic nitrification-denitrification mediated by Mn-oxides in meso-tidal sediments: Implications for N-2 and N2O production. Journal of Marine Systems, 144, 1–8. https://doi.org/10.1016/j.jmarsys.2014.11.011
  • Fu, L., Ding, Z. W., Ding, J., Zhang, F., & Zeng, R. J. (2015). The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes. Applied Microbiology and Biotechnology, 99(19), 7925–7936. https://doi.org/10.1007/s00253-015-6670-6
  • Gao, Z., Ali, A., Su, J., Chang, Q., Bai, Y., Wang, Y., & Liu, Y. (2022). Bioaugmented removal of 17beta-estradiol, nitrate and Mn(II) by polypyrrole@corn cob immobilized bioreactor: Performance optimization, mechanism, and microbial community response. Environmental Pollution (Barking, Essex: 1987), 299, 118896. https://doi.org/10.1016/j.envpol.2022.118896
  • Guo, Q., Hu, H. Y., Shi, Z. J., Yang, C. C., Li, P., Huang, M., Ni, W. M., Shi, M. L., & Jin, R. C. (2016). Towards simultaneously removing nitrogen and sulfur by a novel process: Anammox and autotrophic desulfurization-denitrification (AADD). Chemical Engineering Journal, 297, 207–216. https://doi.org/10.1016/j.cej.2016.03.138
  • Haaijer, S. C. M., Lamers, L. P. M., Smolders, A., J. P., Jetten, M. S. M., den Camp,., & H., J. M. O. (2007). Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiology Journal, 24(5), 391–401. https://doi.org/10.1080/01490450701436489
  • Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M., & DeLong, E. F. (2004). Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science (New York, N.Y.), 305(5689), 1457–1462. https://doi.org/10.1126/science.1100025
  • Hang, Q., Wang, H., He, Z., Dong, W., Chu, Z., Ling, Y., Yan, G., Chang, Y., & Li, C. (2020). Hydrilla verticillata–sulfur-based heterotrophic and autotrophic denitrification process for nitrate-rich agricultural runoff treatment. International Journal of Environmental Research and Public Health, 17(5), 1574. https://doi.org/10.3390/ijerph17051574
  • Harb, R., Laçin, D., Subaşı, I., & Erguder, T. H. (2021). Denitrifying anaerobic methane oxidation (DAMO) cultures: Factors affecting their enrichment, performance and integration with anammox bacteria. Journal of Environmental Management, 295, 113070. https://doi.org/10.1016/j.jenvman.2021.113070
  • Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., & Tyson, G. W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(7464), 567–570. https://doi.org/10.1038/nature12375
  • He, Z. F., Geng, S., Shen, L. D., Lou, L. P., Zheng, P., Xu, X. H., & Hu, B. L. (2015). The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Research, 68, 554–562. https://doi.org/10.1016/j.watres.2014.09.055
  • Henderson, S. L., Dandie, C. E., Patten, C. L., Zebarth, B. J., Burton, D. L., Trevors, J. T., & Goyer, C. (2010). Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Applied and Environmental Microbiology, 76(7), 2155–2164. https://doi.org/10.1128/AEM.02993-09
  • Huang, B., Chi, G., Chen, X., & Shi, Y. (2011). Removal of highly elevated nitrate from drinking water by pH-heterogenized heterotrophic denitrification facilitated with ferrous sulfide-based autotrophic denitrification. Bioresource Technology, 102(21), 10154–10157. https://doi.org/10.1016/j.biortech.2011.08.048
  • Huang, Y. M., Straub, D., Kappler, A., Smith, N., Blackwell, N., & Kleindienst, S. (2021). A novel enrichment culture highlights core features of microbial networks contributing to autotrophic Fe(II) oxidation coupled to nitrate reduction. Microbial Physiology, 31(3), 280–295. https://doi.org/10.1159/000517083
