359
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Design of a flower-like CuS nanostructure via a facile hydrothermal route

, , , , &
Pages 510-516 | Received 28 Apr 2016, Accepted 14 May 2016, Published online: 25 Jul 2016

References

  • S. Erokhina, V. Erokhin, C. Nicolini, F. Sbrana, D. Ricci and E. di Zitti: ‘Microstructure origin of the conductivity differences in aggregated CuS films of different thickness’, Langmuir, 2003, 19, 766–771.10.1021/la026433s
  • W. P. Lim, C. T. Wong, S. L. Ang, H. Y. Low and W. S. Chin: ‘Phase-selective synthesis of copper sulfide nanocrystals’, Chem. Mater., 2006, 18, 6170–6177.10.1021/cm061686i
  • R. Córdova, H. Gómez, R. Schrebler, P. Cury, M. Orellana, P. Grez, D. Leinen, J. R. Ramos-Barrado and R. D. Río: ‘Electrosynthesis and electrochemical characterization of a thin phase of CuxS (x → 2) on ITO electrode’, Langmuir, 2002, 18, 8647–8654.10.1021/la025711k
  • A. E. Raevskaya, A. L. Stroyuk, S. Y. Kuchmii and A. I. Kryukov: ‘Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation’, J. Mol. Catal. A: Chem., 2004, 212, 259–265.10.1016/j.molcata.2003.11.010
  • T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama and M. Aono: ‘Nanometer-scale switches using copper sulfide’, Appl. Phys. Lett., 2003, 82, 3032–3034.10.1063/1.1572964
  • A. A. Sagade and R. Sharma: ‘Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature’, Sens. Actuators B., 2008, 133, 135–143.10.1016/j.snb.2008.02.015
  • E. Braun, Y. Eichen, U. Sivan and G. Ben-Yoseph: ‘DNA-templated assembly and electrode attachment of a conducting silver wire’. Nature, 1998, 391, 775–778.10.1038/35826
  • M. Saranya, C. Santhosh, R. Ramachandran, P. Kollu, P. Saravanan, M. Vinoba, S. K. Jeong and A. N. Grace: ‘Hydrothermal growth of CuS nanostructures and its photocatalytic properties’, Powder Technol., 2014, 252, 25–32.10.1016/j.powtec.2013.10.031
  • Y. Han, Y. Wang, W. Gao, Y. Wang, L. Jiao, H. Yuan and S. Liu: ‘Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries’, Powder Technol., 2011, 212, 64–68.10.1016/j.powtec.2011.04.028
  • U. T. D. Thuy, N. Q. Liem, C. M. A. Parlett, G. M. Lalev and K. Wilson: ‘Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light’, Catal. Commun., 2014, 44, 62–67.10.1016/j.catcom.2013.07.030
  • Y. Guo, J. Zheng, Q. Ge and S. Wang: ‘Primary energy-related carbon dioxide emissions in China’, Chin. J. Popul. Res. Environ., 2013, 11, 283–287.10.1080/10042857.2013.835536
  • J. C. W. Folmer and F. Jellinek: ‘The valence of copper in sulphides and selenides: an X-ray photoelectron spectroscopy study’, J. Less Common Met., 1980, 76, 153–162.10.1016/0022-5088(80)90019-3
  • P. Roy and S. K. Srivastava: ‘Hydrothermal growth of CuS nanowires from Cu−Dithiooxamide, a novel single-source precursor’, Crystal Growth & Design, 2006, 6, 1921–1926.
  • V. Rajendran and J. Gajendiran: ‘Nonionic surfactant poly (ethane 1,2-diol)-400 assisted solvothermal synthesis of copper monosulfide (CuS) nanoplates and their structural, topographical, optical and luminescent properties’, Mater. Sci. Semicond. Process., 2015, 36, 92–95.10.1016/j.mssp.2015.03.041
  • Y. Li, J. Hu, G. Liu, G. Zhang, H. Zou and J. Shi: ‘Amylose-directed synthesis of CuS composite nanowires and microspheres’, Carbohydr. Polym., 2013, 92, 555–563.10.1016/j.carbpol.2012.08.102
  • I. Puspitasari, T. P. Gujar, K.-D. Jung and O.-S. Joo: ‘Simple chemical preparation of CuS nanowhiskers’, Mat. Sci. Eng. B., 2007, 140, 199–202.10.1016/j.mseb.2007.04.012
