302
Views
20
CrossRef citations to date
0
Altmetric
Research Paper

Load-bearing metallic implants: electrochemical characterisation of corrosion phenomena

, , , &
Pages 705-718 | Received 18 Jun 2016, Accepted 28 Jul 2016, Published online: 30 Aug 2016

References

  • U. Kamachi Mudali, T. M. Sridhar and B. Raj: ‘Corrosion of bio implants’, Sādhanā (Acad. Proc. Eng. Sci., Indian Acad. Sci.), 2003, 28, 601–637.
  • A. Kumar, K. Biswas and B. Basu: ‘Hydroxyapatite-titanium bulk composites for bone tissue engineering applications’, J. Biomed. Mater. Res. Part A, 2015, 103, 791–800.10.1002/jbm.v103.2
  • V. P. Mantripragada, B. Lecka-Czernik, N. Ebraheim and A. C. Jayasuriya: ‘An overview of recent advances in designing orthopedic and craniofacial implants’, J. Biomed. Mater. Res. Part A, 2013, 101A, 3349–3364.
  • C. Helmick, D. Felson, R. Lawrence and S. Gabriel: ‘Estimates of the prevalence of arthritis and other rheumatic conditions in the United States’, Arthritis Rheum., 2008, 58, 15–25.10.1002/(ISSN)1529-0131
  • J. Lee, J. Song, J. M. Hootman, P. A. Semanik, R. W. Chang, L. Sharma, L. Van Horn, J. M. Bathon, C. B. Eaton, M. C. Hochberg, R. Jackson, C. K. Kwoh, W. J. Mysiw, M. Nevitt and D. D. Dunlop: ‘Obesity and other modifiable factors for physical inactivity measured by accelerometer in adults with knee osteoarthritis’, Arthritis Care Res. (Hoboken), 2013, 65, 53–61.
  • National Hospital Discharge Survey: ‘U.S. Department of Health and Human Services, Center for Disease Control and Prevention’, 2009, Hyattsville, MD, National Center for Health Statistics.
  • American Academy of Orthopaedic Surgeons (AAOS) Annual Survey, Illinois, 2009.
  • M. T. Mathew, S. Abbey, N. J. Hallab, D. J. Hall, C. Sukotjo and M. A. Wimmer: ‘Influence of pH on the tribocorrosion behavior of CpTi in the oral environment: Synergistic interactions of wear and corrosion’, J. Biomed. Mater. Res. Part B, 2012, 100B, 1662–1671.
  • T. M. Sridhar and S. Rajeswari: ‘Biomaterials corrosion’, Corros. Rev., 2009, 27, 287–332.
  • A. Nouri and C. Wen: ‘Introduction to surface coating and modification for metallic biomaterials’, in ‘Surface coating and modification of metallic iomaterials’, (ed. Cuie Wen), Woodhead Publishing Series in Biomaterials: No.94, 3–60; 2015, Amsterdam, Elsevier B.V.
  • E. W. Paxton, O. Fumes, R. S. Namba, M. C. S. Inacio, A. M. Fenstad, L. I. Havelin: ‘Comparison of the Norwegian knee anthroplasty register and a United States anthroplasty registry’, J. Bone Joint Surg. Am., 2011, 93E, 20–30.
  • C. Yao, J. Lu and T. J. Webster, Titanium and cobalt-chromium alloys for hips and knees’ in ‘Biomaterials for artificial organs’, in (eds. M. Lysaght and T. J. Webster), 34–55; 2011, Oxford, Woodhead Publishing .
  • American Association of Orthopedic Surgeons: Hip implants, 2007a, available at [http://orthoinfo.aaos.org/topic.cfm?topic=A00355], (accessed 5 February 2010).
  • American Association of Orthopedic Surgeons: Knee implants, 2007b, available at [http://orthoinfo.aaos.org/topic.cfm?topic=A00221], (accessed 5 February 2010).
