713
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Nanostructured cation disordered Li2FeTiO4/graphene composite as high capacity cathode for lithium-ion batteries

, , , , &
Pages 537-543 | Received 22 Apr 2016, Accepted 15 May 2016, Published online: 25 Jul 2016

References

  • S. M. Rezvanizaniani, Z. Liu, Y. Chen and J. Lee: ‘Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility’, J. Power Sources, 2014, 256, 110–124.10.1016/j.jpowsour.2014.01.085
  • C. Wang, L. Wu, H. Wang, W. Zuo, Y. Li and J. Liu: ‘Fabrication and Shell Optimization of Synergistic TiO2-MoO3 Core–Shell Nanowire Array Anode for High Energy and Power Density Lithium-Ion Batteries’, Adv. Funct. Mater., 2015, 25, 3524–3533.10.1002/adfm.v25.23
  • B. C. Melot and J.-M. Tarascon: ‘Design and Preparation of Materials for Advanced Electrochemical Storage’, Account Chem. Res., 2013, 46, 1226–1238.10.1021/ar300088q
  • J. Liu, M. N. Banis, Q. Sun, A. Lushington, R. Li, T. K. Sham and X. Sun: ‘Rational Design of Atomic-Layer-Deposited LiFePO4 as a High-Performance Cathode for Lithium-Ion Batteries’, Adv. Mater., 2014, 26, 6472–6477.10.1002/adma.201401805
  • L. H. Hu, F. Y. Wu, C. T. Lin, A. N. Khlobystov and L. J. Li: ‘Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity’, Nat. Commun., 2013, 4, 1687(1–7).10.1038/ncomms2705
  • N. R. Khasanova, O. A. Drozhzhin, D. A. Storozhilova, C. Delmas and E. V. Antipov: ‘New Form of Li2FePO4F as Cathode Material for Li-Ion Batteries’, Chem. Mater., 2012, 24, 4271–4273.10.1021/cm302724a
  • T. N. Ramesh, K. T. Lee, B. L. Ellis and L. F. Nazar: ‘Tavorite Lithium Iron Fluorophosphate Cathode Materials: Phase Transition and Electrochemistry of LiFePO4F–Li2FePO4F’, Electrochem. Solid-State Lett., 2010, 13, A43–A47.10.1149/1.3298353
  • B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill and L. F. Nazar: ‘A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries’, Nat. Mater., 2007, 6, 749–753.10.1038/nmat2007
  • T. Ye, P. Barpanda, S. Nishimura, N. Furuta, S. Chung and A. Yamada: ‘General Observation of Fe3+/Fe2+ Redox Couple Close to 4 V in Partially Substituted Li2FeP2O7 Pyrophosphate Solid-Solution Cathodes’, Chem. Mater., 2013, 25, 3623–3629.10.1021/cm401547z
  • P. Barpanda, M. Ati, B. C. Melot, G. Rousse, J-N. Chotard, M-L. Doublet, M. T. Sougrati, S. A. Corr, J-C. Jumas and J-M. Tarascon: ‘A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure’, Nat. Mater., 2011, 10, 772–779.10.1038/nmat3093
  • A. Sobkowiak, M. R. Roberts, R. Younesi, T. Ericsson, L. Häggström, C. W. Tai, A. M. Andersson, K. Edström, T. Gustafsson and F. Björefors: ‘Understanding and Controlling the Surface Chemistry of LiFeSO4F for an Enhanced Cathode Functionality’, Chem. Mater., 2013, 25, 3020–3029.10.1021/cm401063s
  • M. Kim, Y. Jung and B. Kang: ‘High electrochemical performance of 3.9 V LiFeSO4F directly synthesized by a scalable solid- state reaction within 1 h’, J. Mater. Chem. A, 2015, 3, 7583–7590.10.1039/C4TA07095J
  • L. Tao, G. Rousse, J. N. Chotard, L. Dupont, S. Bruyère, D. Hanžel, G. Mali, R. Dominko, S. Levasseur and C. Masquelier: ‘Preparation, structure and electrochemistry of LiFeBO3: a cathode material for Li-ion batteries’, J. Mater. Chem. A, 2014, 2, 2060–2070.10.1039/C3TA13021E
  • A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson and J. O. Thomas: ‘Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material’, Electrochem. Commun., 2005, 7, 156–160.10.1016/j.elecom.2004.11.008
  • T. Masese, Y. Orikasa, C. Tassel, J. Kim, T. Minato, H. Arai, T. Mori, K. Yamamoto, Y. Kobayashi, H. Kageyama, Z. Ogumi and Y. Uchimoto: ‘Relationship between Phase Transition Involving Cationic Exchange and Charge−Discharge Rate in Li2FeSiO4’, Chem. Mater., 2014, 26, 1380–1384.10.1021/cm403134q
  • J. Yang, X. Kang, L. Hu, X. Gong, D. He, T. Peng and S. Mu: ‘Synthesis and electrochemical performance of Li2FeSiO4/C/carbon nanosphere composite cathode materials for lithium ion batteries’, J. Alloys Comps., 2013, 572, 158–162.10.1016/j.jallcom.2013.03.256
  • T. Muraliganth, K. R. Stroukoff and A. Manthiram: ‘Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries’, Chem. Mater., 2010, 22, 5754–5761.10.1021/cm102058n
  • Z. Chen, S. Qiu, Y. Cao, J. Qian, X. Ai, K. Xie, X. Hong and H. Yang: ‘Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries’, J. Mater. Chem. A, 2013, 1, 4988–4992.10.1039/c3ta00611e