  • S. S. Dhasade, J. S. Patil, J. H. Kim, S. H. Han, M. C. Rath and V. J. Fulari: ‘Synthesis of CuS nanorods grown at room temperature by electrodeposition method’, Mater. Chem. Phys., 2012, 137, 353–358.10.1016/j.matchemphys.2012.09.033
  • G. Mao, W. Dong, D. G. Kurth and H. Möhwald: ‘Synthesis of copper sulfide nanorod arrays on molecular templates’, Nano Lett., 2004, 4, 249–252.10.1021/nl034966v
  • M. Senthilkumar and S. Moorthy: ‘Synthesis and characterization of hexagonal faceted copper sulfide (Cu1.8S) nanodisks’, Mater. Sci. Semicond. Process., 2015, 40, 203–208.10.1016/j.mssp.2015.06.024
  • T. Thongtem, A. Phuruangrat and S. Thongtem: ‘Formation of CuS with flower-like, hollow spherical, and tubular structures using the solvothermal-microwave process’, Curr. Appl. Phys., 2009, 9, 195–200.10.1016/j.cap.2008.01.011
  • X.-H. Liao, N.-Y. Chen, S. Xu, S.-B. Yang and J.-J. Zhu: ‘A microwave assisted heating method for the preparation of copper sulfide nanorods’, J. Cryst. Growth, 2003, 252, 593–598.10.1016/S0022-0248(03)01030-3
  • A. Phuruangrat, T. Thongtem and S. Thongtem: ‘Novel combined sonochemical/solvothermal syntheses, characterization and optical properties of CdS nanorods’, Powder Technol., 2013, 233, 155–160.10.1016/j.powtec.2012.08.027
  • P. Roy, K. Mondal and S. K. Srivastava: ‘Synthesis of twinned CuS Nanorods by a simple wet chemical method’, Cryst. Growth Des., 2008, 8, 1530–1534.
  • N. Banerjee and S. B. Krupanidhi: ‘Facile hydrothermal synthesis and observation of bubbled growth mechanism in nano-ribbons aggregated microspherical Covellite blue-phosphor’, Dalton Trans., 2010, 39, 9789–9793.10.1039/c0dt00386g
  • J. Zhang and Z. Zhang: ‘Hydrothermal synthesis and optical properties of CuS nanoplates’. Mater. Lett., 2008, 62, 2279–2281.10.1016/j.matlet.2007.11.069
  • M. D. K. Zare, F. Mollaamin and M. Monajjemi: ‘An investigation on a mild hydrothermal route to CuS nano and submicro structures’, Int. J. Phys. Sci., 2011, 6, (10), 2536–2540.
  • K. Krishnamoorthy, G. K. Veerasubramani, S. Radhakrishnan and S. J. Kim: ‘Preparation of copper sulfide nanoparticles by sonochemical method and study on their electrochemical properties’, J. Nanosci. Nanotechnol., 2015, 15, 4409–4413.10.1166/jnn.2015.9594
  • J. Cheng, Y. Pan, J. Zhu, Z. Li, J. Pan and Z. Ma: ‘Hybrid network CuS monolith cathode materials synthesized via facile in situ melt-diffusion for Li-ion batteries’, J. Power Sources, 2014, 257, 192–197.10.1016/j.jpowsour.2014.01.124
  • H. Qi, J.-F. Huang, L.-Y. Cao, J.-P. Wu and D.-Q. Wang: ‘One-dimensional CuS microstructures prepared by a PVP-assisted microwave hydrothermal method’, Ceram. Int., 2012, 38, 2195–2200.10.1016/j.ceramint.2011.10.066
  • C. P. daRosa, E.Iglesiaand R. Maboudian: ‘Copper deposition onto silicon by galvanic displacement: effect of Cu complex formation in NH4F solutions’, Electrochim. Acta, 2009, 54, 3270–3277.
  • X. Zhang, Y. Guo and W. Liu: ‘Self-generation of three-dimensional hierarchical Cu2S architectures at room temperature’. Mater. Lett., 2009, 63, 982–984.
  • Y. Li, Y. Jiang, S. Peng and F. Jiang: ‘Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes’, J. Hazard. Mater., 2010, 182, 90–96.10.1016/j.jhazmat.2010.06.002
  • S. Sarkar, A. Sim, S. Kim and H.-I. Lee: ‘Catecholase activity of a self-assembling dimeric Cu(II) complex with distant Cu(II) centers’, J. Mol. Catal. A: Chem., 2015, 410, 149–159.10.1016/j.molcata.2015.08.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.