  • J. A. Planell., M. Navarro, G. Altankov, C. Aparicio, E. Engel, J. Gil: ‘Materials surface effects on biological interactions’, in ‘Advances in regenerative medicine: role of nanotechnology, and engineering principles’, (eds. V. P. Shastri, et al.), 233–252; 2010, Dordrecht, Springer.
  • B. Kasemo and J. Lausmaa: ‘Surface properties and processes of the biomaterial-tissue interface’, Mater. Sci. Eng. C, 1994, 1, 115–119.10.1016/0928-4931(94)90041-8
  • S. B. Goodman, E. G. Gómez Barrena, M. Takagi and Y. T. Konttinen: ‘Biocompatibility of total joint replacements: a review’, J. Biomed. Mater. Res., 2009, 90A, 603–618.10.1002/jbm.a.v90a:2
  • T. M. Sridhar: ‘Nano bioceramic coatings for biomedical applications’, Mater. Technol., 2010, 25, 184–195.10.1179/175355510X12723642365449
  • Y. Song, G. Beaupre and S. B. Goodman: ‘Osseointegration of total hip arthroplasties: studies in humans and adults’, J. Long-Term Eff. Med. Implants, 1999, 9, 77–112.
  • T. M. Sridhar, A. Kishen, S. Shanmugaraj, R. Praveen, S. K. Srinivas, D. Das and A. Subbiya: ‘Biomineralization studies in age induced human teeth’, Key Eng. Mater. Bioceramics, 2008, 361, 893–896.
  • R. L. W. Messer, J. Mickalonis, Y. Dams and W. Y. Tseng: ‘Corrosion rates of stainless steel under shear stress measured by a novel parallel-plate flow chamber’, J. Biomed. Mater. Res. Part B, 2006, 76B, 273–280.
  • M. A. Khan, R. L. Williams and D. F. Williams: ‘The corrosion behaviour of Ti–6Al–4V, Ti–6AL, 7Nb and Ti-13 Nb-13 Zr in protein solutions’, Biomaterials, 1999, 20, 631–637.10.1016/S0142-9612(98)00217-8
  • S. R. Sousa and M. A. Barbasa: ‘Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins’, Clin. Mater., 1993, 12, 1–2.
  • M. Pourbaix: ‘Electrochemical corrosion of metallic biomaterials’, Biomaterials, 1984, 5, 122–134.10.1016/0142-9612(84)90046-2
  • D. F. Williams: ‘Current perspectives on implantable devices’, Vol. 2, 47–70; 1990, India, Jai Press.
  • B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemon: ‘Biomaterials science: an introduction to materials in medicine’, Vol. 6, 243–260; 1996, California, Academic Press.
  • K. C. Dee, D. A. Puleo and R. Bizios: ‘An introduction to tissue-biomaterial interactions’, 53–88; 2002, New York, NY, Wiley-Liss.
  • J. B. Park: ‘Biomaterials science and engineering’, 193–233; 1984, New York, NY, Plenum, Wiley-Liss.
  • G. Manivasagam, D. Dhinasekaran and A. Rajamanickam: ‘Corrosion and its prevention – a review’, Recent Pat. Corros. Sci., 2010, 2, 40–54.
  • J. J. Joshua, J. L. Gilbert and R. M. Urban: ‘Current concepts review corrosion of metal orthopaedic implants’, J. Bone Joint Surg., 1998, 80, 268–282.
  • J. R. Atkinson and B. Jobbins: ‘Properties of engineering materials for use in body, in ‘Introduction to biomechanics of joint and joint replacement’, (eds., D. Dowson, V. Wright), 141–145; 1981, London, Mechanical Engineering Publications.
  • P. K. Chu, J. Y. Chen, L. P. Wang and N. Huang: ‘Plasma-surface modification of biomaterials’, Mater. Sci. Eng. Rep., 2002, 36, 143–206.
  • H. Matusiewicz: ‘Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles – a systematic analytical review’, Acta Biomater., 2014, 10, 2379–2403.
