108
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

UV–Visible and Fluorescence Green Waste Composts Monitoring: Material Dependency

, , , & ORCID Icon

References

  • Amine-Khodja, A., O. Trubetskaya, O. Trubetskoj, L. Cavani, C. Ciavatta, G. Guyot, and C. Richard. 2006. Humic-like substances extracted from composts can promote the photodegradation of Irgarol 1051 in solar light. Chemosphere 62:1021–7. doi:10.1016/j.chemosphere.2005.06.023.
  • Baker, A. 2001. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environmental Science and Technology 35:948–53. doi:10.1021/es000177t.
  • Baker, A. 2002. Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent. Environmental Science and Technology 36:1377–82. doi:10.1021/es0101328.
  • Bernal, M. P., C. Paredes, M. A. Sánchez-Monedero, and J. Cegarra. 1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology 63:91–99. doi:10.1016/S0960-8524(97)00084-9.
  • Chen, Y., N. Senesi, and M. Schnitzer. 1977. Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal 41:352–8. doi:10.2136/sssaj1977.03615995004100020037x.
  • Chen, W., P. K. Westerhoff, J. A. Leenheer, and K. Booksh. 2003. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology 37:5701–10. doi:10.1021/es034354c.
  • Coble, P. G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51:325–46. doi:10.1016/0304-4203(95)00062-3.
  • de Bertoldi, M., G. Vallini, and A. Pera. 1983. The biology of composting: A review. Waste Management & Research 1:157–76. doi:10.1177/0734242X8300100118.
  • De Haan, H. 1983. Use of ultraviolet spectroscopy, gel filtration, pyrolysis/mass spectrometry and numbers of benzoate-metabolizing bacteria in the study of humification and degradation of aquatic organic matter. In: R. F. Christman and E. T. Gjessing. (Eds.), Aquatic and terrestrial humic materials. pp. 165–82, Ann Arbor, MI: Ann Arbor Science Publishers.
  • Domeizel, M., A. Khalil, and P. Prudent. 2004. UV spectroscopy: A tool for monitoring humification and for proposing an index of the maturity of compost. Bioresource Technology 94:177–84. doi:10.1016/j.biortech.2003.11.026.
  • Duarte, R. M., E. B. Santos, and A. C. Duarte. 2003. Spectroscopic characteristics of ultrafiltration fraction of fulvic and humic acids isolated from an eucalyptus bleached Kraft pulp mill effluent. Water Research 37:4073–80. doi:10.1016/S0043-1354(03)00411-1.
  • Fuentes, M., G. González-Gaitano, M. José, and J. M. García-Mina. 2006. The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Organic Geochemistry 37:1949–59. doi:10.1016/j.orggeochem.2006.07.024.
  • Gómez-Brandón, M., C. Lazcano, and J. Domínguez. 2008. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 70:436–44. doi:10.1016/j.chemosphere.2007.06.065.
  • Guo, X., X. He, H. Zhang, Y. Deng, L. Chen, and J. Jiang. 2012. Characterization of dissolved organic matter extracted from fermentation effluent of swine manure slurry using spectroscopic techniques and parallel factor analysis (PARAFAC). Microchemical Journal 102:115–22. doi:10.1016/j.microc.2011.12.006.
  • He, X. S., B. D. Xi, Y. H. Jiang, L. S. He, D. Li, H. W. Pan, and S. G. Bai. 2013. Structural transformation study of water-extractable organic matter during the industrial composting of cattle manure. Microchemical Journal 106:160–6. doi:10.1016/j.microc.2012.06.004.
  • Jouraiphy, A., S. Amir, M. El Gharous, J. C. Revel, and M. Hafidi. 2005. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration & Biodegradation 56:101–8. doi:10.1016/j.ibiod.2005.06.002.
  • Kalbitz, K., W. Geyer, and S. Geyer. 1999. Spectroscopic properties of dissolved humic substances – a reflection of land use history in a fen area. Biogeochemistry 47:219–38. doi:10.1007/BF00994924.
  • Khalil, A., M. Domeizel, and P. Prudent. 2008. Monitoring of green waste composting process based on redox potential. Bioresource Technology 99:6037–45. doi:10.1016/j.biortech.2007.11.043.
  • Khalil, A. I., M. S. Hassouna, H. M. A. El-Ashqar, and M. Fawzi. 2011. Changes in physical, chemical and microbial parameters during the composting of municipal sewage sludge. World Journal of Microbiology and Biotechnology 27:2359–69. doi:10.1007/s11274-011-0704-8.