  • Hu, S., Zeng, R. J., Haroon, M. F., Keller, J., Lant, P. A., Tyson, G. W., & Yuan, Z. (2015). A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. Scientific Reports, 5(1), 8706. https://doi.org/10.1038/srep08706
  • Hu, S. H., Zeng, R. J., Keller, J., Lant, P. A., & Yuan, Z. G. (2011). Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environmental Microbiology Reports, 3(3), 315–319. https://doi.org/10.1111/j.1758-2229.2010.00227.x
  • Islas-Lima, S., Thalasso, F., & Gómez-Hernandez, J. (2004). Evidence of anoxic methane oxidation coupled to denitrification. Water Research, 38(1), 13–16. https://doi.org/10.1016/j.watres.2003.08.024
  • Jakus, N., Blackwell, N., Osenbrück, K., Straub, D., Byrne, J. M., Wang, Z., Glöckler, D., Elsner, M., Lueders, T., Grathwohl, P., Kleindienst, S., & Kappler, A. (2021). Nitrate removal by a novel lithoautotrophic nitrate-reducing, iron(II)-oxidizing culture enriched from a pyrite-rich limestone aquifer. Applied and Environmental Microbiology, 87(16), e0046021. https://doi.org/10.1128/AEM.00460-21
  • Jiang, C. H., Xu, X. P., Megharaj, M., Naidu, R., & Chen, Z. L. (2015). Inhibition or promotion of biodegradation of nitrate by Paracoccus sp in the presence of nanoscale zero-valent iron. The Science of the Total Environment, 530-531, 241–246. https://doi.org/10.1016/j.scitotenv.2015.05.044
  • Jin, R. C., Yang, G. F., Zhang, Q. Q., Ma, C., Yu, J. J., & Xing, B. S. (2013). The effect of sulfide inhibition on the ANAMMOX process. Water Research, 47(3), 1459–1469. https://doi.org/10.1016/j.watres.2012.12.018
  • Kalyuzhnyi, S., Gladchenko, M., Mulder, A., & Versprille, B. (2006). DEAMOX - New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Research, 40(19), 3637–3645. https://doi.org/10.1016/j.watres.2006.06.010
  • Karanasios, K. A., Michailides, M. K., Vasiliadou, I. A., Pavlou, S., & Vayenas, D. V. (2011). Potable water hydrogenotrophic denitrification in packed-bed bioreactors coupled with a solar-electrolysis hydrogen production system. Desalination and Water Treatment, 33(1-3), 86–96. https://doi.org/10.5004/dwt.2011.2614
  • Karanasios, K. A., Vasiliadou, I. A., Pavlou, S., & Vayenas, D. V. (2010). Hydrogenotrophic denitrification of potable water: A review. Journal of Hazardous Materials, 180(1-3), 20–37. https://doi.org/10.1016/j.jhazmat.2010.04.090
  • Kielemoes, J., De Boever, P., & Verstraete, W. (2000). Influence of denitrification on the corrosion of iron and stainless steel powder. Environmental Science & Technology, 34(4), 663–671. https://doi.org/10.1021/es9902930
  • Kim, H. R., Lee, I. S., & Bae, J. H. (2004). Performance of a sulphur-utilizing fluidized bed reactor for post-denitrification. Process Biochemistry, 39(11), 1591–1597. https://doi.org/10.1016/j.procbio.2003.07.004
  • Kiskira, K., Papirio, S., van Hullebusch, E. D., & Esposito, G. (2017). Fe(II)-mediated autotrophic denitrification: A new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters. International Biodeterioration and Biodegradation, 119, 631–648. https://doi.org/10.1016/j.ibiod.2016.09.020
  • Kumaraswamy, R., Sjollema, K., Kuenen, G., van Loosdrecht, M., & Muyzer, G. (2006). Nitrate-dependent [Fe(II)EDTA](2-) oxidation by Paracoccus ferrooxidans sp nov., isolated from a denitrifying bioreactor. Systematic and Applied Microbiology, 29(4), 276–286. https://doi.org/10.1016/j.syapm.2005.08.001
  • Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., & van Loosdrecht, M. C. M. (2014). Full-scale partial nitritation/anammox experiences - An application survey. Water Research, 55, 292–303. https://doi.org/10.1016/j.watres.2014.02.032