  • U. Kamachi Mudali, R. K. Dayal, J. B. Gnanamoorthy and P. Rodriguez: ‘Relationship between pitting and intergranular corrosion of nitrogen-bearing Austenitic stainless steels’, Iron Steel Inst. Jpn. Int., 1996, 36, 799–806.
  • U. Kamachi Mudali and Y. Katada: ‘Electrochemical atomic force microscopic studies on passive films of nitrogen-bearing Austenitic stainless steels’, Electrochim. Acta, 2001, 46, 3735–3742.
  • F. H. Jones: ‘Teeth and bones: applications of surface science to dental materials and related biomaterials’, Surf. Sci. Rep., 2001, 42, 75–205.
  • J. Black: ‘Corrosion and degradation’, in ‘Orthopaedic biomaterials in research and practice’, 235–266; 1988, New York, NY, Churchchill Livingstone.
  • M. G. Fontana and N. D. Green: ‘Corrosion engineering’; 1967, New York, NY, McGraw-Hill.
  • M. Sivakumar, U. KamachiMudali and S. Rajeswari: ‘Investigation of fatigue failure of a stainless steel orthopaedic implant device’, J. Mater. Eng. Perform., 1994, 3, 744–753.
  • M. Sivakumar, U. Kamachi Mudali and S. Rajeswari: ‘Investigation of fatigue failure of a stainless steel orthopaedic implant device’, J. Mater. Sci. Lett., 1995, 14, 148–151.
  • N. Eliaz: ‘Corrosion science and technology: mechanism, mitigation and monitoring’, 356–397; 2008, New Delhi, Narosa Publishing House.
  • P. Schmutz, N. C. Quach-Vu and I. Gerber: ‘Metallic medical implants :electrochemical characterization of corrosion processes’, ECS Interface, 2008, 17, 35–40.
  • C. Hansen: ‘Metal corrosion in the human body: the ultimate bio-corrosion scenario’, ECS Interface, 2008, (Summer), 17, 31–34
  • S. Kumar, T. S. N. Sankara Narayanan, S. G. S. Raman and S. K. Seshadri: ‘Fretting corrosion behaviour of thermally oxidized CP-Ti in Ringer’s solution’, Corros. Sci., 2010, 711–721.
  • A. J. Pearse, G. J. Hooper, A. Roothwell and C. Frampton: ‘Survival and functional outcome after revision of a unicompartmental to a total knee replacement: the New Zealand national joint registry‘, J. Bone Joint Surg. Br., 2010, 92, 508–512.
  • S. Kerwell, M. Alfaro, R. Pourzal, H. J. Lundberg, Y. Liao, C. Sukotjo, L. G. Mercuri and M. T. Mathew: ‘Examination of failed retrieved temporomandibular joint (TMJ) implants‘, Acta Biomater., 2016, 32, 324–335.
  • P. Stemmer, R. Pourzal, Y. Liao, L. Marks, M. Morlock, J. J. Jacobs, M. A. Wimmer, A. Fischer: ‘Microstructure of retrievals made from standard cast HC-CoCrMo alloys’, in ‘Metal on - metal total hip replacement devices’, (eds. S. M. Kurtz, et al.), 251–267; 2013, West Conshohocken, PA, ASTM International.
  • P. Panigrahi, Y. Liao, M. T. Mathew, A. Fischer, M. A. Wimmer, J. J. Jacobs and L. D. Marks: ‘Intergranular pitting corrosion of CoCrMo biomedical implant alloy’, J. Biomed. Mater. Res. Part B, 2014, 102, 850–859.
  • Y. Liao, E. Hoffman, M. Wimmer, A. Fischer, J. Jacobs and L. Marks: ‘CoCrMo metal on metal hip replacements’, Phys. Chem. Chem. Phys., 2013, 15, 746–756.
  • C. Nich, Y. Takakubo, J. Pajarinen, M. Ainola, M. Salem, T. Sillat, A. J. Rao, M. Raska, Y. Tamaki, M. Takagi, Y. T. Konttinen, S. B. Goodman and J. Gallo: ‘Macrophages – key cells in the response to wear debris from joint replacements’, J. Biomed. Mater. Res. Part A, 2013, 101A, 3033–3045.