  • Larney, F. J., and R. E. Blackshaw. 2003. Weed seed viability in composted beef cattle feedlot manure. Journal of Environmental Quality 3:1105–13. doi:10.2134/jeq2003.1105.
  • Li, A., J. Hu, W. Li, W. Zhang, and X. Wang. 2009. Polarity based fractionation of fulvic acids. Chemosphere 77:1419–26. doi:10.1016/j.chemosphere.2009.09.002.
  • Li, Y., S. Wang, L. Zhang, H. Zhao, L. Jiao, Y. Zhao, and X. He. 2014. Composition and spectroscopic characteristics of dissolved organic matter extracted from the sediment of Erhai Lake in China. Journal of Soils and Sediments 14:1599–611. doi:10.1007/s11368-014-0916-2.
  • Luciani, X., S. Mounier, R. Redon, and A. Bois. 2009. A simple correction method of inner filter effects affecting FEEM and its application to the PARAFAC decomposition. Chemometrics and Intelligent Laboratory Systems 96:227–38. doi:10.1016/j.chemolab.2009.02.008.
  • Marhuenda-Egea, F. C., E. Martínez-Sabater, J. Jordá, R. Moral, M. A. Bustamante, C. Paredes, and M. D. Pérez-Murcia. 2007. Dissolved organic matter fractions formed during composting of winery and distillery residues: Evaluation of the process by fluorescence excitation-emission matrix. Chemosphere 68:301–9. doi:10.1016/j.chemosphere.2006.12.075.
  • Milori, D. M. B. P., L. Martin-Neto, C. Bayer, M. Joao, V. S. Bagnato, and J. Mielniczuk. 2002. Humification degree of soil humic acids determined by fluorescence spectroscopy. Soil Science 167:739–49. doi:10.1097/00010694-200211000-00004.
  • Mounier, S., N. Patel, L. Quilici, J. Y. Benaïm, and C. Benamou. 1999. Fluorescence 3D de la matière dissoute du fleuve amazone (Three-dimensional fluorescence of the dissolved organic carbon in the Amazon river). Water Research 33:1523–33. doi:10.1016/S0043-1354(98)00347-9.
  • Mustin, M. 1987. Le compostage, gestion de la matière organique. ed. D. Francois, 954. Paris: François Dubusc.
  • Nafez, A. H., M. Nikaeen, and S. Kadkhodaie. 2015. Sewage sludge composting: Quality assessment for agricultural application. Environmental Monitoring and Assessment 187:1–9. doi:10.1007/s10661-015-4940-5.
  • Parlanti, E., K. Wörz, L. Geoffroy, and M. Lamotte. 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry 31:1765–81. doi:10.1016/S0146-6380(00)00124-8.
  • Peuravuori, J., and K. Pihlaja. 1997. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta 337:133–49. doi:10.1016/S0003-2670(96)00412-6.
  • Pifer, A. D., and L. Fairey. 2012. Improving on SUVA 254 using fluorescence-PARAFAC analysis and asymmetric flow-field flow fractionation for assessing disinfection byproduct formation and control. Water Research 46:2927–36. doi:10.1016/j.watres.2012.03.002.
  • Pype, M. L., D. Patureau, N. Wery, Y. Poussade, and W. Gernjak. 2013. Monitoring reverse osmosis performance: Conductivity versus fluorescence excitation-emission matrix (EEM). Journal Membrane Science 428:205–11. doi:10.1016/j.memsci.2012.10.027.
  • Said-Pullicino, D., F. G. Erriquens, and G. Gigliotti. 2007a. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology 98:1822–31. doi:10.1016/j.biortech.2006.06.018.
  • Said-Pullicino, D., K. Kaiser, G. Guggenberger, and G. Gigliotti. 2007b. Changes in the chemical composition of water-extractable organic matter during composting: Distribution between stable and labile organic matter pools. Chemosphere 66:2166–76. doi:10.1016/j.chemosphere.2006.09.010.
  • Sellami, F., S. Hachicha, M. Chtourou, K. Medhioub, and E. Ammar. 2008. Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresource Technology 99:6900–7. doi:10.1016/j.biortech.2008.01.055.
  • Senesi, N., T. M. Miano, M. R. Provenzano, and B. Gennaro. 1991. Characterization, differentation and classification of humic substances by fluorescence spectroscopy. Soil Science 152:259–71. doi:10.1097/00010694-199110000-00004.