  • Liang, D. D., He, W. H., Li, C., Wang, F., Crittenden, J. C., & Feng, Y. J. (2021). Remediation of nitrate contamination by membrane hydrogenotrophic denitrifying biofilm integrated in microbial electrolysis cell. Water Research, 188, 116498. https://doi.org/10.1016/j.watres.2020.116498
  • Li, X. K., Chu, Z. R., Liu, Y. J., Zhu, M. T., Yang, L., & Zhang, J. (2013). Molecular characterization of microbial populations in full-scale biofilters treating iron, manganese and ammonia containing groundwater in Harbin, China. Bioresource Technology, 147, 234–239. https://doi.org/10.1016/j.biortech.2013.08.008
  • Li, J., Gao, Y. Y., Dong, H. Y., & Sheng, G. P. (2022b). Haloarchaea, excellent candidates for removing pollutants from hypersaline wastewater. Trends in Biotechnology, 40(2), 226–239. https://doi.org/10.1016/j.tibtech.2021.06.006
  • Li, X., Huang, Y., Yuan, Y., Bi, Z., & Liu, X. (2017). Startup and operating characteristics of an external air-lift reflux partial nitritation-ANAMMOX integrative reactor. Bioresource Technology, 238, 657–665. https://doi.org/10.1016/j.biortech.2017.04.109
  • Li, Y., Liu, Y., Feng, L., & Zhang, L. (2023). Coupled mixotrophic denitrification and utilization of refractory organics driven by Mn redox circulation for significantly enhanced nitrogen removal. Journal of Hazardous Materials, 445, 130595. https://doi.org/10.1016/j.jhazmat.2022.130595
  • Li, J., Li, J., Zhang, Y., & Lu, H. (2022c). The responses of marine anammox bacteria-based microbiome to multi-antibiotic stress in mariculture wastewater treatment. Water Research, 224, 119050. https://doi.org/10.1016/j.watres.2022.119050
  • Li, W. W., Lu, P. L., Zhang, L. L., Ding, A. Q., Wang, X. W., Yang, H., & Zhang, D. J. (2020b). Long-term performance of denitrifying anaerobic methane oxidation under stepwise cooling and ambient temperature conditions. The Science of the Total Environment, 713, 136739. https://doi.org/10.1016/j.scitotenv.2020.136739
  • Lin, W., Feng, J., Hu, K., Qu, B., Song, S., He, K., Liu, C., Chen, Y., & Hu, Y. (2021). Sulfidation forwarding high-strength Anammox process using nitrate as electron acceptor via thiosulfate-driven nitrate denitratation. Bioresource Technology, 344(Pt B), 126335. https://doi.org/10.1016/j.biortech.2021.126335
  • Lin, S., Mackey, H. R., Hao, T. W., Guo, G., van Loosdrecht, M. C. M., & Chen, G. H. (2018). Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities. Water Research, 143, 399–415. https://doi.org/10.1016/j.watres.2018.06.051
  • Li, J., Qi, P. Q., Qiang, Z. M., Dong, H. Y., Gao, D. W., & Wang, D. (2018). Is anammox a promising treatment process for nitrogen removal from nitrogen-rich saline wastewater? Bioresource Technology, 270, 722–731. https://doi.org/10.1016/j.biortech.2018.08.115
  • Li, G., Su, Y., Wu, B., Han, G., Yu, J., Yang, M., & Shi, B. (2022a). Initial formation and accumulation of manganese deposits in drinking water pipes: Investigating the role of microbial-mediated processes. Environmental Science & Technology, 56(9), 5497–5507. https://doi.org/10.1021/acs.est.1c08293
  • Liu, T., Hu, Y. T., Chen, N., He, Q. C., & Feng, C. P. (2021). High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification. Journal of Hazardous Materials, 416, 125844. https://doi.org/10.1016/j.jhazmat.2021.125844
  • Liu, C. S., Li, W. F., Li, X. C., Zhao, D. F., Ma, B., Wang, Y. Q., Liu, F., & Lee, D. J. (2017). Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor. Bioresource Technology, 243, 1237–1240. https://doi.org/10.1016/j.biortech.2017.07.030
