935
Views
35
CrossRef citations to date
0
Altmetric
Research Paper

Current advances in enhancement of wear and corrosion resistance of titanium alloys – a review

, , , &
Pages 696-704 | Received 06 May 2016, Accepted 10 Jul 2016, Published online: 26 Aug 2016

References

  • M. N. Rahaman, A. Yao, B. S. Bal, J. P. Garino and M. D. Ries: ‘Ceramics for prosthetic hip and knee joint replacement’, J. Am. Ceram. Soc., 2007, 90, 1965–1988, DOI:10.1111/j.1551-2916.2007.01725.x.
  • S. H. Teoh: ‘Fatigue of biomaterials: a review’, Int. J. Fatigue, 2000, 22, 825–837, DOI:10.1016/S0142-1123(00)00052-9.
  • V. K. Balla, M. Das, S. Datta and B. Kundu, ‘Articulating biomaterials: surface engineering, tribology, and biocompatibility’, in ‘Processing Techniques and Tribological Behavior of Composite Materials’ (ed. R. Tyagi and J. P. Davim), 218–267; 2015, IGI Global, Hershey, PA, Engineering Science Reference. DOI:10.4018/978-1-4666-7530-8.ch009.
  • D. W. Hoeppner and V. Chandrasekaran: ‘Fretting in orthopaedic implants: a review’, Wear, 1994, 173, 189–197, DOI:10.1016/0043-1648(94)90272-0.
  • M. Slonaker and T. Goswami: ‘Review of wear mechanisms in hip implants: paper II – ceramics IG004712’, Mater. Des., 2004, 25, 395–405, DOI:10.1016/j.matdes.2003.11.011.
  • V. Sansone, D. Pagani and M. Melato: ‘The effects on bone cells of metal ions released from orthopaedic implants. A review’, Clin. Cases Miner. Bone Metab., 2013, 10, 34–40, DOI:10.11138/ccmbm/2013.10.1.034.
  • S. Karimi, T. Nickchi and A. Alfantazi: ‘Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in phosphate buffered saline solutions’, Corros. Sci., 2011, 53, (10), 3262–3272.
  • A. K. Shukla, R. Balasubramaniam and S. Bhargava: ‘Effect of replacement of V by Fe and Nb on passive film behavior of Ti–6Al–4V in simulated body fluid conditions’, J. Alloys Compd., 2005, 389, 144–152.
  • A. K. Shukla, R. Balasubramaniam and S. Bhargava: ‘Properties of passive film formed on CP titanium, Ti–6Al–4V and Ti–13.4Al–29Nb alloys in simulated human body conditions’, Intermetallics, 2005, 13, 631–637.
  • R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D. M. Gordin, T. Gloriant and R. M. Souto: ‘Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution’, Electrochim. Acta, 2014, 137, 280–289.
  • W. Y. Guo, J. Sun and J. S. Wu: ‘Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy in Ringer’s solution’, Mater. Chem. Phys., 2009, 113, 816–820.
  • M. Karthega, V. Raman and N. Rajendran: ‘Influence of potential on the electrochemical behaviour of β titanium alloys in Hank’s solution’, Acta Biomaterialia, 2007, 3, 1019–1023.
  • M. A. Khan, R. L. Williams and D. F. Williams: ‘Conjoint corrosion and wear in titanium alloys’, Biomaterials 20 (1999) 765Ж772
  • C. Vasilescu, S. I. Drob, E. I. Neacsu and J. C. Mirza Rosca: ‘Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids’, Corros. Sci., 2012, 65, 431–440.
  • C. Y. Zheng, F. L. Nie, Y. F. Zheng, Y. Cheng, S. C. Wei and R. Z. Valiev: ‘Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface’, Appl. Surf. Sci., 2011, 257, (13), 5634–5640.
  • H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M. S. Shakeri, S. Ghobadi Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek and K. J. Kurzydlowski: ‘Electrochemical and cellular behavior of ultrafine-grained titanium in vitro’, Mater. Sci. Eng. C, 2014, 39, (1), 299–304.
  • R. Huang and Y. Han: ‘The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti-25Nb-3Mo-3Zr-2Sn alloy’, Mater. Sci. Eng. C, 2013, 33, (4), 2353–2359.