  • D. Lv, W. Wen, X. Huang, J. Bai, J. Mi, S. Wu and Y. Yang: ‘A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity’, J. Mater. Chem., 2011, 21, 9506–9512.10.1039/c0jm03928d
  • A. Saracibar, A. V. Ven and E. A. Dompablo: ‘Crystal Structure, Energetics, And Electrochemistry of Li2FeSiO4 Polymorphs from First Principles Calculations’, Chem. Mater., 2012, 24, 495–503.10.1021/cm202818u
  • D. Lv, J. Bai, P. Zhang, S. Wu, Y. Li, W. Wen, Z. Jiang, J. Mi, Z. Zhu and Y. Yang: ‘Understanding the High Capacity of Li2FeSiO4: In Situ XRD/XANES Study Combined with First-Principles Calculations’, Chem. Mater., 2013, 25, 2014–2020.
  • M. Kuezma, R. Dominko, D. Hanžel, A. Kodre, I. Arčon, A. Meden and M. Gaberšček: ‘Detailed In Situ Investigation of the Electrochemical Processes in Li2FeTiO4 Cathodes’, J. Electrochem. Soc., 2009, 156, A809–A816.10.1149/1.3205458
  • M. Küzma, R. Dominko, A. Meden, D. Makovec, M. Bele, J. Jamnik and M. Gaberšček: ‘Electrochemical activity of Li2FeTiO4 and Li2MnTiO4 as potential active materials for Li ion batteries: A comparison with Li2NiTiO4’, J. Power Sources, 2009, 189, 81–88.10.1016/j.jpowsour.2008.11.015
  • J. Lee, A. Urban, X. Li, D. Su, G. Hautier and G. Ceder: ‘Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries’, Science, 2014, 343, 519–522.10.1126/science.1246432
  • A. Urban, J. Lee and G. Ceder: ‘The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes’, Adv. Energy Mater., 2014, 4, 1400478(1–9).
  • D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour: ‘Improved Synthesis of Graphene Oxide’, ACS Nano., 2010, 4, 4806–4814.10.1021/nn1006368
  • J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo: ‘Reduction of graphene oxide via L-ascorbic acid’, Chem. Commun., 2010, 46, 1112–1114.10.1039/B917705A
  • H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin, M. Zheng, S. V. Savilov and S. M. Aldoshin: ‘Facile Synthesis of Hematite Quantum-Dot/Functionalized Graphene-Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors’, Adv. Funct. Mater., 2015, 25, 627–635.10.1002/adfm.v25.4
  • R. Li, Y. Wang, C. Zhou, C. Wang, X. Ba, Y. Li, X. Huang and J. Liu: ‘Carbon-Stabilized High-Capacity Ferroferric Oxide Nanorod Array for Flexible Solid-State Alkaline Battery–Supercapacitor Hybrid Device with High Environmental Suitability’, Adv. Funct. Mater., 2015, 25, 5384–5394.10.1002/adfm.201502265
  • C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko and A. C. Ferrari: ‘Raman Spectroscopy of Graphene Edges’, Nano Lett., 2009, 9, 1433–1441.10.1021/nl8032697
  • G. Wang, X. Shen, J. Yao and J. Park: ‘Graphene nanosheets for enhanced lithium storage in lithium ion batteries’, Carbon, 2009, 47, 2049–2053.10.1016/j.carbon.2009.03.053
  • R. Chen, M. Knapp, M. Yavuz, S. Ren, R. Witte, R. Heinzmann, H. Hahn, H. Ehrenberg and S. Indris: ‘Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li+ storage’, Phys. Chem. Chem. Phys., 2015, 17, 1482–1488.10.1039/C4CP04655B
  • C. Kim, N. S. Norberg, C. T. Alexander, R. Kostecki and J. Cabana: ‘Mechanism of Phase Propagation During Lithiation in Carbon-Free Li4Ti5O12 Battery Electrodes’, Adv. Funct. Mater., 2013, 23, 1214–1222.10.1002/adfm.v23.9
  • M. Yang, X. Zhao, L. Ma, H. Yang, X. Shen and Y. Bian: ‘Electrochemical performance of nanocrystalline Li2CoTiO4 cathode materials for lithium ion batteries’, J. Alloys Comps., 2015, 618, 210–216.10.1016/j.jallcom.2014.08.163
  • L. Castro, R. Dedryvère, J. B. Ledeuil, J. Bréger, C. Tessier and D. Gonbeau: ‘Aging Mechanisms of LiFePO4//Graphite Cells Studied by XPS: Redox Reaction and Electrode/Electrolyte Interfaces’, J. Electrochem. Soc., 2012, 159, A357–A363.10.1149/2.024204jes
  • S. Yang, Y. Guo, N. Yan, D. Wu, H. He, Z. Qu, C. Yang, Q. Zhou and J. Jia: ‘Nanosized Cation-Deficient Fe-Ti Spinel: A Novel Magnetic Sorbent for Elemental Mercury Capture from Flue Gas’, ACS Appl. Mater. Interfaces, 2011, 3, 209–217.10.1021/am100835c
  • M. Ghaffari, H. Huang, O. K. Tan and M. Shannon: ‘Band gap measurement of SrFeO3-δ by ultraviolet photoelectron spectroscopy and photovoltage method’, CrystEngComm., 2012, 14, 7487–7492.10.1039/c2ce25751c
  • M. Ghaffari, M. Shannon, H. Hui, O. K. Tan and A. Irannejad: ‘Preparation, surface state and band structure studies of SrTi(1−x)Fe(x)O(3−δ) (x=0-1 perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy’, Surf. Sci., 2012, 606, 670–677.10.1016/j.susc.2011.12.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.