  • Liu, Y., Zhang, J. X., Zhao, L., Li, Y. Z., Yang, Y. Y., & Xie, S. G. (2015b). Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau. Applied Microbiology and Biotechnology, 99(5), 2371–2381. https://doi.org/10.1007/s00253-014-6141-5
  • Liu, C. S., Zhao, D. F., Yan, L. H., Wang, A. J., Gu, Y. Y., & Lee, D. J. (2015a). Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria. Bioresource Technology, 191, 332–336. https://doi.org/10.1016/j.biortech.2015.05.027
  • Li, R. H., Wei, D. Y., Wang, W., & Zhang, Y. W. (2020a). Pyrrhotite-sulfur autotrophic denitrification for deep and efficient nitrate and phosphate removal: Synergistic effects, secondary minerals and microbial community shifts. Bioresource Technology, 308, 123302. https://doi.org/10.1016/j.biortech.2020.123302
  • Li, C., Xu, M., Lu, Y., Fang, F., & Cao, J. S. (2016). Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification. Environmental Technology, 37(6), 752–761. https://doi.org/10.1080/09593330.2015.1080764
  • Luesken, F. A., Sánchez, J., van Alen, T. A., Sanabria, J., Op den Camp, H. J. M., Jetten, M. S. M., & Kartal, B. (2011). Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Applied and Environmental Microbiology, 77(19), 6802–6807. https://doi.org/10.1128/AEM.05539-11
  • Luo, X. X., Peng, C. Y., Shao, P. H., Tang, A. P., Huang, A. P., Wu, Q., Sun, L. H., Yang, L. M., Shi, H., & Luo, X. B. (2021). Enhancing nitrate removal from wastewater by integrating heterotrophic and autotrophic denitrification coupled manganese oxidation process (IHAD-MnO): Internal carbon utilization performance. Environmental Research, 194, 110744. https://doi.org/10.1016/j.envres.2021.110744
  • Luo, X. X., Su, J. F., Liu, H., Huang, T. L., Wei, L., Nie, J. W., Gao, H. Y., & Li, D. P. (2019). Performance of an autotrophic denitrification process with mixed electron donors and a functional microbial community. Water Supply, 19(2), 434–443. https://doi.org/10.2166/ws.2018.088
  • Luo, X., Su, J., Shao, P., Liu, H., & Luo, X. (2018). Efficient autotrophic denitrification performance through integrating the bio-oxidation of Fe(II) and Mn(II). Chemical Engineering Journal, 348, 669–677. https://doi.org/10.1016/j.cej.2018.05.021
  • Miao, Y., Zhang, L., Yu, D., Zhang, J., Zhang, W., Ma, G., Zhao, X., & Peng, Y. (2022). Application of intermittent aeration in nitrogen removal process: Development, advantages and mechanisms. Chemical Engineering Journal, 430, 133184. https://doi.org/10.1016/j.cej.2021.133184
  • Mora, M., Fernández, M., Gómez, J. M., Cantero, D., Lafuente, J., Gamisans, X., & Gabriel, D. (2015). Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters. Applied Microbiology and Biotechnology, 99(1), 77–87. https://doi.org/10.1007/s00253-014-5688-5
  • Mora, M., Guisasola, A., Gamisans, X., & Gabriel, D. (2014). Examining thiosulfate-driven autotrophic denitrification through respirometry. Chemosphere, 113, 1–8. https://doi.org/10.1016/j.chemosphere.2014.03.083
  • Nordhoff, M., Tominski, C., Halama, M., Byrne, J. M., Obst, M., Kleindienst, S., Behrens, S., & Kappler, A. (2017). Insights into nitrate-reducing Fe(II) oxidation mechanisms through analysis of cell-mineral associations, cell encrustation, and mineralogy in the chemolithoautotrophic enrichment culture KS. Applied and Environmental Microbiology, 83(13), 00752–00717. https://doi.org/10.1128/AEM.00752-17
