201
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Plant-based silver nanoparticles ecotoxicity: Perspectives about green technologies in the One Health context

, &
Pages 1218-1235 | Published online: 19 Jan 2024

References

  • Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., Bilal, M., Omer, M., Alamzeb, M., Salman, S. M., & Ali, S. (2019). Green nanotechnology: A review on green synthesis of silver nanoparticles- an ecofriendly approach. International Journal of Nanomedicine, 14, 5087–5107. https://doi.org/10.2147/IJN.S200254
  • Anlar, H. G. (2019). Worldwide nanotoxicology research productivity and contribution of Turkey. FABAD Journal of Pharmaceutical Sciences, 44(3), 205–214.
  • Araújo, P. S., Caixeta, M. B., Canedo, A., Silva Nunes, E., Monteiro, C., & Rocha, T. L. (2022). Toxicity of plant-based silver nanoparticles to vectors and intermediate hosts: Historical review and trends. The Science of the Total Environment, 834, 155299. https://doi.org/10.1016/j.scitotenv.2022.155299
  • Ashokhan, S., Othman, R., Abd Rahim, M. H., Karsani, S. A., & Yaacob, J. S. (2020). Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica. Plants (Basel, Switzerland), 9(3), 352. https://doi.org/10.3390/plants9030352
  • Avinash, B., Venu, R., Raj, M. A., Rao, K. S., Srilatha, C., & Prasad, T. N. V. K. V. (2017). In vitro evaluation of acaricidal activity of novel green silver nanoparticles against deltamethrin resistance Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 237, 130–136. https://doi.org/10.1016/j.vetpar.2017.02.017
  • Avitabile, E., Senes, N., D’Avino, C., Tsamesidis, I., Pinna, A., Medici, S., & Pantaleo, A. (2020). The potential antimalarial efficacy of hemocompatible silver nanoparticles from Artemisia species against P. falciparum parasite. PloS One, 15(9), e0238532. https://doi.org/10.1371/journal.pone.0238532
  • Baghizadeh, A., Ranjbar, S., Gupta, V. K., Asif, M., Pourseyedi, S., Karimi, M. J., & Mohammadinejad, R. (2015). Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. Journal of Molecular Liquids, 207, 159–163. https://doi.org/10.1371/journal.pone.0238532
  • Benelli, G., Canale, A., Toniolo, C., Higuchi, A., Murugan, K., Pavela, R., & Nicoletti, M. (2017). Neem (Azadirachta indica): Towards the ideal insecticide? Natural Product Research, 31(4), 369–386. https://doi.org/10.1080/14786419.2016.1214834
  • Besnaci, S., Bensoltane, S., & Djekoun, M. (2019). Oxidative stress and histological changes Induced by the nano-Fe2O3 in Helix aspersa. Scientific study & research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 20(2), 119–133.
  • Boros, B. V., & Ostafe, V. (2020). Evaluation of ecotoxicology assessment methods of nanomaterials and their effects. Nanomaterials, 10(4), 610. https://doi.org/10.3390/nano10040610
  • Brack, W., Barcelo Culleres, D., Boxall, A. B. A., Budzinski, H., Castiglioni, S., Covaci, A., Dulio, V., Escher, B. I., Fantke, P., Kandie, F., Fatta-Kassinos, D., Hernández, F. J., Hilscherová, K., Hollender, J., Hollert, H., Jahnke, A., Kasprzyk-Hordern, B., Khan, S. J., Kortenkamp, A., … Zuccato, E. (2022). One planet: One health. A call to support the initiative on a global science–policy body on chemicals and waste. Environmental Sciences Europe, 34(1), 21. https://doi.org/10.1186/s12302-022-00602-6
  • Buttke, D. E. (2011). Toxicology, environmental health, and the “One Health” concept. Journal of Medical Toxicology, 7(4), 329–332. https://doi.org/10.1007/s13181-011-0172-4