  • M. Aziz-Kerrzo, K. G. Conroy, A. M. Fenelon, S. T. Farrell and C. B. Breslin: ‘Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials,’ Biomaterials, 2001, 22, (12), 1531–1539.
  • A. Buford and T. Goswami: ‘Review of wear mechanisms in hip implants: paper I – general’, Mater. Des., 2004, 25, 385–393, DOI:10.1016/j.matdes.2003.11.010.
  • T. P. Schmalzried and J. J. Callaghan: ‘Wear in total hip and knee replacements’, J. Bone Jt. Surg., 1999, 81A, 115–136, Massachusetts.
  • S. Affatato and D. Brando: ‘Wear of orthopaedic implants and artificial joints, wear of orthopaedic implants and artificial joints; 3–26, 2013, Elsevier. DOI:10.1533/9780857096128.1.3.
  • S. Affatato, M. Spinelli, M. Zavalloni, C. Mazzega-Fabbro and M. Viceconti, ‘Tribology and total hip joint replacement: current concepts in mechanical simulation’, Med. Eng. Phys, 2008, 30, 1305–1317. DOI:10.1016/j.medengphy.2008.07.006.
  • J. J. Callaghan, D. R. Pedersen, J. P. Olejniczak, D. D. Goetz and R. C. Johnston: ‘Radiographic measurement of wear in 5 cohorts of patients observed for 5 to 22 years’, Clin. Orthop. Relat. Res., 1995, 14–18.
  • S. M. Jones, I. M. Pinder, C. G. Moran and A. J. Malcolm: ‘Polyethylene wear in uncemented knee replacements’, J Bone Jt. Surg. Br., 1992, 74, 18–22.
  • A. V. Lombardi, T. H. Mallory, B. K. Vaughn and P. Drouillard: ‘Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads’, J. Bone Joint Surg. Am., 1989, 71, 1337–1342.
  • N. J. Hallab and J. J. Jacobs: ‘Biologic effects of implant debris’, Bull. NYU Hosp. Jt. Dis., 2009, 67, 182–188.
  • K. Aniołek, M. Kupka and A. Barylski: ‘Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation’, Wear, 2016, 356–357, 23–29.
  • Y.-S. Lee, M. Niinomi, M. Nakai, K. Narita and K. Cho: ‘Predominant factor determining wear properties of β-type and (α\xFEβ)-type titanium alloys in metal-to-metal contact for biomedical applications’, journal of the mechanical behavior of biomedical materials, 2015, 41, 208–220.
  • C.-W. Chan, S. Lee, G. Smith, G. Sarri, C.-H. Ng, A. Sharb and H.-C. Man: ‘Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen’, Appl. Surf. Sci., 2016, 367, 80–90.
  • W. Pawlak, K. J. Kubiak, B. G. Wendler and T. G. Mathia: ‘Wear resistant multilayer nanocomposite WC1_x/C coating on Ti–6Al–4V titanium alloy’, Tribol. Int., 2015, 82, 400–406.
  • C. Lee, A. Sanders and N. Tikekar, K. S. Ravi Chandran: ‘Tribology of titanium boride-coated titanium balls against alumina ceramic: wear, friction, and micromechanisms’, Wear, 2008, 265, 375–386.
  • Q. Wang, P.-Z. Zhang, D.-B. Wei, X.-H. Chen, R.-N. Wang, H.-Y. Wang and K.-T. Feng: ‘Microstructure and sliding wear behavior of pure titanium surface modified by double-glow plasma surface alloying with Nb’, Mater. Design, 2013, 52, 265–273.
  • G. Cassar and J. C. Avelar-Batista Wilson, S. Banfield, J. Housden, A. Matthews, A. Leyland: ‘A study of the reciprocating-sliding wear performance of plasma surface treated titanium alloy’, Wear, 2010, 269, 60–70.
  • P. Jemmely, S. Mischler and D. Landolt: ‘Tribocorrosion behaviour of Fe-17Cr stainless steel in acid and alkaline solutions’, Tribol. Int., 1999, 32, 295–303, DOI:10.1016/S0301-679X(99)00051-1.
