275
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Direct preparation of hierarchical macroporous β-SiC using SiO2 opal as both template and precursor and its application in water splitting

, , , , , & show all
Pages 526-531 | Received 07 Apr 2016, Accepted 20 Apr 2016, Published online: 25 Jul 2016

References

  • M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis: ‘Solar Water Splitting Cells’, Chem. Rev., 2010, 110, 6446–6473.10.1021/cr1002326
  • F. E. Osterloh: ‘Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting’, Chem. Soc. Rev., 2013, 42, 2294–2320.10.1039/C2CS35266D
  • Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. Stuart-Williams, H. Yang, J. Y. Cao, W. J. Luo, Z. S. Li, Y. Liu and R. L. Withers: ‘An orthophosphate semiconductor with photooxidation properties under visible-light irradiation’, Nat. Mater., 2010, 9, 559–564.10.1038/nmat2780
  • K. Iwashina and A. Kudo: ‘Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation’, J. Am. Chem. Soc., 2011, 133, 13272–13275.10.1021/ja2050315
  • Y. Xu, W. Zhao, R. Xu, Y. Shi and B. Zhang: ‘Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution’, Chem. Commun., 2013, 49, 9803–9805.10.1039/c3cc46342g
  • L. Ni, M. Tanabe and H. Irie: ‘A visible-light-induced overall water-splitting photocatalyst: conduction-band-controlled silver tantalite’, Chem. Commun., 2013, 49, 10094–10096.10.1039/c3cc45222k
  • Y. Zhang, Y. Tang, X. Liu, Z. Dong, H. H. Hng, Z. Chen, T. C. Sum and X. Chen: ‘Three-dimensional CdS-titanate composite nanomaterials for enhanced Visible-light-driven hydrogen evolution’, Small, 2013, 9, 996–1002.10.1002/smll.v9.7
  • J. Zhang, S. J. Deng, S. Y. Liu, J. M. Chen, B. Q. Han, Y. Wang and Y. D. Wang: ‘Preparation and photocatalytic activity of Nd doped ZnO nanoparticles’, Mater. Technol., 2014, 29, 262–268.10.1179/1753555713Y.0000000122
  • X. Xu and W. Song: ‘Enhanced H2 production activity under solar irradiation over N-doped TiO2 prepared using pyridine as a precursor: a typical sample of N-doped TiO2 series’, Mater. Technol., 2016, 31, 1–12.10.1080/10667857.2015.1118587
  • J. F. Ren, J. Z. Li and Z. W. Song: ‘Ionic liquid-assisted synthesis of Bi12TiO20 nanostructures and their visible-light photocatalytic performance’, Mater. Technol., 2016, 31, 1–5.
  • S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z. X. Guo and J. W. Tang: ‘Visible-light driven heterojunction photocatalysts for water splitting – a critical review’, Energ. Environ. Sci., 2015, 8, 731–759.10.1039/C4EE03271C
  • F. Y. Cheng, H. Ma and Y. M. Li: ‘Ni1-xPtx (x = 0−0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane’, J. Chen Inorg. Chem., 2007, 46, 788–794.10.1021/ic061712e
  • Q. Zhao, M. W. Ji, H. M. Qian, B. S. Dai, L. Weng, J. Gui, J. T. Zhang, M. Ouyang and H. S. Zhu: ‘Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution’, Adv. Mater., 2014, 26, 1387–1392.10.1002/adma.201304652
  • Q. Yang, T. Li, Z. Y. Lu, X. M. Sun and J. F. Liu: ‘Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction’, Nanoscale, 2014, 6, 11789–11794.10.1039/C4NR03371J