  • Oshiki, M., Ishii, S., Yoshida, K., Fujii, N., Ishiguro, M., Satoh, H., & Okabe, S. (2013). Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (Anammox) bacteria. Applied and Environmental Microbiology, 79(13), 4087–4093. https://doi.org/10.1128/AEM.00743-13
  • Pang, S., Rittmann, B. E., Wu, C., Yang, L., Zhou, J., & Xia, S. (2022). Synergistic inorganic carbon and denitrification genes contributed to nitrite accumulation in a hydrogen-based membrane biofilm reactor. Bioengineering, 9(5), 222. https://doi.org/10.3390/bioengineering9050222
  • Pang, Y., & Wang, J. (2021). Various electron donors for biological nitrate removal: A review. The Science of the Total Environment, 794, 148699. https://doi.org/10.1016/j.scitotenv.2021.148699
  • Park, H. I., Kim, J. S., Kim, D. K., Choi, Y. J., & Pak, D. (2006). Nitrate-reducing bacterial community in a biofilm-electrode reactor. Enzyme and Microbial Technology, 39(3), 453–458. https://doi.org/10.1016/j.enzmictec.2005.11.028
  • Parsons, S. A., & Smith, J. A. (2008). Phosphorus removal and recovery from municipal wastewaters. Elements, 4(2), 109–112. https://doi.org/10.2113/GSELEMENTS.4.2.109
  • Peng, S., Kong, Q., Deng, S., Xie, B., Yang, X., Li, D., Hu, Z., & Sun, S. (2020). Application potential of simultaneous nitrification/Fe(0)-supported autotrophic denitrification (SNAD) based on iron-scraps and micro-electrolysis. The Science of the Total Environment, 711, 135087. https://doi.org/10.1016/j.scitotenv.2019.135087
  • Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., Schouten, S., Damsté, J. S. S., Op den Camp, H. J. M., Jetten, M. S. M., & Strous, M. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921. https://doi.org/10.1038/nature04617
  • Ren, L. F., Lv, L., Zhang, J., Gao, B., Ni, S. Q., Yang, N., Zhou, Q., & Liu, X. (2016). Novel zero-valent iron-assembled reactor for strengthening anammox performance under low temperature. Applied Microbiology and Biotechnology, 100(20), 8711–8720. https://doi.org/10.1007/s00253-016-7586-5
  • Ren, X., Wang, Y., Wan, J., Yan, Z., Ma, Y., Zhang, G., & Zhu, B. (2022). The nitrogen removal performance and functional bacteria in heterotrophic denitrification and mixotrophic denitrification process. Water, 14(22), 3603. https://doi.org/10.3390/w14223603
  • Rezania, B., Oleszkiewicz, J. A., & Cicek, N. (2007). Hydrogen-dependent denitrification of water in an anaerobic submerged membrane bioreactor coupled with a novel hydrogen delivery system. Water Research, 41(5), 1074–1080. https://doi.org/10.1016/j.watres.2006.11.016
  • Rezania, B., Oleszkiewicz, J. A., Cicek, N., & Mo, H. (2005). Hydrogen-dependent denitrification in an alternating anoxic-aerobic SBR membrane bioreactor. Water Science and Technology, 51(6-7), 403–409. https://doi.org/10.2166/wst.2005.0662
  • Sahinkaya, E., Yurtsever, A., Aktaş, Ö., Ucar, D., & Wang, Z. (2015). Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chemical Engineering Journal, 268, 180–186. https://doi.org/10.1016/j.cej.2015.01.045
  • Sahu, A. K., Conneely, T., Nüsslein, K., & Ergas, S. J. (2009). Hydrogenotrophic denitrification and perchlorate reduction in ion exchange brines using membrane biofilm reactors. Biotechnology and Bioengineering, 104(3), 483–491. https://doi.org/10.1002/bit.22414
  • Shen, L. D., Liu, S., Zhu, Q., Li, X. Y., Cai, C., Cheng, D. Q., Lou, L. P., Xu, X. Y., Zheng, P., & Hu, B. L. (2014). Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River. Microbial Ecology, 67(2), 341–349. https://doi.org/10.1007/s00248-013-0330-0
  • Smith, R. L., Buckwalter, S. P., Repert, D. A., & Miller, D. N. (2005). Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water. Water Research, 39(10), 2014–2023. https://doi.org/10.1016/j.watres.2005.03.024