  • A. Iwabuchi, J. W. Lee and M. Uchidate: ‘Synergistic effect of fretting wear and sliding wear of Co-alloy and Ti-alloy in Hanks’ solution’, Wear, 2007, 263, 492–500, DOI:10.1016/j.wear.2007.01.102.
  • J. Jiang, M. M. Stack and A. Neville: ‘Modelling the tribo-corrosion interaction in aqueous sliding conditions’, Tribol. Int., 2002, 669–679, DOI:10.1016/S0301-679X(02)00058-0.
  • F. W. Chan, J. D. Bobyn, J. B. Medley, J. J. Krygier and M. Tanzer: ‘The Otto Aufranc Award. Wear and lubrication of metal-on-metal hip implants’, Clin. Orthop. Relat. Res., 1999, 10–24.
  • M. N. Jolley, E. A. Salvati and G. C. Brown: ‘Early results and complications of surface replacement of the hip’, J. Bone Joint Surg. Am., 1982, 64, 366–377.
  • U. Kamachimudali, T. M. Sridhar and B. Raj: ‘Corrosion of bio implants’, Sadhana, 2003, 28, 601–637, DOI:10.1007/BF02706450.
  • R. M. Urban, J. J. Jacobs, M. J. Tomlinson, J. Gavrilovic, J. Black and M. Peoc’h: ‘Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement’, J. Bone Jt. Surg Am., 2000, 82-A, 457–476.
  • K. J. Waldron, J. C. Rutherford, D. Ford and N. J. Robinson: ‘Metalloproteins and metal sensing’, Nature, 2009, 460, 823–830, DOI:10.1038/nature08300.
  • J. J. Jacobs, N. J. Hallab, R. M. Urban, M. A. Wimmer: ‘Wear particles’, J. Bone Joint Surg. Am., 2006, 88, (Suppl 2), 99–102, DOI:10.2106/JBJS.F.00102.
  • E. Martin, M. Azzi, G. A. Salishchev and J. Szpunar: ‘Influence of microstructure and texture on the corrosion and tribocorrosion behavior of Ti-6Al-4V’, Tribol. Int., 2010, 43, (5–6), 918–924.
  • I. Hacisalihoglu, A. Samancioglu, F. Yildiz, G. Purcek and A. Alsaran: ‘Tribocorrosion properties of different type titanium alloys in simulated body fluid’, Wear, 2015, 332–333, 679–686.
  • N. S. More, N. Diomidis, S. N. Paul, M. Roy and S. Mischler: ‘Tribocorrosion behavior of β titanium alloys in physiological solutions containing synovial components’, Mater. Sci. Eng. C, 2011, 31, (2), 400–408.
  • V. G. Pina, A. Dalmau, F. Devesa, V. Amigó and A. I. Muñoz: ‘Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution’, J. Mech. Behav. Biomed. Mater., 2015, 46, 59–68.
  • D. Rodrigues, P. Valderrama, T. Wilson, K. Palmer, A. Thomas, S. Sridhar, A. Adapalli, M. Burbano and C. Wadhwani: ‘Titanium corrosion mechanisms in the oral environment: a retrieval study’, Materials (Basel)., 2013, 6, 5258–5274, DOI:10.3390/ma6115258.
  • N. Diomidis, S. Mischler, N. S. More, M. Roy: ‘Tribo-electrochemical characterization of metallic biomaterials for total joint replacement’, Acta Biomater., 2012, 8, 852–859. DOI:10.1016/j.actbio.2011.09.034.
  • M. T. Mathew, P. Srinivasa Pai, R. Pourzal, A. Fischer and M. A. Wimmer, 2009. Significance of tribocorrosion in biomedical applications: overview and current status. Adv. Tribol., 2009, 12 p. DOI:10.1155/2009/250986.
  • M. T. Mathew and M. A. Wimmer: ‘Bio-tribocorrosion in biomaterials and medical implants, bio-tribocorrosion in biomaterials and medical implants’; 2013, London, Elsevier. DOI:10.1533/9780857098603.3.341.