  • L. Kuai, B. Y. Geng, X. T. Chen, Y. Y. Zhao and Y. C. Luo: ‘Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag−AgBr plasmonic photocatalyst’, Langmuir, 2010, 26, 18723–18727.10.1021/la104022g
  • P. Liu, Q. L. Hao, X. F. Xia, L. Lu, W. Lei and X. Wang: ‘3D hierarchical mesoporous flowerlike cobalt oxide nanomaterials: controllable synthesis and electrochemical properties’, J. Phys. Chem. C, 2015, 119, 8537–8546.10.1021/acs.jpcc.5b01315
  • H. Zhang, R. L. Zong, J. C. Zhao and Y. F. Zhu: ‘Environ. dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI’, Sci. Technol., 2008, 42, 3803–3807.10.1021/es703037x
  • D. H. van Dorp, N. Hijnen, M. D. Vece and J. J. Kelly: ‘SiC: a photocathode for water splitting and hydrogen storage’, Angew. Chem. Int. Ed., 2009, 48, 6085–6088.10.1002/anie.v48:33
  • C. He, X. Wu, J. Shen and P. K. Chu: ‘High-efficiency electrochemical hydrogen evolution based on surface autocatalytic effect of ultrathin 3C-SiC nanocrystals’, Nano Lett., 2012, 12, 1545–1548.10.1021/nl3006947
  • T. Yasuda, M. Kato, M. Ichimura and T. Hatayama: ‘SiC photoelectrodes for a self-driven water-splitting cell’, Appl. Phys. Lett., 2012, 101, 053902.10.1063/1.4740079
  • Q.-B. Ma, B. Kaiser, J. Ziegler, D. Fertig and W. Jaegermann: ‘XPS characterization and photoelectrochemical behaviour of p-type 3C-SiC films on p-Si substrates for solar water splitting’, J. Phys. D: Appl. Phys., 2012, 45, 325101.10.1088/0022-3727/45/32/325101
  • J. Y. Hao, Y. Y. Wang, X. L. Tong, G. Q. Jin and X. Y. Guo: ‘Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation’, Int. J. Hydro. Energy, 2012, 37, 15038–15044.10.1016/j.ijhydene.2012.08.021
  • H. Liu, G. She, L. Mu and W. Shi: ‘Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation’, Mater. Res. Bull., 2012, 47, 917–920.10.1016/j.materresbull.2011.12.046
  • X. Shen and S. T. Pantelides: ‘Atomic-scale mechanism of efficient hydrogen evolution at SiC nanocrystal electrodes’, J. Phys. Chem. Lett., 2013, 4, 100–104.
  • J. Yang, X. Zeng, L. Chen and W. Yuan: ‘Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light’, Appl. Phys. Lett., 2013, 102, 083101.10.1063/1.4792695
  • J. Yang, Y. Yang, X. Zeng and W. Yuan: ‘Water splitting mechanism to hydrogen by silicon carbide nanoparticles’. Sci. Adv. Mater., 2013, 5, 155–159.10.1166/sam.2013.1441
  • X. N. Guo, X. L. Tong, Y. W. Wang, C. M. Chen, G. Q. Jin and X. Y. Guo: ‘High photoelectrocatalytic performance of a MoS2–SiC hybrid structure for hydrogen evolution reaction’, J. Mater. Chem. A, 2013, 1, 4657–4661.10.1039/c3ta10600d
  • X. F. Zhou, Q. Z. Gao, X. Li, Y. J. Liu, S. S. Zhang, Y. P. Fang and J. Li: ‘Ultra-thin SiC layer covered graphene nanosheets as advanced photocatalysts for hydrogen evolution’, J. Mater. Chem. A, 2015, 3, 10999–11005.10.1039/C5TA02516H
  • Y. Shi, F. Zhang, Y.-S. Hu, X. Sun, Y. Zhang, H. I. Lee, L. Chen and G. D. Stucky: ‘Low-temperature pseudomorphic transformation of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction’, J. Am. Chem. Soc., 2010, 132, 5552–5553.10.1021/ja1001136
  • K. Chen, Z. Bao, A. Du, X. Zhu, G. Wu, J. Shen and B. Zhou: ‘Synthesis of resorcinol-formaldehyde/silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide’, Micropor. Mesopor. Mater., 2012, 149, 16–24.10.1016/j.micromeso.2011.09.008