  • Straub, K. L., Benz, M., Schink, B., & Widdel, F. (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62(4), 1458–1460. https://doi.org/10.1128/aem.62.4.1458-1460.1996
  • Straub, K. L., Schönhuber, W. A., Buchholz-Cleven, B. E. E., & Schink, B. (2004). Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiology Journal, 21(6), 371–378. https://doi.org/10.1080/01490450490485854
  • Su, J. F., Luo, X. X., Wei, L., Ma, F., Zheng, S. C., & Shao, S. C. (2016a). Performance and microbial communities of Mn(II)-based autotrophic denitrification in a Moving Bed Biofilm Reactor (MBBR). Bioresource Technology, 211, 743–750. https://doi.org/10.1016/j.biortech.2016.03.101
  • Su, J., Shao, S., Huang, T., Ma, F., Yang, S., Zhou, Z., & Zheng, S. (2015a). Anaerobic nitrate-dependent iron(II) oxidation by a novel autotrophic bacterium, Pseudomonas sp. SZF15. Journal of Environmental Chemical Engineering, 3(3), 2187–2193. https://doi.org/10.1016/j.jece.2015.07.030
  • Su, J. F., Zheng, S. C., Huang, T. L., Ma, F., Shao, S. C., Yang, S. F., & Zhang, L. N. (2015b). Characterization of the anaerobic denitrification bacterium Acinetobacter sp SZ28 and its application for groundwater treatment. Bioresource Technology, 192, 654–659. https://doi.org/10.1016/j.biortech.2015.06.020
  • Su, J. F., Zheng, S. C., Huang, T. L., Ma, F., Shao, S. C., Yang, S. F., & Zhang, L. N. (2016b). Simultaneous removal of Mn(II) and nitrate by the manganese-oxidizing bacterium Acinetobacter sp SZ28 in anaerobic conditions. Geomicrobiology Journal, 33(7), 586–591. https://doi.org/10.1080/01490451.2015.1063024
  • Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., & Webb, S. M. (2004). Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32(1), 287–328. https://doi.org/10.1146/annurev.earth.32.101802.120213
  • Tebo, B. M., Johnson, H. A., McCarthy, J. K., & Templeton, A. S. (2005). Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 13(9), 421–428. https://doi.org/10.1016/j.tim.2005.07.009
  • Tian, T., & Yu, H. Q. (2020). Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. Bioresource Technology, 299, 122686. https://doi.org/10.1016/j.biortech.2019.122686
  • Tian, T., Zhou, K., Xuan, L., Zhang, J. X., Li, Y. S., Liu, D. F., & Yu, H. Q. (2020). Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge. Water Research, 170, 115300. https://doi.org/10.1016/j.watres.2019.115300
  • Till, B. A., Weathers, L. J., & Alvarez, P. J. J. (1998). Fe(0)-supported autotrophic denitrification. Environmental Science & Technology, 32(5), 634–639. https://doi.org/10.1021/es9707769
  • Tominski, C., Heyer, H., Lösekann-Behrens, T., Behrens, S., & Kappler, A. (2018). Growth and population dynamics of the anaerobic Fe(II)-oxidizing and nitrate-reducing enrichment culture KS. Applied and Environmental Microbiology, 84(9), 02173–02117. https://doi.org/10.1128/AEM.02173-17
  • Wang, Z., Gao, J., Dai, H., Yuan, Y., Zhao, Y., Li, D., & Cui, Y. (2023). Partial S(0)-driven autotrophic denitrification process facilitated the quick natural enrichment of anammox bacteria at room temperature. Science of the Total Environment, 855, 158916. https://doi.org/10.1016/j.scitotenv.2022.158916
  • Wang, J., Huang, J. J., Zhou, Y., Liao, Y., Li, S., Zhang, B., & Feng, S. (2022). Synchronous N and P removal in carbon-coated nanoscale zerovalent iron autotrophic denitrification - The synergy of the carbon shell and P removal. Environmental Science & Technology, 56(18), 13314–13326.