  • S. M. Kurtz, E. Lau, K. Ong, K. Zhao and M. Kelly: ‘Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030’, Clin. Orthop. Relat. Res., 2009, 467, 2606–2612.
  • H. Ghonem: ‘Microstructure and fatigue crack growth mechanisms in high temperature titanium alloys’, Int. J. Fatigue, 2010, 32, 1448–1460.
  • A. K. Mishra, J. A. Davidson, R. A. Poggie, P. Kovacs and T. J. Fitzgerald: ‘Mechanical and tribological properties and biocompatibility of diffusion hardened Ti–13Nb–13Zr – a new titanium alloy for surgical implants’, in ‘Medical applications of titanium and its alloys’, (eds. S. A. Brown and J. E. Lemons), 96–116; 1996, ASTM STP 1272, West Conshohocken, PA: ASTM International.
  • I. Milošev: ‘Metallic materials for biomedical applications: laboratory and clinical studies’, Pure Appl. Chem., 2011, 83, 309–324.
  • M. F. Swiontkowski, J. Agel, J. Schwappach, P. McNair and M. Welch: ‘Cutaneous metal sensitivity in patients with orthopaedic injuries’, J. Orthop. Trauma, 2001, 15, 86–89.
  • A. Sargeant and T. Goswami: ‘Hip implants. Paper VI. Ion concentrations‘, Mater. Des., 2007, 28, 155–171.
  • G. A. Afolaranmi, J. Tettey, R. M. D. Meek and M. H. Grant: ‘Release of chromium from orthopaedic arthroplasties’’, Open Orthop. J., 2008, 2, 10–18.
  • T. Balusamy, T. S. N. Sankara Narayanan, K. Ravichandran, I. Song Park and M. H. Lee: ‘Influence of surface mechanical attrition treatment (smat) on the corrosion behaviour of AISI 304 stainless steel’, Corros. Sci., 2013, 74, 332–344.
  • U. Kamachi Mudali, S. Ningshen and R. K. Dayal: ‘Study of passive films of nitrogen bearing austenitic stainless steels using electrochemical impedance spectroscopy’, Bull. Electrochem., 1999, 14, 51–53.
  • M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia: ‘Ti based biomaterials, the ultimate choice for orthopaedic implants – a review’, Prog. Mater. Sci., 2009, 54, 397–425.
  • K. K. Chew, S. Hussein, S. Zein and A. L. Ahmad: ‘The corrosion scenario in human body: stainless steel 316 L orthopaedic implants’, Nat. Sci., 2012, 4, (3), 184–188.
  • U. Kamachi Mudali, T. M. Sridhar, N. Eliaz and B. Raj: ‘Failures in stainless steel orthopaedic devices – causes and remedies’, Corros. Rev., 2003, 21, 231–267.
  • Y. Okazaki and E. Gotoh: ‘Comparison of metal release from various metallic biomaterials in vitro’, Biomaterials, 2005, 26, 11–21.
  • D. M. Jones, J. L. Marsh, J. V. Nepola, J. J. Jacobs, A. K. Skipor, R. M. Urban, J. L. Gilbert and J. A. Buckwalter: ‘Focal osteolysis at the junctions of a modular stainless-steel femoral intramedullary nail’, J. Bone Jiont Surg., 2001, 83A, 537–548.
  • M. Sivakumar, U. Kamachi Mudali and S. Rajeswari: ‘Investigation of failure in stainless orthopaedic implant device’, Steel Res., 1994, 65, 76–79.
  • Y. Okazaki and E. Gotoh: ‘Implant applications of highly corrosion resistant Ti–15Zr–4Nb-4Ta alloy’, Mater. Trans., 2002, 43, 2943–2948.