  • D. Durgalakshmi, M. Chandran, G. Manivasagam, M. S. Ramachandra Rao and R. Asokamani: ‘Studies on corrosion and wear behavior of submicrometric diamond coated Ti alloys’, Tribol. Int., 2013, 63, 132–140.
  • T. Lee, E. Mathew, S. Rajaraman, G. Manivasagam, A. K. Singh and C. S. Lee: ‘Tribological and corrosion behaviors of warmand hot-rolled Ti-13Nb-13Zr alloys in simulated body fluid conditions’, Int. J. Nanomed., 2015, 10 (Suppl 1), 207–212, DOI:10.2147/IJN.S79996.
  • L. Mohan, D. Durgalakshmi, M. Geetha, T. S. N. Sankara Narayanan and R. Asokamani: ‘Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications’, Ceram. Int., 2012, 38, 3435–3443.
  • C. Richard, C. Kowandy, J. Landoulsi, M. Geetha and H. Ramasawmy: ‘Corrosion and wear behavior of thermally sprayed nano ceramic coatings on commercially pure Titanium and Ti–13Nb–13Zr substrates’, Int. J. Refract. Met. Hard Mater., 2010, 28, 115–123.
  • S. Sathish, M. Geetha, N. D. Pandey, C. Richard and R. Asokamani: ‘Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys’, Mater. Sci. Eng. C, 2010, 30, 376–382.
  • N. P. Gurao, Geetha Manivasagam, P. Govindaraj, R. Asokamani, Satyam Suwas: ‘Effect of texture and grain size on bio-corrosion response of ultrafine-grained titanium’, Metall. Mater. Trans. A, Dec. 2013, 44A, 5602–5610.
  • I. C. Lavos-Valereto: ‘The electrochemical behavior of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxyapatite coating in Hank’s solution’, J. Biomed. Mater. Res. : Part A, 2002, 63 (5), 664–670.
  • L. C. Yanhong Gu: ‘Corrosion behavior and mechanism of MAO coated Ti6Al4V with a grain-fined surface layer’, J. Alloys Compd., 2016, 664, 770–776.
  • J. X. Linlin Liu: ‘Electrochemical corrosion behavior of nanocrystalline β-Ta coating for biomedical applications’, ACS Biomater. Sci. Eng., 2016, 2, (4), 579–594.
  • C. T. Kwok and P. K. Wong: ‘Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition’, Appl. Surf. Sci., 2009, 255, 6736–6744.
  • C. V. Silviu Iulian Drob: ‘Corrosion behaviour of nitrogen-implantation Ti-Ta-Nb alloy in physiological solutions simulating real conditions from human body’, JOM, 2015, 67 (4), 818–829.
  • L. P. Peiyun Yi: ‘Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process’, Mater. Sci. Eng. C, 2016, 59, 669–676.
  • B. Subramanian, C. V. Muraleedharan: ‘A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants’, Surf. Coat. Technol., 2011, 205, 5014–5020.
  • A. M. Fekry: ‘Electrochemical behavior of a novel nano-composite coat on Ti alloy in phosphate buffer solution for biomedical applications’, RSC Adv., 2016, 6, (24), 20276–20285.
  • J. Ma and C. Z. Wang ‘Pulsed laser deposition of magnesium-containing bioactive glass film on porous Ti-6Al-4V substrate pretreated by micro-arc oxidation’, Vacuum, 2016, 125, 48–55.
  • B. Rahmati and A. A. Sarhan ‘Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti-6Al-4V alloy’, J. Alloys Compd., 2016, DOI:10.1016/j.jallcom.2016.03.188.
  • M. Montazeri and C. D. Dehghanian: ‘Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti–6Al–4V alloy and its corrosion behavior’, Appl. Surf. Sci., 2011, 257, 7268–7275.
  • D. Starosvetsky and I. Gotman ‘Corrosion behavior of titanium nitride coated Ni-Ti shape memory surgical alloy’, Biomaterials, 2001, 22, 1853–1859.
  • Y. J. Bai and Y. B. Wang. ‘Comparative study on the corrosion behavior of Ti–Nb and TMA alloys for dental application in various artificial solutions’, Mater. Sci. Eng. C, 2011, 31, 702–711.