  • Shao, Z. H., P. J. He, D. Q. Zang, and L. M. Shao. 2009. Characterization of water extractable organic matter during the biostabilization of municipal solid waste. Journal of Hazardous Materials 164:1191–7. doi:10.1016/j.jhazmat.2008.09.035.
  • Stedmon, C. A., S. Markager, and R. Bro. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry 82:239–54. doi:10.1016/S0304-4203(03)00072-0.
  • Stevenson, F. J. 1982. Extraction, fractionation, and general chemical composition of soil organic matter. In Humus chemistry, genesis, composition, reactions. 26–54, New York: John Wiley and Sons Eds.
  • Summers, R. S., P. K. Cornel, and P. V. Roberts. 1987. Molecular size distribution and spectroscopic characterization of humic substances. Science of the Total Environment 62:27–37. doi:10.1016/0048-9697(87)90478-5.
  • Tang, Z., G. G. H. Yu, D. D. Y. Liu, D. Xu, and Q. Shen. 2011. Different analysis techniques for fluorescence excitation-emission matrix spectroscopy to assess compost maturity. Chemosphere 82:1202–8. doi:10.1016/j.chemosphere.2010.11.032.
  • Tian, W., L. Li, F. Liu, Z. Zhang, G. Yu, Q. Shen, and B. Shen. 2012. Assessment of the maturity and biological parameters of compost produced from dairy manure and rice chaff by excitation-emission matrix fluorescence spectroscopy. Bioresource Technology 110:330–7. doi:10.1016/j.biortech.2012.01.067.
  • Tomati, U., E. Galli, L. Pasetti, and E. Volterra. 1995. Bioremediation of olive-mill wastewaters by composting. Waste Management & Research 13:509–18. doi:10.1177/0734242X9501300602.
  • Wang, Z., Z. Wu, and S. Tang. 2009. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research 43:1533–40. doi:10.1016/j.watres.2008.12.033.
  • Wei, Z., X. Zhao, C. Zhu, B. Xi, Y. Zhao, and X. Yu. 2014. Assessment of humification degree of dissolved organic matter from different composts using fluorescence spectroscopy technology. Chemosphere 95:261–7. doi:10.1016/j.chemosphere.2013.08.087.
  • Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37:4702–8. doi:10.1021/es030360x.
  • Yu, G. H., Y. H. Luo, M. J. Wu, Z. Tang, D. Y. Liu, X. M. Yang, and Q. R. Shen. 2010. PARAFAC modelling of fluorescence excitation-emission spectra for rapid assessment of compost maturity. Bioresource Technology 101:8244–51. doi:10.1016/j.biortech.2010.06.007.
  • Yu, G. H., M. J. Wu, Y. H. Luo, X. M. Yang, W. Ran, and Q. R. Shen. 2011. Fluorescence excitation-emission spectroscopy with regional integration analysis for assessment of compost maturity. Waste Management 31:1729–36. doi:10.1016/j.wasman.2010.10.031.
  • Zepp, R. G., W. M. Sheldon, and M. A. Moran. 2004. Dissolved organic fluorophores in southeastern US coastal waters: Correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Marine Chemistry 89:15–36. doi:10.1016/j.marchem.2004.02.006.
  • Zhang, J., B. Lv, M. Xing, and J. Yang. 2015. Tracking the composition and transformation of humic and fulvic acids during vermicomposting of sewage sludge by elemental analysis and fluorescence excitation–emission matrix. Waste Management 39:111–8. doi:10.1016/j.wasman.2015.02.010.
  • Zhang, S., Z. Chen, Q. Wen, and J. Zheng. 2016. Assessing the stability in composting of penicillin mycelial dreg via parallel factor (PARAFAC) analysis of fluorescence excitation-emission matrix (EEM). Chemical Engineering Journal 299:167–76. doi:10.1016/j.cej.2016.04.020.
  • Zhao, H. Y., J. Li, J. J. Liu, Y. C. Lü, X. F. Wang, and Z. J. Cui. 2013. Microbial community dynamics during biogas slurry and cow manure compost. Journal of Integrative Agriculture 12:1087–97. doi:10.1016/S2095-3119(13)60488-8.
  • Zhou, J., J.-J. Wang, A. Baudon, and A. T. Chow. 2013. Improved fluorescence excitation-emission matrix regional integration to quantify spectra for fluorescent dissolved organic matter. Journal of Environment Quality 42:925–30. doi:10.2134/jeq2012.0460.
  • Zsolnay, A., E. Baigar, M. Jimenez, B. Steinweg, and F. Saccomandi. 1999. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50. doi:10.1016/S0045-6535(98)00166-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.