  • M. A. Costa and M. H. Fernandes: ‘Proliferation/differentiation of osteoblastic human alveolar bone cell cultures in the presence of stainless steel corrosion prod-ucts’, J. Mater. Sci. Mater. Med., 2000, 11, 141–153.
  • J. J. Jacobs, J. L. Gilbert and R. M. Urban: ‘Corro-sion of metal orthopaedic implants‘, J. Bone Jt. Surg. Am., 1998, 80A, 268–282.
  • H. Kong, J. L. Wilkinson, J. Y. Coel, X. Gu, M. Urness, T. H. Kim and J. L Bass: ‘Corrosive behaviour of amplatzer devices in experimental and biological envi-ronments’, Cardiol. Young, 2002, 12, 260–265.
  • M. H. Fernandes: ‘Effect of stainless steel corrosion products on in vitro biomineralization’, J. Biomater. Appl., 1999, 14, 113–168.
  • S. P. Patterson, R. H. Daffner and R. A Gallo: ‘Electrochemical corrosion of matal implants’, American Roentgen Ray Soc., 2005, 184, 1219–1222.
  • Y. Mueller, R. Tognini, J. Mayer and S. Virtanen: ‘Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion’, J. Biomed. Mater. Res., 2007, 82A, 936–946.
  • T. R. Rautray, R. Narayanan, T. Y. Kwon and K. H. Kim: ‘Surface modification of titanium and titanium alloys by ion implantation’, J. Biomed. Mater. Res. Part B, 2010, 93B, 581–591.
  • K. A. Nazari, A. Nouri and T. Hilditch: ‘Mechanical properties and microstructure of powder metallurgy Ti–xNb–yMo alloys for implant materials’, Mater. Des., 2015, 88, 1164–1174.
  • E. Eisenbarth, D. Velten, M. Müller, R. Thull and J. Breme: ‘Biocompatibility of betastabilizing elements of titanium alloys’, Biomaterials, 2004, 25, 5705–5713.
  • M. Niinomi, D. Kuroda and K. Fukunaga: ‘Corrosion wear fracture of new beta-type biomedical titanium alloys’, Mater. Sci. Eng. A, 1999, 263, 193–199.
  • A. Nouri, X. B. Chen, P. D. Hodgson and C. E. Wen: ‘Preparation and haracterisation of new titanium based alloys for orthopaedic and dental applications’, Adv. Mater. Res., 2007, 15–17, 71–76.
  • A. Nouri: ‘Novel metal structures through powder metallurgy for biomedical applications’, 2008, Victoria, Institute for Technology Research and Innovation, Deakin University.
  • M. Niinomi, M. Nakai and J. Hieda: ‘Development of new metallic alloys for biomedical applications’, Acta Biomater., 2012, 8, 3888–3903.
  • M. Niinomi, T. Hattori and S. Niwa: ‘Material charaecteristcs and biocompatibility of low rigidity titanium alloys for biomedical applications’, in ‘Biomaterials in orthopedics’, (eds. M. J. Yaszemski, et al.), 41–62; 2004, New York, NY, Marcel Dekker.
  • M. Niinomi: ‘Recent research and development in titanium alloys for biomedical applications and healthcare goods’, Sci. Technol. Adv. Mater., 2003, 4, 445–454.
  • G. Lütjering and J. C.Williams: ‘Titanium’, 2007, Berlin, Springer-Verlag.
  • S. Tamilselvi, R. Murugaraj and N. Rajendran: ‘Electrochemical impedance spectroscopic studies of titanium and its alloys in saline medium’, Mater. Corros., 2007, 58, (2), 113–120.
  • D. Olmedo, M. M. Fernadez, M. B. Guglidmotti and R. L. Cabrini: ‘Macrophages related to dental implant failure’, Implant. Dent., 2003, 12, 75–80.
  • H. Tschernitschek, L. Borchers and W. Geurtsen: ‘Nonalloyed titanium as a bioinert metal – a review’, Quintessence Int., 2005, 36, 523–530.