  • Caixeta, M. B., Araújo, P. S., Gonçalves, B. B., Silva, L. D., Grano-Maldonado, M. I., & Rocha, T. L. (2020). Toxicity of engineered nanomaterials to aquatic and land snails: A scientometric and systematic review. Chemosphere, 260, 127654. https://doi.org/10.1016/j.chemosphere.2020.127654
  • Callaghan, N. I., & MacCormack, T. J. (2017). Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 193, 30–41. https://doi.org/10.1016/j.cbpc.2016.12.007
  • Chen, Z.-Y., Li, N.-J., Cheng, F.-Y., Hsueh, J.-F., Huang, C.-C., Lu, F.-I., Fu, T.-F., Yan, S.-J., Lee, Y.-H., & Wang, Y.-J. (2020). The effect of the chorion on size-dependent acute toxicity and underlying mechanisms of amine-modified silver nanoparticles in zebrafish embryos. International Journal of Molecular Sciences, 21(8), 2864. https://doi.org/10.3390/ijms21082864
  • De Vaufleury, A., Coeurdassier, M., Pandard, P., Scheifler, R., Lovy, C., Crini, N., & Badot, P. M. (2006). How terrestrial snails can be used in risk assessment of soils. Environmental Toxicology and Chemistry, 25(3), 797–806. https://doi.org/10.1897/04-560R.1
  • Destoumieux-Garzón, D., Mavingui, P., Boetsch, G., Boissier, J., Darriet, F., Duboz, P., Fritsch, C., Giraudoux, P., Le Roux, F., Morand, S., Paillard, C., Pontier, D., Sueur, C., & Voituron, Y. (2018). The one health concept: 10 Years old and a long road ahead. Frontiers in Veterinary Science, 5, 14. https://doi.org/10.3389/fvets.2018.00014
  • Duan, Z., Duan, X., Zhao, S., Wang, X., Wang, J., Liu, Y., Peng, Y., Gong, Z., & Wang, L. (2020). Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. Journal of Hazardous Materials, 395, 122621. https://doi.org/10.1016/j.jhazmat.2020.122621
  • Dube, E., & Okuthe, G. E. (2023). Engineered nanoparticles in aquatic systems: Toxicity and mechanism of toxicity in fish. Emerging Contaminants, 9(2), 100212. https://doi.org/10.1016/j.emcon.2023.100212
  • Dwivedi, A. D., & Gopal, K. (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369(1-3), 27–33. https://doi.org/10.1016/j.colsurfa.2010.07.020
  • Ebert, D. (2005). Ecology, epidemiology, and evolution of parasitism in daphnia [Internet]. National Library of Medicine (US), National Center for Biotechnology Information. DOI: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books
  • Engels, D., & Zhou, X. N. (2020). Neglected tropical diseases: An effective global response to local poverty-related disease priorities. Infectious Diseases of Poverty, 9(1), 10. https://doi.org/10.1186/s40249-020-0630-9
  • Esan, V., Elanchezhiyan, C., Mahboob, S., Al-Ghanim, K. A., Al-Misned, F., Ahmed, Z., Elumalai, K., Krishnappa, K., & Marimuthu, G. (2022). Toxicity of Trewia nudiflora-mediated silver nanoparticles on mosquito larvae and non-target aquatic fauna. Toxin Reviews, 41(1), 229–236. https://doi.org/10.1080/15569543.2020.1864648
  • Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S., & Lead, J. R. (2011). Silver nanoparticles: Behaviour and effects in the aquatic environment. Environment International, 37(2), 517–531. https://doi.org/10.1016/j.envint.2010.10.012
  • Govindarajan, M., & Benelli, G. (2016). Facile biosynthesis of silver nanoparticles using Barleria cristata: Mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitology Research, 115(3), 925–935. https://doi.org/10.1007/s00436-015-4817-0
  • Hamdan, Z. K., Soliman, M. I., Taha, H. A., Khalil, M. M., & Nigm, A. H. (2023). Antischistosomal effects of green and chemically synthesized silver nanoparticles: In vitro and in vivo murine model. Acta Tropica, 244, 106952. https://doi.org/10.1016/j.actatropica.2023.106952