  • B. Zhao, H. Zhang, H. Tao, Z. Tan, Z. Jiao and M. Wu: ‘Low temperature synthesis of mesoporous silicon carbide via magnesiothermic reduction’, Mater. Lett., 2011, 65, 1552–1555.10.1016/j.matlet.2011.02.075
  • M. Dasog, L. F. Smith, T. K. Purkait and J. G. C. Veinot: ‘Low temperature synthesis of silicon carbide nanomaterials using a solid-state method’, Chem. Commun., 2013, 49, 7004–7006.10.1039/c3cc43625j
  • T. D. Nguyen, J. A. Kelly, W. Y. Hamad, M. J. MacLachlan: ‘Magnesiothermic reduction of thin films: towards semiconducting chiral nematic mesoporous silicon carbide and silicon structures’, Adv. Funct. Mater., 2015, 25, 2175–2181.10.1002/adfm.v25.14
  • C. M. A. Parlett, K. Wilson and A. F. Lee: ‘Hierarchical porous materials: catalytic applications’, Chem. Soc. Rev., 2013, 42, 3876–3893.10.1039/C2CS35378D
  • Z. Jiang, Y. Tang, Q. Tay, Y. Zhang, O. I. Malyi, D. Wang, J. Deng, Y. Lai, H. Zhou, X. Chen, Z. Z. Dong ‘Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts’, Chen, Adv. Energy Mater., 2013, 3, 1368–1380.10.1002/aenm.v3.10
  • Z. H. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. T. Kang, H. W. Abernathy III, C. J. Summers, M. Liu and K. H. Sandhage: ‘Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas’, Nature, 2007, 446, 172–175.10.1038/nature05570
  • G. Xi, Y. Liu, X. Liu, X. Wang and Y. Qian: ‘Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures’, J. Phys. Chem. B, 2006, 110, 14172–14178.10.1021/jp0617468
  • Y. Cai, S. M. Allan and K. H. Sandhage: ‘Three-dimensional magnesia-based nanocrystal assemblies via low-temperature magnesiothermic reaction of diatom microshells’, J. Am. Ceram. Soc., 2005, 88, 2005–2010.10.1111/jace.2005.88.issue-7
  • H. Morito, H. Yamane, T. Yamada, S. Yin and T. Sato: ‘Low-temperature synthesis and mechanical properties of SiC porous granules from activated charcoal with a Na flux’, Mater. Trans., 2008, 49, 1929–1933.10.2320/matertrans.MAW200859
  • F. Kawamura, H. Yamane, T. Yamada, S. Yin and T. Sato: ‘Low-Temperature Fabrication of Porous β-SiC Ceramics in Sodium Vapor’, J. Am. Ceram. Soc., 2008, 91, 51–55.
  • G. Mishra, K. M. Parida and S. K. Singh: ‘Facile fabrication of S-TiO2/β-SiC nanocomposite photocatalyst for hydrogen evolution under visible light irradiation’, ACS Sustainable Chem. Eng., 2015, 3, 245–253.10.1021/sc500570k
  • W. Lu, L. W. Guo, Y. P. Jia, Y. Guo, Z. L. Li, J. J. Lin, J. Huang and W. J. Wang: ‘Significant enhancement in photocatalytic activity of high quality SiC/graphene core-shell heterojunction with optimal structural parameters’, RSC Adv., 2014, 4, 46771–46779.10.1039/C4RA06026A
  • W. Stöber, A. Fink, E. Bohn and J. Colloid: ‘Controlled growth of monodisperse silica spheres in the micron size range’, Interface Sci., 1968, 26, 62–69.10.1016/0021-9797(68)90272-5
  • Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z Li, C. Yu and B Tu: ‘Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation’, Angew. Chem., Int. Ed., 2005, 44, 7053–7059.10.1002/(ISSN)1521-3773

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.