39
Views
2
CrossRef citations to date
0
Altmetric
Research

Emission of N2O from Polycyclic Aromatic Hydrocarbons Contaminated Soil at Different Water Contents Added with Vermicompost

, , , &
Pages 48-54 | Published online: 23 Jul 2013

  • ArahJ.M.R. and SmithK.A.. 1990. Factors influencing the fraction of the gaseous products of soil denitrification evolved to the atmosphere as nitrous oxide. In: BouwmanA.F. (ed.) Soils and the greenhouse effect. Wiley, New York, pp 475–480.
  • ArahJ.M.R., SmithK.A., CrichtonI.J. and LiH.S.. 1991. Nitrous oxide production and denitrification in Scottish arable soils. J. Soil Sci., 42(3):351–367.
  • ArahJ.M.R. 1997. Apportioning nitrous oxide fluxes between nitrification and denitrification using gas-phase mass spectrometry. Soil Biol. Biochem., 29(8):1295–1299.
  • BaggsE.M., ReesR.M., SmithK.A. and VintenA.J.A.. 2000. Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manag., 16(2):82–87.
  • BollmannA. and ConradR.. 1998. Influences of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biol., 4(4):387–396.
  • BouwmanA.F. 1990. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: BouwmanA.F. (ed.) Soils and the greenhouse effect. Wiley, New York, pp 100–120.
  • BreitenbeckG.A., BlackmerA.M. and BremnerJ.M.. 1980. Effects of different nitrogen fertilizers on emission of nitrous oxide from soil. Geophys. Res. Lett., 7(1):85–88.
  • BrinchU.C., FlemmingE. and JacobsenC.S.. 2002. Method for spiking soil samples with organic compounds. Appl. Environ. Microb., 68(4):1808–1816.
  • BundyL.G. and MeisingerJ.J.. 1994. Nitrogen availability indices. In: WeaverR.W., AngleJ.S. and BottomleyP.S. (eds.) Methods of soil analysis. Part 2. Microbiological and biochemical properties. Soil Science Society of Agronomy, Madison, Wis., pp 1085–1121.
  • CambardellaC.A., RichardT.L. and RusselA.. 2003. Compost mineralization in soil as a function of composting process conditions. Eur. J. Soil Biol., 39(3):117–127.
  • CoatesJ.D., WoodwordJ., AllenJ., PhilpP. and LovleyD.R.. 1997. Anaerobic degradation of policyclic aromatic hydrocarbons and alkenes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microb., 63(9):3589–3593.
  • ConradR. 2001 Evaluation of data on the turnover of NO and N2O by oxidative versus reductive microbial processes in different soils. Phyton-Ann. Rei Bot., 41(3):61–72.
  • Contreras-RamosS.M., Escamilla-SilvaE.M. and DendoovenL.. 2005. Vermicomposting of biosolids with cow manure and oat straw. Biol. Fert. Soils, 41(3):190–198.
  • DendoovenL. and AndersonJ.M.. 1994. Dynamics of reduction enzymes involved in the denitrification process in pasture soil. Soil Biol. Biochem., 26(11):1501–1506.
  • DavidsonE.A. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: RogersJ.E. and WhitmanW.B. (eds.), Microbial Production and consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes. American Society of Microbiology, Washington, DC, pp 219–235.
  • DeniJ. and PenninckxM.J.. 2004. Influence of long-term diesel fuel pollution on nitrite-oxidising activity and population size of Nitrobacter spp. in soil. Microbiol. Res., 159(4):323–329.
  • DobbieK.E., McTaggartI.P. and SmithK.A.. 1999. Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons; key driving variables; and mean emission factors. J. Geophys. Res., 104(D21):26891–26899.
  • GintingD., KessavalouA., EghballB. and DoranJ.. 2003. Greenhouse gas emissions and soil indicators four years after manure and compost applications. J. Environ. Qual., 32(1):23–32.
  • GulledgeJ. and SchimelJ.P.. 1998. Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils. Soil Biol. Biochem., 30(8-9):1127–1132.
  • FangC. and MoncrieffJ.B.. 2001. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem., 33(2):155–165.
  • FAO (Food and Agricultural Organization): http://www.fao.org/default.htm.
  • INEGI (Instituto nacional de Estadística, Geografía e Informática): http://www.inegi.gob.mx.