  • A. K. Roynesdal, E. Ambjornsen and H. R. A. Haanaes: ‘A comparison of 3 different endosseous nonsubmerged implants in edentulous mandibles: a clinical report’, Int. J. Oral Maxillofac. Implants, 1999, 14, 543–548.
  • K. Yokoyama, T. Ichikawa and H. Murakami: ‘Fracture mechanisms of retrieved titanium screw thread in dental implant’, Biomaterials, 2002, 23, 2459–2465.
  • E. J. Sutow, D. W. Jones and E. L. Milne: ‘In vitro crevice corrosion behavior of implant materials’, J. Dent. Res., 1985, 64, 842–847.
  • S. Kumar and T. S. N. Sankara: ‘Narayanan, corrosion behavior of Ti–15Mo alloy for dental implant applications’, J. Dent., 2008, 36, 500–507.
  • J. D. Bumgardner and B. I. Johansson: ‘Effects of titanium-dental restorative alloy galvanic couples on cultured cells’, J. Biomed. Mater. Res., 1998, 43, 184–191.
  • L. Reclaru and J. M. Meyer: ‘Study of corrosion between a titanium implant and dental alloys’, J. Dent., 1994, 22, 159–168.
  • G. E. Novikova: ‘Introduction to corrosion of bioimplants‘, Prot. Met. Phys. Chem., 2011, 47, 372–380.
  • J. Mouhyi, D. M. Dohan Ehrenfest and T. Albrektsson: ‘The peri-implantitis: implant surfaces, microstructure and physico-chemical aspects’, Clin. Implant Dent. Relat. Res., 2012, 14, 170–183.
  • S. W. Fage, J. Muris, S. S. Jakobsen and J. P. Thyssen: ‘Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity’, Contact Derm., 2016, 74, 323–345.
  • S. Hatanaka, M. Ueda, M. Ikeda and M. Niinomi: ‘Isothermal aging behavior in Ti–10Cr–Al alloys for medical applications’, Adv. Mater. Res., 2010, 89, 232–237.
  • M. Ikeda, M. Ueda, T. Kinoshita, M. Ogawa and M. Niinomi: ‘Influence of Fe content of Ti–Mn–Fe alloys on phase constitution and heat treatment behavior’’, Mater. Sci. Forum, 2012, 706, 1893–1898.
  • M. Ikeda, M. Ueda, R. Matsunaga and M. Niinomi: ‘Phase constitution and heat treatment behavior of Ti–7 mass % Mn–Al alloys’, Mater. Sci. Forum, 2010, 654, 855–858.
  • Y. Kasano, T. Inamura, H. Kanetaka, S. Miyazaki and H. Hosoda: ‘Phase constitution and mechanical properties of Ti–(Cr, Mn)–Sn biomedical alloys’, Mater. Sci. Forum, 2010, 654, 2118–2121.
  • W. Walke, Z. Paszenda and A. Ziêbowicz: ‘Corrosion behaviour of Co-Cr-W-Ni alloy in diverse body fluids‘, Arch. Mater. Sci. Eng., 2007, 28, 293–296.
  • M. R. Shirdar, M. M. Taheri, H. Moradifard, A. Keyvanfar, A. Shafaghat, T. Shokuhfar and S. Izman: ‘Hydroxyapatite-Titania nanotube composite as a coating layer on Co-Cr-based implants: mechanical and electrochemical optimization’, Ceram. Int., 2016, 42, 6942–6954.
  • N. Geshwend: ‘Allergologische probleme in der ortho-pädie (Issues of allergy in orthopaedics)’, Orthopädie, 1977, 6, 193–196.
  • E. Frank and H. Zitter: ‘Metallische Implantate in der Knochenchirurgie (Metallic implants in bone surgery)’, 1977, Wien-New York, Springer Verlag.
  • J. L. Gilbert, S. Sivan, Y. Liu, S. B. Kocagoz, C. M. Arnholt and S. M. Kurtz: ‘Direct in vivo inflammatory cell induced corrosion of CoCrMo alloy orthopedic implant surfaces’, J. Biomed. Mater. Res. Part A, 2015, 103A, 211–223.