  • Wang, H. Y., Peng, L., Mao, N. J., Geng, J. J., Ren, H. Q., & Xu, K. (2021). Effects of Fe3+ on microbial communities shifts, functional genes expression and nitrogen transformation during the start-up of Anammox process. Bioresource Technology, 320(Pt A), 124326. https://doi.org/10.1016/j.biortech.2020.124326
  • Wang, D., Wang, Y., Liu, Y., Ngo, H. H., Lian, Y., Zhao, J., Chen, F., Yang, Q., Zeng, G., & Li, X. (2017a). Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? Bioresource Technology, 234, 456–465. https://doi.org/10.1016/j.biortech.2017.02.059
  • Wang, Y. L., Wang, D. B., Yang, Q., Zeng, G. M., & Li, X. M. (2017b). Wastewater opportunities for denitrifying anaerobic methane oxidation. Trends in Biotechnology, 35(9), 799–802. https://doi.org/10.1016/j.tibtech.2017.02.010
  • Wang, X., Xie, G. J., Tian, N., Dang, C. C., Cai, C., Ding, J., Liu, B. F., Xing, D. F., Ren, N. Q., & Wang, Q. (2022). Anaerobic microbial manganese oxidation and reduction: A critical review. The Science of the Total Environment, 822, 153513. https://doi.org/10.1016/j.scitotenv.2022.153513
  • Wu, P., Chen, J., Kumar Garlapati, V., Zhang, X., Wani Victor Jenario, F., Li, X., Liu, W., Chen, C., Aminabhavi, T. M., & Zhang, X. (2022). Novel insights into anammox-based processes: A critical review. Chemical Engineering Journal, 444, 136534. https://doi.org/10.1016/j.cej.2022.136534
  • Wu, M. L., Ettwig, K. F., Jetten, M. S., Strous, M., Keltjens, J. T., & van Niftrik, L. (2011). A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera. Biochemical Society Transactions, 39(1), 243–248. https://doi.org/10.1042/BST0390243
  • Wu, M. L., van Alen, T. A., van Donselaar, E. G., Strous, M., Jetten, M. S., & van Niftrik, L. (2012). Co-localization of particulate methane monooxygenase and cd1 nitrite reductase in the denitrifying methanotroph ‘Candidatus Methylomirabilis oxyfera. FEMS Microbiology Letters, 334(1), 49–56. https://doi.org/10.1111/j.1574-6968.2012.02615.x
  • Xiao, Z., Jiang, Q., Li, Y., Zhou, J., Chen, D., & Xia, T. (2022). Enhanced microbial nitrate reduction using natural manganese oxide ore as an electron donor. Journal of Environmental Management, 306, 114497. https://doi.org/10.1016/j.jenvman.2022.114497
  • Xie, G. J., Cai, C., Hu, S., & Yuan, Z. (2017). Complete nitrogen removal from synthetic anaerobic sludge digestion liquor through integrating anammox and denitrifying anaerobic methane oxidation in a membrane biofilm reactor. Environmental Science & Technology, 51(2), 819–827. https://doi.org/10.1021/acs.est.6b04500
  • Xie, G. J., Liu, T., Cai, C., Hu, S. H., & Yuan, Z. G. (2018). Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor. Water Research, 131, 196–204. https://doi.org/10.1016/j.watres.2017.12.037
  • Xing, W., Li, J. L., Li, P., Wang, C., Cao, Y. A., Li, D. S., Yang, Y. F., Zhou, J. Z., & Zuo, J. N. (2018). Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities. Journal of Environmental Sciences (China), 65, 262–270. https://doi.org/10.1016/j.jes.2017.03.001
  • Yang, J., Jiang, H. C., Wu, G., Hou, W. G., Sun, Y. J., Lai, Z. P., & Dong, H. L. (2012). Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes. Frontiers of Earth Science, 6(4), 383–391. https://doi.org/10.1007/s11707-012-0336-9
  • Yang, H., Li, D., Zeng, H., & Zhang, J. (2018). Autotrophic nitrogen conversion process and microbial population distribution in biofilter that simultaneously removes Fe, Mn and ammonia from groundwater. International Biodeterioration and Biodegradation, 135, 53–61. https://doi.org/10.1016/j.ibiod.2018.09.008
