334
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Discussion on the Leibniz rule and Laplace transform of fractional derivatives using series representation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 304-322 | Received 18 Sep 2018, Accepted 15 Nov 2019, Published online: 24 Nov 2019

References

  • West BJ. Fractional calculus view of complexity: tomorrow's science. Boca Rato: CRC Press; 2016.
  • Boyadzhiev D, Kiskinov H, Zahariev A. Integral representation of solutions of fractional system with distributed delays. Int Trans Spec Funct. 2018;29(9):725–744. doi: 10.1080/10652469.2018.1497025
  • Sun HG, Zhang Y, Baleanu D et al. A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul. 2018;64:213–231. doi: 10.1016/j.cnsns.2018.04.019
  • Wei YH, Sheng D, Chen YQ et al. Fractional order chattering-free robust adaptive backstepping control technique. Nonlinear Dyn. 2019;95(3):2383–2394. doi: 10.1007/s11071-018-4698-8
  • Liu DY, Tian Y, Boutat D, et al. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation. Signal Processing. 2015;116:78–90. doi: 10.1016/j.sigpro.2015.04.017
  • Liu DY, Zheng G, Boutat D, et al. Non-asymptotic fractional order differentiator for a class of fractional order linear systems. Automatica. 2017;78:61–71. doi: 10.1016/j.automatica.2016.12.017
  • Srivastava HM, Yakubovich SB, Luchko YF. The convolution method for the development of new Leibniz rules involving fractional derivatives and of their integral analogues. Int Trans Spec Funct. 1993;1(2):119–134. doi: 10.1080/10652469308819014
  • Tarasov VE. No violation of the leibniz rule, No fractional derivative. Commun Nonlinear Sci Numer Simul. 2013;18(11):2945–2948. doi: 10.1016/j.cnsns.2013.04.001
  • Tarasova VV, Tarasov VE. Elasticity for economic processes with memory: fractional differential calculus approach. Fract Differ Calculus. 2016;6(2):219–232. doi: 10.7153/fdc-06-14
  • Tarasov VE. Leibniz rule and fractional derivatives of power functions. J Comput Nonlinear Dyn. 2016;11(3):ID.031014.
  • Chen DY, Zhang RF, Liu XZ, et al. Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Commun Nonlinear Sci Numer Simul. 2014;19(12):4105–4121. doi: 10.1016/j.cnsns.2014.05.005
  • Mujumdar A, Tamhane B, Kurode S. Observer-based sliding mode control for a class of noncommensurate fractional-order systems. IEEE ASME Trans Mechatron. 2015;20(5):2504–2512. doi: 10.1109/TMECH.2014.2386914
  • Oldham K, Spanier J. The fractional calculus theory and applications of differentiation and integration to arbitrary order. San Diego: Elsevier; 1974.
  • Sayevand K, Machado JT, Baleanu D. A new glance on the Leibniz rule for fractional derivatives. Commun Nonlinear Sci Numer Simul. 2018;62:244–249. doi: 10.1016/j.cnsns.2018.02.037
  • Osler TJ. The fractional derivative of a composite function. SIAM J Math Anal. 1970;1(2):288–293. doi: 10.1137/0501026
  • Osler TJ. Fractional derivatives and Leibniz rule. Am Math Monthly. 1971;78(6):645–649. doi: 10.1080/00029890.1971.11992819
  • Osler TJ. The integral analog of the Leibniz rule. Math Comput. 1972;26(120):903–915.
  • Tremblay R, Gaboury S, Fugere BJ. A new Leibniz rule and its integral analogue for fractional derivatives. Inte Trans Spec Funct. 2013;24(2):111–128. doi: 10.1080/10652469.2012.668904
  • Aguila-Camacho N, Duarte-Mermoud MA, Gallegos JA. Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul. 2014;19(9):2951–2957. doi: 10.1016/j.cnsns.2014.01.022
  • Aguila-Camacho N, Duarte-Mermoud MA. Comments on ‘Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks’. Commun Nonlinear Sci Numer Simul. 2015;25(1):145–148. doi: 10.1016/j.cnsns.2015.01.013
  • Hua CC, Ning JH, Zhao GL, et al. Output feedback NN tracking control for fractional-order nonlinear systems with time-delay and input quantization. Neurocomputing. 2018;290:229–237. doi: 10.1016/j.neucom.2018.02.047
  • Ishteva M, Boyadjiev L, Scherer R. On the Caputo operator of fractional calculus and C-Laguerre functions. Math Sci Res J. 2005;9(6):161–174.
  • Freed A, Diethelm K. Caputo derivatives in viscoelasticity: a non-linear finite-deformation theory for tissue. Fract Calculus Appl Anal. 2007;10(3):219–248.
  • Diethelm K. The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Heidelberg: Springer; 2010.
  • Ortigueira MD, Machado JAT. What is a fractional derivative?. J Comput Phys. 2015;293:4–13. doi: 10.1016/j.jcp.2014.07.019
  • Teodoro GS, Machado JT, De Oliveira EC. A review of definitions of fractional derivatives and other operators. J Comput Phys. 2019;388:195–208. doi: 10.1016/j.jcp.2019.03.008
  • Zhou X, Wei YH, Liang S, et al. Robust fast controller design via nonlinear fractional differential equations. ISA Trans. 2017;69:20–30. doi: 10.1016/j.isatra.2017.03.010
  • Wu GC, Baleanu D, Luo WH. Lyapunov functions for Riemann–Liouville-like fractional difference equations. Appl Math Comput. 2017;314:228–236.
  • Lundberg KH, Miller HR, Trumper DL. Initial conditions, generalized functions, and the laplace transform troubles at the origin. IEEE Control Syst Magaz. 2007;27(1):22–35. doi: 10.1109/MCS.2007.284506
  • Belkhatir Z, Laleg-Kirati TM. Parameters and fractional differentiation orders estimation for linear continuous-time non-commensurate fractional order systems. Syst Control Lett. 2018;115:26–33. doi: 10.1016/j.sysconle.2018.02.012
  • Williams P. Fractional calculus on time scales with Taylor's theorem. Fract Calculus Appl Anal. 2012;15(4):616–638.
  • Wei YH, Chen YQ, Cheng SS, et al. A note on short memory principle of fractional calculus. Fract Calculus Appl Anal. 2017;20(6):1382–1404.
  • Wei YH, Chen YQ, Gao Q, et al. Infinite series representation of fractional calculus: theory and applications. arXiv preprint. 2018;ArXiv:1901.11134.
  • Wei YH, Gao Q, Liu DY, et al. On the series representation of nabla discrete fractional calculus. Commun Nonlinear Sci Numer Simul. 2019;69:198–218. doi: 10.1016/j.cnsns.2018.09.024
  • Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential eqnations, to methods of their solution and some of their applications. San Diego: Academic Press; 1999.
  • Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives: theory and applications. Amsterdam: Gordon and Breach Science Publishers; 1993.
  • Luque R, Galué L. The application of a generalized Leibniz rule to infinite sums. Int Trans Spec Funct. 1999;8(1–2):65–76. doi: 10.1080/10652469908819217
  • Babakhani A, Yadollahzadeh M, Neamaty A. Some properties of pseudo-fractional operators. J Pseudo-Differ Oper Appl. 2017;9(3):677–700. doi: 10.1007/s11868-017-0206-z
  • Sousa J, de Oliveira EC. Leibniz type rule: Ψ-Hilfer fractional derivative. arXiv. 2018; Preprint arXiv: 1811.02717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.