187
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Microbial Diversity in Compost is Critical in Suppressing Plant Fungal Pathogen Survival and Enhancing Cucumber Seedling Growth

, , &

References

  • Asha, B. B., S. C. Nayaka, A. U. Shankar, C. Srinivas, and S. R. Niranjana. 2011. Biological control of F. oxysporum f. sp. lycopersici causing wilt of tomato by Pseudomonas fluorescens. International Microbiology Research 3:79–84. doi:10.9735/0975-5276.3.2.79-84.
  • Bechard, J., K. C. Eastwell, P. L. Sholberg, G. Mazza, and B. Skura. 1998. Isolation and partial chemical characterization of an antimicrobial peptide produced by a strain of Bacillus subtilis. Journal of Agricultural and Food Chemistry 46:5355–61. doi:10.1021/jf9803987.
  • Berendsen, R. L., C. M. J. Pieterse, and P. A. H. M. Bakker. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17:478–86. doi:10.1016/j.tplants.2012.04.001.
  • Blumer, C., and D. Haas. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173:170–77. doi:10.1007/s002039900127.
  • Bodour, A. A., K. P. Drees, and R. M. Maier. 2003. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Applied and Environmental Microbiology 69:3270–78. doi:10.1128/AEM.69.6.3280-3287.2003.
  • Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335–6. doi:10.1038/nmeth.f.303.
  • Chao, A.. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11:265–70.
  • Chen, M. H., and E. B. Nelson. 2008. Seed-colonizing microbes from municipal biosolids compost suppress Pythium ultimum damping-off on different plant species. Phytopathology 98:1012–18. doi:10.1094/PHYTO-98-9-1012.
  • Chen, X. P., Y. G. Zhu, Y. Xia, J. P. Shen, and J. Z. He. 2008. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environmental Microbiology 10:1978–1987. doi:10.1111/j.1462-2920.2008.01613.x.
  • Crane, K. W., and J. P. Grover. 2010. Coexistence of mixotrophs, autotrophs, and heterotrophs in planktonic microbial communities. Journal of Theoretical Biology 262:517–27. doi:10.1016/j.jtbi.2009.10.027.
  • Darrasse, A., A. Darsonval, T. Boureau, M. N. Brisset, K. Durand, and M. A. Jacques. 2010. Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence. Applied and Environmental Microbiology 76:6787–96. doi:10.1128/AEM.01098-10.
  • Dean, R., J. A. Van Kan, Z. A. Pretorius, K. E. Hammond-Kosack, A. Di Pietro, P. D. Spanu, et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13:414–30. doi:10.1111/j.1364-3703.2011.00783.x.
  • Engelbrektson, A., V. Kunin, K. C. Wrighton, N. Zvenigorodsky, F. Chen, H. Ochman, et al. 2010. Experimental factors affecting PCR based estimates of microbial species richness and evenness. The ISME Journal 4:642–7. doi:10.1038/ismej.2009.153.
  • Finkel, O. M., G. Castrillo, S. H. Paredes, I. S. González, and J. L. Dangl. 2017. Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology 38:155–63. doi:10.1016/j.pbi.2017.04.018.
  • Gomez-Gil, L., J. C. Almiron, P. L. R. Carrillo, C. N. O. Medina, G. B. Ruiz, P. R. Rodriguez, et al. 2018. Nitrate assimilation pathway (NAP): role of structural (nit) and transporter (ntr1) genes in Fusarium oxysporum f. sp. lycopersici growth and pathogenicity. Current Genetics 64:493–507. doi:10.1007/s00294-017-0766-8.
  • Hadar, Y.. 2011. Suppressive compost: when plant pathology met microbial ecology. Phytoparasitica 39:311–4. doi:10.1007/s12600-011-0177-1.
  • Harrison, K. A., R. Bol, and R. D. Bardgett. 2007. Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–99. doi:10.1890/06-1018.
  • Huang, S., R. Li, Z. Zhang, L. Li, X. Gu, W. Fan, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature Genetics 41:1275–81. doi:10.1038/ng.475.
  • Hunt, D. E., L. A. David, D. Gevers, S. P. Preheim, E. J. Alm, and M. F. Polz. 2008. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science (Washington, DC, United States) 320:1081–5. doi:10.1126/science.1157890.
  • Ismail, M. R., H. M. Saud, S. H. Habib, H. Kausar, M. A. Maleque, and M. A. Hakim. 2017. Efficacy evaluation of empty palm oil fruit bunch compost in improving soil characteristics, plant growth and disease suppression of tomata plants under tropical acid soil. Journal of Environmental Biology 38:123. doi:10.22438/jeb/38/1/PRN-126.
  • Komada, H.. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Proteome Research 8:114–24.
  • Kuczynski, J., C. L. Lauber, W. A. Walters, L. W. Parfrey, J. C. Clemente, D. Gevers, et al. 2011. Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics 13:47–58. doi:10.1038/nrg3129.
  • Kunin, V., A. Engelbrektson, H. Ochman, and P. Hugenholtz. 2010. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology 12:118–23. doi:10.1111/j.1462-2920.2009.02051.x.