  • I. Cvijovic-Alagic, Z. C. ‘Wear and corrosion behaviour of Ti–13Nb–13Zr and Ti–6Al–4V alloys in simulated physiological solution’, Corros. Sci., 2011, 53, 796–808.
  • G. Perumal, M. Geetha, R. Asokamani and N. Alagumurthi: ‘Wear studies on plasma sprayed Al2O3–40 wt% 8YSZ composite ceramic coating on Ti–6Al–4V alloy used for biomedical applications’, Wear, 2014, 311, 101–113.
  • S. Sathish, M. Geetha, S. T. Aruna, N. Balaji, K. S. Rajam and R. Asokamani: ‘Sliding wear behavior of plasma sprayed nanoceramic coatings for biomedical applications’, Wear, 2011, 271, 934–941.
  • B. A. Obadele, A. Andrews, M. T. Mathew, P. A. Olubambi and S. Pityana: ‘Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating’, Appl. Surf. Sci., 2015, 345, 99–108.
  • M. Fazel, H. R. Salimijazi, M. A. Golozar and M. R. Garsivaz Jazi: ‘A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process’, Appl. Surf. Sci., 2015, 324, 751–756.
  • M. J. Runa, M. T. Mathew and L. A. Rocha: ‘Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems’, Tribol. Int., 2013, 68, 85–93.
  • R. Bayón, A. Igartua, J. J. González and U. Ruiz de Gopegui: ‘Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys’, Tribol. Int., 2015, 88, 115–125.
  • Y. Yan, Y. Zhang, Q. Wang, H. Du and L. Qiao: ‘Effect of povidone-iodine deposition on tribocorrosion and antibacterial properties of titanium alloy’, Appl. Surf. Sci., 2015, 363, 432–438.
  • F. G. Oliveira, A. R. Ribeiro, G. Perez, B. S. Archanjo, C. P. Gouvea, J. R. Araújo, A. P. C. Campos, A. Kuznetsov, C. M. Almeida, M. M. Maru, C. A. Achete, P. Ponthiaux, J. P. Celis and L. A. Rocha, ‘Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium’, Appl. Surf. Sci., 2015, 341, 1–12.
  • V. S. De Viteri, R. Bayón, A. Igartua, G. Barandika, J. E. Moreno, C. P. Peremarch and M. M. Pérez: ‘Applied Surface Science Structure, tribocorrosion and biocide characterization of Ca, P and I containing TiO 2 coatings developed by plasma electrolytic oxidation’, Appl. Surf. Sci., 2016, 367, 1–10.
  • A. C. Fernandes and F. Vaz. ‘Tribocorrosion behaviour of plasma nitrided and plasma nitrided+oxidised Ti6Al4V alloy’, Surf. Coat. Technol., 2006, 2006, 6218–6224.
  • M. Das, K. Bhattacharya, S. A. Dittrick, and C. Mandal, ‘Author ‘ s personal copy In situ synthesized TiB – TiN reinforced Ti6Al4V alloy composite coatings : microstructure, tribological and in vitro biocompatibility’, J. Mech. Behav. Biomed. Mater., 2014, 29, 259–271.
  • V. S. de Viteri: ‘Development of Ti–C–N coatings with improved tribological behavior and antibacterial properties’, J. Mech. Behav. Biomed. Mater., 2016, 55, 75–86.
  • M. Sampaio, M. Buciumeanu, B. Henriques, F. S. Silva, J. C. M. Souza and J. R. Gomes: ‘Tribocorrosion behavior of veneering biomedical PEEK to Ti6Al4V structures’, J. Mech. Behav. Biomed. Mater., 2016, 54, 123–130.
  • V. G. Pina: ‘Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution’, J. Mech. Behav. Biomed. Mater., 2015, 46, 59–68.
  • Ç. Albayrak. ‘Tribocorrosion behavior of duplex treated pure titaniumin simulated body fluid’, Wear, 2013, 302, 1642–1648.
  • S. Ghosh, D. Choudhury, T. Roy, A. Bin Mamat, H. H. Masjuki and B. Pingguan-Murphy: ‘Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid’, Sci. Technol. Adv. Mater., 2015, 16, (3), 1–11, 035002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.