  • Zekker, I., Rikmann, E., Oja, J., Anslan, S., Borzyszkowska, A. F., Zielińska-Jurek, A., Kumar, R., Shah, L. A., Naeem, M., Zahoor, M., Setyobudi, R. H., Bhowmick, G. D., Khattak, R., Burlakovs, J., & Tenno, T. (2023). The selective salinity and hydrazine parameters for the start-up of non-anammox-specific biomass SBR. International Journal of Environmental Science and Technology, 20(11), 12597–12610. https://doi.org/10.1007/s13762-023-05055-9
  • Zhang, Y. P., Douglas, G. B., Kaksonen, A. H., Cui, L. L., & Ye, Z. F. (2019). Microbial reduction of nitrate in the presence of zero-valent iron. The Science of the Total Environment, 646, 1195–1203. https://doi.org/10.1016/j.scitotenv.2018.07.112
  • Zhang, Y., Li, J., Hu, Z., Li, J., & Lu, H. (2022b). Oxytetracycline stress stimulates antibiotic resistance gene proliferation and quorum sensing response of marine anammox bacteria in seawater-based wastewater treatment. Chemical Engineering Journal, 447, 137539. https://doi.org/10.1016/j.cej.2022.137539
  • Zhang, H., Zhang, X., Wei, D., Wen, X., Zhou, S., Li, Y., Dong, Y., & Gong, Y. (2023). Establishment of anammox coupled with sulfide-depending autotrophic denitrification process and its efficient pollutants removal performance. Chemosphere, 313, 137468. https://doi.org/10.1016/j.chemosphere.2022.137468
  • Zhang, X., Zhou, Y., Zhao, S., Zhang, R., Peng, Z., Zhai, H., & Zhang, H. (2018). Effect of Fe (II) in low-nitrogen sewage on the reactor performance and microbial community of an ANAMMOX biofilter. Chemosphere, 200, 412–418. https://doi.org/10.1016/j.chemosphere.2018.02.131
  • Zhang, X. N., Zhu, L., Li, Z. R., Sun, Y. L., Qian, Z. M., Li, S. Y., Cheng, H. Y., & Wang, A. J. (2022a). Thiosulfate as external electron donor accelerating denitrification at low temperature condition in S(0)-based autotrophic denitrification biofilter. Environmental Research, 210, 113009. https://doi.org/10.1016/j.envres.2022.113009
  • Zhao, Z. C., Fan, S. Q., Lu, Y., Dang, C. C., Wang, X., Liu, B. F., Xing, D. F., Ma, J., Ren, N. Q., Wang, Q., & Xie, G. J. (2023). Reactivated biofilm coupling n-DAMO with anammox achieved high-rate nitrogen removal in membrane aerated moving bed biofilm reactor. Environmental Research, 220, 115184. https://doi.org/10.1016/j.envres.2022.115184
  • Zheng, Y. L., Hou, L. J., Chen, F. Y., Zhou, J., Liu, M., Yin, G. Y., Gao, J., & Han, P. (2020). Denitrifying anaerobic methane oxidation in intertidal marsh soils: Occurrence and environmental significance. Geoderma, 357, 113943. https://doi.org/10.1016/j.geoderma.2019.113943
  • Zhou, Q., Sun, H., Jia, L., Wu, W., & Wang, J. (2022). Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: A review. Chemosphere, 296, 134054. https://doi.org/10.1016/j.chemosphere.2022.134054
  • Zhou, J., Wang, H. Y., Yang, K., Ji, B., Chen, D., Zhang, H. N., Sun, Y. C., & Tian, J. (2016). Autotrophic denitrification by nitrate-dependent Fe(II) oxidation in a continuous up-flow biofilter. Bioprocess and Biosystems Engineering, 39(2), 277–284. https://doi.org/10.1007/s00449-015-1511-7
  • Zhu, G. B., Zhou, L. L., Wang, Y., Wang, S. Y., Guo, J. H., Long, X. E., Sun, X. B., Jiang, B., Hou, Q. Y., Jetten, M. S. M., & Yin, C. Q. (2015). Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems. Environmental Microbiology Reports, 7(1), 128–138. https://doi.org/10.1111/1758-2229.12214

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.