  • IPCC (Intergovernmental Panel on Climate Change) 1996. Climate Change 1995, Cambridge University Press, Cambridge.
  • InubushiK., GoyalS., SakamotoK., WadaY., YamakawaK. and AraiT.. 2000. Influences of application of sewage sludge compost on N2O production in soils. Chemosphere Global Change Sci., 2:329–334.
  • JohnsenA.R., WickL.Y. and HarmsH.. 2005. Principles of microbial PAH-degradation in soil. Environ. Poll., 133(1):71–84.
  • KhalilK., MaryB. and RenaultP.. 2004. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol. Biochem., 36(4):687–699.
  • LeyvalC. and BinetP.. 1998. Effect of polycyclic aromatic hydrocarbons in soil on arbuscular mycorrizal plants. J. Environ. Qual., 27(2):402–407.
  • MosierA.R., SchimelD.S., ValentineD.W., BronsonK.F. and PartonW.. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350(6316):330–332.
  • NamkoongW., HwangE.Y., ParkJ.S. and ChoiJ.J.. 2002. Bioremediation of diesel contaminated soil with composting. Environ. Poll., 119(1):23–31.
  • PaulJ.W., BeauchampE.G. and TrevorsJ.T.. 1989. Acetate, proprionate, butyrate, and glucose as carbon sources for denitrifying bacteria in soil. Can. J. Microb., 35(8):754–759.
  • PROFEPA. 2002. Procuraduría Federal de Protección al Ambiente. Dirección general de Inspección de Fuentes de Contaminación, México. http://www.profepa.gob.mx.
  • Rivera-EspinozaY. and DendoovenL.. 2004. Dynamics of carbon, nitrogen and hydrocarbons in diesel-contaminated soil amended with biosolids and maize. Chemosphere, 54(3):379–386.
  • SAS Institute. 1989. Statistic Guide for Personal Computers. Version 6.04, Edn. SAS Institute, Cary.
  • SimekM., Jí?ováL.; and HopkinsD.W.. 2002. What is the so-called optimum pH for denitrification in soil? Soil Biol. Biochem., 34(2):1227–1234.
  • SimsJ.L., SimsR.C. and MatthewsJ.E.. 1990. Aproach to bioremediation of contaminated soil. Hazard Waste Hazard Mat., 7:117–149.
  • SridharM.K.C., AdeoyeG.O. and AdeOluwaO.O.. 2001. Alternate nitrogen amendments for organic fertilizers. The Scientific World, 1:142–147.
  • StarkJ.M. and FirestoneM.K.. 1995. Mechanisms for Soil Moisture Effects on Activity of Nitrifying Bacteria. Appl. Environ. Microb., 61(1):218–221.
  • StegmanR., LotterS. and HeerenklageJ.. 1991. Biological treatment of oil-contaminated soils in bioreactors. In: HincheeR.E. and OlfenbuttelR.F. (eds.) On site bioreclamation, Butterworth-Heinemann, Boston, pp 188–208.
  • SullivanD.G., WoodC.W., OwsleyW.F., NorfleetM.L., WoodM.L., ShawJ.N. and AdamsJ.F.. 2005. Denitrification following land application of swine waste to bermudagrass pasture. Commun. Soil Sci. Plan., 36(9-10):1277–1288.
  • VentereaR.T. and RolstonD.E.. 2000. Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Global Change Biol., 6(3):303–316.
  • Van BreemenN. and FeijtalT.C.J.. 1990. Soil processes and properties involved in the production of greenhouse gases, with special relevance to soil taxonomic systems. In: BouwmanA.F. (ed.) Soils and greenhouse effect. Wiley, New York, pp. 195–223.
  • WeierK.L., DoranJ.W., PowerJ.F. and WaltersD.T.. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon and nitrate. Soil Sci. Soc. Am. J., 57(1):66–72.
  • WellmanD.E., UleryA.L., BarcellonaM.P. and Duerr-AusterS.. 2001. Animal waste-enhanced degradation of hydrocarbon-contaminated soil. Soil Sediment Contam., 10(6):511–523.
  • WilsonL.P. and BouwerE.J.. 1997. Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J. Ind. Microbiol. Biot., 18(2-3):116–130.
  • WrageN., VelthofG.L. and van BeusichemK.L. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem., 33(12-13):1723–1732.
  • YangX.M., DruryC.F., ReynoldsW.D., McKenneyD.J., TanC.S., ZhangT.Q. and FlemingR.J.. 2002. Influence of compost and liquid pig manure on CO2 and N2O emissions from a clay loam soil. Can. J. Soil Sci., 82(4):395–401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.