  • Handy, R. D., Henry, T. B., Scown, T. M., Johnston, B. D., & Tyler, C. R. (2008). Manufactured nanoparticles: Their uptake and effects on fish—A mechanistic analysis. Ecotoxicology, 17(5), 396–409. https://doi.org/10.1007/s10646-008-0205-1
  • Hebeish, A., El-Naggar, M. E., Fouda, M. M., Ramadan, M. A., Al-Deyab, S. S., & El-Rafie, M. H. (2011). Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydrate Polymers, 86(2), 936–940. https://doi.org/10.1016/j.carbpol.2011.05.048
  • Hungeling, M., Lechtenberg, M., Fronczek, F. R., & Nahrstedt, A. (2009). Cyanogenic and non-cyanogenic pyridone glucosides from Acalypha indica (Euphorbiaceae). Phytochemistry, 70(2), 270–277. https://doi.org/10.1016/j.phytochem.2008.12.011
  • Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3), 223–245. https://doi.org/10.1080/17518253.2020.1802517
  • Iqbal, H., Jahan, N., Khalil-Ur-Rahman, & Jamil, S. (2022). Formulation and characterisation of Azadirachta indica nanobiopesticides for ecofriendly control of wheat pest Tribolium castaneum and Rhyzopertha dominica. Journal of Microencapsulation, 39(7–8), 638–653. https://doi.org/10.1080/02652048.2022.2149870
  • Ishwarya, R., Vaseeharan, B., Shanthi, S., Ramesh, S., Manogari, P., Dhanalakshmi, K., Vijayakumar, S., & Benelli, G. (2017). Green synthesized silver nanoparticles: Toxicity against Poecilia reticulata fishes and Ceriodaphnia cornuta crustaceans. Journal of Cluster Science, 28(1), 519–527. https://doi.org/10.1007/s10876-016-1126-4
  • Jenifer, A. A., Malaikozhundan, B., Vijayakumar, S., Anjugam, M., Iswarya, A., Vaseeharan, B., & Benelli, G. (2020). Green synthesis and characterization of silver nanoparticles (AgNPs) using leaf extract of Solanum nigrum and assessment of toxicity in vertebrate and invertebrate aquatic animals. Journal of Cluster Science, 31(5), 989–1002. https://doi.org/10.1007/s10876-016-1126-4
  • Jia, H. R., Zhu, Y. X., Duan, Q. Y., Chen, Z., & Wu, F. G. (2019). Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. Journal of Controlled Release, 311–312, 301–318. https://doi.org/10.1016/j.jconrel.2019.08.022
  • Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology, 20(1), 262. https://doi.org/10.1186/s12951-022-01477-8
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • Khan, F., Shariq, M., Asif, M., Siddiqui, M. A., Malan, P., & Ahmad, F. (2022). Green nanotechnology: Plant-mediated nanoparticle synthesis and application. Nanomaterials, 12(4), 673. https://doi.org/10.3390/nano12040673
  • Khoshnamvand, M., Hao, Z., Fadare, O. O., Hanachi, P., Chen, Y., & Liu, J. (2020). Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Chemosphere, 258, 127346. https://doi.org/10.1016/j.chemosphere.2020.127346
  • Kokturk, M., Yıldırım, S., Atamanalp, M., Calimli, M. H., Nas, M. S., Bolat, I., Ozhan, G., & Alak, G. (2022). Assessment of oxidative DNA damage, apoptosis and histopathological alterations on zebrafish exposed with green silver nanoparticle. Chemistry and Ecology, 38(7), 655–670. https://doi.org/10.1080/02757540.2022.2108808
  • Krishnaraj, C., Harper, S. L., & Yun, S. I. (2016). In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio). Journal of Hazardous Materials, 301, 480–491. https://doi.org/10.1016/j.jhazmat.2015.09.022
  • Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 93, 95–99. https://doi.org/10.1016/j.saa.2012.03.002
  • Kumar, S., Basumatary, I. B., Sudhani, H. P., Bajpai, V. K., Chen, L., Shukla, S., & Mukherjee, A. (2021). Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends in Food Science & Technology, 112, 651–666. https://doi.org/10.1016/j.tifs.2021.04.031