  • Lamprecht, S. C., and Y. T. Tewoldemedhin. 2017. Fusarium species associated with damping-off of rooibos seedlings and the potential of compost as soil amendment for disease suppression. South African Journal of Botany 110:110–7. doi:10.1016/j.sajb.2016.07.009.
  • Li, Q. F., C. Y. Wu, X. Deng, and X. W. Hou. 2013. Soil microbial functional diversity from different infection grades of banana fusarium wilt (Fusarium oxysporum f. sp. Cubense). Applied Mechanics and Materials 295:2274–80.
  • Manici, L. M., F. Caputo, and M. L. Saccà. 2017. Secondary metabolites released into the rhizosphere by Fusarium oxysporum and Fusarium spp. as underestimated component of nonspecific replant disease. Plant and Soil 415:85–98. doi:10.1007/s11104-016-3152-2.
  • Michielse, C. B. and Rep M. 2003. Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology 10:311–24. doi:10.1111/j.1364-3703.2009.00538.x.
  • Noble, R.. 2011. Risks and benefits of soil amendment with composts in relation to plant pathogens. Australasian Plant Pathology 40:157–67. doi:10.1007/s13313-010-0025-7.
  • Ofek, M., Y. Hadar, and D. Minz. 2009. Comparison of effects of compost amendment and of single-strain inoculation on root bacterial communities of young cucumber seedlings. Applied and Environmental Microbiology 75:6441–50. doi:10.1128/AEM.00736-09.
  • Ofek, M., Y. Hadar, and D. Minz. 2011. Colonization of cucumber seeds by bacteria during germination. Environmental Microbiology 13:2794–807. doi:10.1111/j.1462-2920.2011.02551.x.
  • Peiffer, J. A., A. Spor, O. Koren, Z. Jin, S. G. Tringe, J. L. Dangl, et al. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States 110:6548–53. doi:10.1073/pnas.1302837110.
  • Philippot, L., A. Spor, C. Hénault, D. Bru, F. Bizouard, C. M. Jones, et al. 2013. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal 7:1609–19. doi:10.1038/ismej.2013.34.
  • Postma, J., M. J. E. I. M. Willemsen-de Klein, and A. E. Hoogland. 1996. Biocontrol of Pythium aphanidermatum in closed culture systems. IOBC/WPRS Bulletin 19:42–46.
  • Postma, J., M. J. E. I.M. Willemsen-de Klein, and J. D. van Elsas. 2000. Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 90:125–33. doi:10.1094/PHYTO.2000.90.2.125.
  • Postma, J., B. P. Geraats, R. Pastoor, and J. D. van Elsas. 2005. Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 95:808–18. doi:10.1094/PHYTO-95-0808.
  • Qiu, M., R. Zhang, C. Xue, S. Zhang, S. Li, N. Zhang, and Q. Shen. 2012. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biology and Fertility of Soils 48:807–16. doi:10.1007/s00374-012-0675-4.
  • Ramette, A., M. Frapolli, G. Défago, and Y. Moënne-Loccoz. 2003. Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Molecular Plant-Microbe Interactions 16:525–35. doi:10.1094/MPMI.2003.16.6.525.
  • Rosenberg, E., and I. Zilber-Rosenberg. 2016. Microbes drive evolution of animals and plants: the hologenome concept. MBio 7:e01395–15. doi:10.1128/mBio.01395-15.
  • Shanon, C. E., and W. Weaver. 1949. The mathematical Theory of Communications. Urbana: University of Illinois Press.
  • Tautges, N. E., T. S. Sullivan, C. L. Reardon, and I. C. Burke. 2016. Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system. Applied Soil Ecology 108:258–68. doi:10.1016/j.apsoil.2016.09.003.
  • Thatcher, L. F., A. H. Williams, G. Garg, S. A. G. Buck, K. B. Singh. 2016. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. Bmc Genomics [Electronic Resource] 17:860. doi:10.1186/s12864-016-3192-2.
  • Thuerig, B., A. Fließbach, N. Berger, J. G. Fuchs, N. Kraus, N. Mahlberg, et al. 2009. Re-establishment of suppressiveness to soil-and air-borne diseases by re-inoculation of soil microbial communities. Soil Biology & Biochemistry 41:2153–61. doi:10.1016/j.soilbio.2009.07.028.
  • Vakalounakis, D. J. and G. A. Fragkiadakis. 1999. Genetic diversity of Fusarium oxysporum isolates from cucumber: Differentiation by pathogenicity, vegetative compatibility, and RAPD Fingerprinting. Phytopathol 89:161–8. doi:10.1094/PHYTO.1999.89.2.161.
  • Van der Heijden, M. G. A., J. N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf-Engel, T. Boller, et al. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature (London, United Kingdom) 396:69–72. doi:10.1038/23932.
  • Van Elsas, J. D., M. Chiurazzi, C. A. Mallon, D. Elhottovā, V. Krištůfek, and J. F. Salles. 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States 109:1159–64. doi:10.1073/pnas.1109326109.
  • Vera, J. C., C. W. Wheat, H. W. Fescemyer, M. J. Frilander, D. L. Crawford, I. Hanski, et al. 2008. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Molecular Ecology 17:1636–47. doi:10.1111/j.1365-294X.2008.03666.x.
  • Weller, D. M., J. M. Raaijmakers, B. B. M. Gardener, and L. S. Thomashow. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40:309–48. doi:10.1146/annurev.phyto.40.030402.110010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.