  • Kumari, S., Kumari, P., Panda, P. K., Patel, P., Jha, E., Mallick, M. A., & Verma, S. K. (2020). Biompatible biogenic silver nanoparticles interact with caspases on an atomic level to elicit apoptosis. Nanomedicine, 15(22), 2119–2132. https://doi.org/10.2217/nnm-2020-0138
  • Lekamge, S., Ball, A. S., Shukla, R., & Nugegoda, D. (2020). The toxicity of nanoparticles to organisms in freshwater. Reviews of Environmental Contamination and Toxicology, 248, 1–80. https://doi.org/10.1007/398_2018_18
  • Levard, C., Hotze, E. M., Lowry, G. V., & Brown, G. E.Jr. (2012). Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science & Technology, 46(13), 6900–6914. https://doi.org/10.1021/es2037405
  • Li, C. J., & Trost, B. M. (2008). Green chemistry for chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13197–13202. https://doi.org/10.1073/pnas.0804348105
  • Liu, Z., Malinowski, C. R., & Sepúlveda, M. S. (2022). Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. Chemosphere, 291(Pt 2), 132941. https://doi.org/10.1016/j.chemosphere.2021.132941
  • Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6(1), 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44
  • Mansour, W. A., Abdelsalam, N. R., Tanekhy, M., Khaled, A. A., & Mansour, A. T. (2021). Toxicity, inflammatory and antioxidant genes expression, and physiological changes of green synthesis silver nanoparticles on Nile tilapia (Oreochromis niloticus) fingerlings. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 247, 109068. https://doi.org/10.1016/j.cbpc.2021.109068
  • Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R. K., Kruszka, D., Kachlicki, P., & Franklin, G. (2018). Secondary metabolites in the green synthesis of metallic nanoparticles. Materials, 11(6), 940. https://doi.org/10.3390/ma11060940
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Mohamad, N. A. N., Arham, N. A., Jai, J., & Hadi, A. (2013). Plant extract as reducing agent in synthesis of metallic nanoparticles: A Review. Advanced Materials Research, 832, 350–355. https://doi.org/10.4028/www.scientific.net/AMR.832.350
  • Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871–12934. https://doi.org/10.1039/C8NR02278J
  • Murugan, K., Panneerselvam, C., Samidoss, C. M., Madhiyazhagan, P., Suresh, U., Roni, M., Chandramohan, B., Subramaniam, J., Dinesh, D., Rajaganesh, R., Paulpandi, M., Wei, H., Aziz, A. T., Alsalhi, M. S., Devanesan, S., Nicoletti, M., Pavela, R., Canale, A., & Benelli, G. (2016). In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Research in Veterinary Science, 106, 14–22. https://doi.org/10.1016/j.rvsc.2016.03.001
  • Mwangi, G. G., Wagacha, J. M., Nguta, J. M., & Mbaria, J. M. (2014). Brine shrimp cytotoxicity and antimalarial activity of plants traditionally used in treatment of malaria in Msambweni district. Pharmaceutical Biology, 53(4), 588–593. https://doi.org/10.3109/13880209.2014.935861
  • OECD. (2004). Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD guidelines for the testing of chemicals. Section 2. OECD Publishing. https://doi.org/10.1787/9789264069947-en
  • OECD. (2013). Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD guidelines for the testing of chemicals. Section 2. OECD Publishing. https://doi.org/10.1787/9789264203709-en
  • Opris, R. V., Toma, V., Baciu, A. M., Moldovan, R., Dume, B., Berghian-Sevastre, A., Moldovan, B., Clichici, S., David, L., Filip, A. G., & Florea, A. (2021). Neurobehavioral and ultrastructural changes induced by phytosynthesized silver-nanoparticle toxicity in an in vivo rat model. Nanomaterials, 12(1), 58. https://doi.org/10.3390/nano12010058
  • Owsianiak, M., Hauschild, M. Z., Posthuma, L., Saouter, E., Vijver, M. G., Backhaus, T., Douziech, M., Schlekat, T., & Fantke, P. (2023). Ecotoxicity characterization of chemicals: Global recommendations and implementation in USEtox. Chemosphere, 310, 136807. https://doi.org/10.1016/j.chemosphere.2022.136807
  • Pala, R., Zeng, Y., Pattnaik, S., Busi, S., Alomari, N., Nauli, S. M., & Liu, G. (2019). Functionalized silver nanoparticles for sensing, molecular imaging and therapeutic applications. Current Nanomedicine, 8(3), 234–250. https://doi.org/10.2174/2468187308666180508144919
  • Panda, P. K., Kumari, P., Patel, P., Samal, S. K., Mishra, S., Tambuwala, M. M., Dutt, A., Hilscherová, K., Mishra, Y. K., Varma, R. S., Suar, M., Ahuja, R., & Verma, S. K. (2022). Molecular nanoinformatics approach assessing the biompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis. Green Chemistry, 24(3), 1190–1210. https://doi.org/10.1039/D1GC04103G
  • Partila, A. M. (2019). Bioproduction of silver nanoparticles and its potential applications in agriculture. In D. Panpatte & Y. Jhala (Eds.), Nanotechnology for agriculture. Springer. https://doi.org/10.1007/978-981-32-9370-0_2
  • Patil, C. D., Borase, H. P., Patil, S. V., Salunkhe, R. B., & Salunke, B. K. (2012). Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecilia reticulata. Parasitology Research, 111(2), 555–562. https://doi.org/10.1007/s00436-012-2867-0
  • Pereira, A. C., Gomes, T., Machado, M. R. F., & Rocha, T. L. (2019). The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: From morphological to molecular approach. Environmental Pollution, 252(Pt B), 1841–1853. https://doi.org/10.1016/j.envpol.2019.06.100
  • Poopathi, S., De Britto, L. J., Praba, V. L., Mani, C., & Praveen, M. (2015). Synthesis of silver nanoparticles from Azadirachta indica—A most effective method for mosquito control. Environmental Science and Pollution Research International, 22(4), 2956–2963. https://doi.org/10.1007/s11356-014-3560-x
  • Rabinowitz, P. M., Pappaioanou, M., Bardosh, K. L., & Conti, L. (2018). A planetary vision for One Health. BMJ Global Health, 3(5), e001137. https://doi.org/10.1136/bmjgh-2018-001137
  • Radwan, M. A., El-Gendy, K. S., Gad, A. F., Khamis, A. E., & Eshra, E. H. (2019). Responses of oxidative stress, genotoxicity and immunotoxicity as biomarkers in Theba pisana snails dietary exposed to silver nanoparticles. Chemistry and Ecology, 35(7), 613–630. https://doi.org/10.1080/02757540.2019.1631816
  • Ramachandran, R., Krishnaraj, C., Kumar, V. K., Harper, S. L., Kalaichelvan, T. P., & Yun, S. I. (2018). In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: A comparative study. 3 Biotech, 8(10), 441. https://doi.org/10.1007/s13205-018-1457-y
  • Rather, M. A., Bhat, I. A., Sharma, N., Gora, A., Ganie, P. A., & Sharma, R. (2017). Synthesis and characterization of Azadirachta indica constructed silver nanoparticles and their immunomodulatory activity in fish. Aquaculture Research, 48(7), 3742–3754. https://doi.org/10.1111/are.13199
  • Rawani, A., Ghosh, A., & Chandra, G. (2013). Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Tropica, 128(3), 613–622. https://doi.org/10.1016/j.actatropica.2013.09.007
  • Saleem, S., Muhammad, G., Hussain, M. A., & Bukhari, S. N. A. (2018). A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. Phytotherapy Research: PTR, 32(7), 1241–1272. https://doi.org/10.1002/ptr.6076
  • Sarkar, B., Netam, S. P., Mahanty, A., Saha, A., Bosu, R., & Krishnani, K. K. (2014). Toxicity evaluation of chemically and plant derived silver nanoparticles on zebrafish (Danio rerio). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(4), 885–892. https://doi.org/10.1007/s40011-013-0298-z
  • Shi, X.-X., Wang, Z.-Z., Sun, X.-L., Wang, Y.-L., Liu, H.-X., Wang, F., Hao, G.-F., & Yang, G.-F. (2023). Toxicological data bank bridges the gap between environmental risk assessment and green organic chemical design in One Health world. Green Chemistry, 25(6), 2170–2219. https://doi.org/10.1039/D2GC03973G
  • Sleeman, J. M., DeLiberto, T., & Nguyen, N. (2017). Optimization of human, animal, and environmental health by using the One Health approach. Journal of Veterinary Science, 18(S1), 263–268. https://doi.org/10.4142/jvs.2017.18.S1.263
  • Soni, N., & Prakash, S. (2014). Silver nanoparticles: A possibility for malarial and filarial vector control technology. Parasitology Research, 113(11), 4015–4022. https://doi.org/10.1007/s00436-014-4069-4
  • Tacon, A. G., & Metian, M. (2013). Fish matters: Importance of aquatic foods in human nutrition and global food supply. Reviews in Fisheries Science, 21(1), 22–38. https://doi.org/10.1080/10641262.2012.753405
  • Tomankova, K., Horakova, J., Harvanova, M., Malina, L., Soukupova, J., Hradilova, S., Kejlova, K., Malohlava, J., Licman, L., Dvorakova, M., Jirova, D., & Kolarova, H. (2015). Cytotoxicity, cell uptake and microscopic analysis of titanium dioxide and silver nanoparticles in vitro. Food and Chemical Toxicology, 82, 106–115. https://doi.org/10.1016/j.fct.2015.03.027
  • Tortella, G. R., Rubilar, O., Durán, N., Diez, M. C., Martínez, M., Parada, J., & Seabra, A. B. (2020). Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. Journal of Hazardous Materials, 390, 121974. https://doi.org/10.1016/j.jhazmat.2019.121974
  • Vijayakumar, S., Malaikozhundan, B., Saravanakumar, K., Durán-Lara, E. F., Wang, M. H., & Vaseeharan, B. (2019). Garlic clove extract assisted silver nanoparticle–Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. Journal of Photochemistry and Photobiology. B, Biology, 198, 111558. https://doi.org/10.1016/j.jphotobiol.2019.111558
  • Vladár, A. E., & Hodoroaba, V. D. (2020). Characterization of nanoparticles by scanning electron microscopy. In Characterization of nanoparticles (pp. 7–27). Elsevier. https://doi.org/10.1016/B978-0-12-814182-3.00002-X
  • Weng, H. B., Chen, H. X., & Wang, M. W. (2018). Innovation in neglected tropical disease drug discovery and development. Infectious Diseases of Poverty, 7(1), 67. https://doi.org/10.1186/s40249-018-0444-1
  • Windell, D. L., Mourabit, S., Moger, J., Owen, S. F., Winter, M. J., & Tyler, C. R. (2023). The influence of size and surface chemistry on the bioavailability, tissue distribution and toxicity of gold nanoparticles in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 260, 115019. https://doi.org/10.1016/j.ecoenv.2023.115019
  • Yaqub, A., Anjum, K. M., Ditta, S. A., Tanvir, F., & Malkani, N. (2019). Postexposure histopathological studies of albino mice liver to silver nanoparticles prepared from (Ocimum tenuiflorum) green synthesis method. Journal of Animal & Plant Sciences, 29(6).
  • World Health Organization. (2019). Global vector control response 2017–2030. https://www.who.int/vector-control/publications/global-control-response/en
  • Zahidin, N. S., Saidin, S., Zulkifli, R. M., Muhamad, I. I., Ya’akob, H., & Nur, H. (2017). A review of Acalypha indica L.(Euphorbiaceae) as traditional medicinal plant and its therapeutic potential. Journal of Ethnopharmacology, 207, 146–173. https://doi.org/10.1016/j.jep.2017.06.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.