  • M. I. Coşkun, İ. H. Karahan, Y. Yücel and T. D. Golden: ‘Optimization of electrochemical step deposition for bioceramic hydroxyapatite coatings on CoCrMo implants’, Surf. Coat. Technol., 2015, 301, 42–53.
  • X. Liu, P. K. Chu and C. Ding: ‘Surface modification of titanium, titanium alloys, and related materials for biomedical applications‘, Mater. Sci. Eng. R, 2004, 47, 49–121.
  • J. B. Park and Y. K. Kim: ‘Metallic biomaterials’, in ‘The biomedical engineering handbook’, (ed. J. D. Bronzino), 2nd edn, 37.1–37.8; 2000, Boca Raton, FL, CRC Press.
  • A. Saigal and M. Fonte: ‘Solid, shape recovered “Bulk” nitinol: part II – mechanical properties’, Mater. Sci. Eng. A, 2011, 528, 5551–5559.
  • M. R. Etminanfar, J. Khalil-Allafi, A. Montaseri and R. Vatankhah-Barenji: ‘Endothelialization and the bioactivity of Ca-P coatings of different Ca/P stoichiometry electrodeposited on the Nitinol superelastic alloy’, Mater. Sci. Eng. C, 2016, 62, 28–35.
  • E. D. McBride: ‘Absorbable metal in bone surgery’, J. Am. Med. Assoc., 1938, 111, 2464–2476.
  • V. V. Troitskii and D. N. Tsitrin: ‘The resorbing metallic alloy “osteosinthezit” as material for fastening broken bone’, Khirurgiia, 1944, 8, 41–44.
  • A. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung and A. Haverich: ‘Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?’ Heart, 2003, 89, 651–656.
  • P. Zartner, M. Buettner, H. Singer and M. Sigler: ‘First biodegradable metal stent in a child with congenital heart disease: evaluation of macro and histopathology‘, Catheter. Cardiovasc. Interventions, 2007, 69, 443–446.
  • S. Shanmugam, T. S. N. Sankara Narayanan, P. Mohan Sathyaraj, K. Ravichandran and M. H. Lee: ‘Spectrophotometric analysis to monitor the corrosion behaviour of magnesium during immersion corrosion testing: a suitable alternative to pH measurement?’ Corros. Sci., 2014, 89, 338–342.
  • D. Gopi, P. R. Bhalaji, S. Ramya and L. Kavitha: ‘Evaluation of biodegradability of surface treated AZ91 magnesium alloy in SBF solution’, J. Ind. Eng. Chem., 2015, 23, 218–227.
  • C. Liu, Y. Xin, X. Tian, J. Zhao and K. P. Chu: ‘Corrosion resistance of titanium ion implanted AZ91 magnesium alloy’’, J. Vac. Sci. Technol. A, 2007, 25, 334–339.
  • T. S. N. Sankara Narayanan, S. Park and M. H. Lee: ‘Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges’, Prog. Mater. Sci., 2014, 60, 1–71.
  • H. P. Wiesmann, T. Tkotz, U. Joos, K. Zierold, U. Stratmann Szuwart and T. Szuwart: ‘Magnesium in newly formed dentin mineral of rat incisor‘, J. Bone Mineral Res., 1997, 12, 380–383.
  • J. J. Vitale: ‘Magnesium deficiency and cardiovascular disease’, Lancet, 1992, 340, (8829), 1224–1225.
  • J. Amighi, S. Sabeti, O. Schlager, W. Mlekusch, M. Exner and W. Lalouschek: ‘Low serum magnesium predicts neurological events in patients with advanced atherosclerosis’, Stroke, 2004, 35, 22–27.
  • J. Zhao, L. Chen, K. Yu, C. Chen, Y. Dai, X. Qiao and Y. Yan: ‘Biodegradation performance of a chitosan coated magnesium-zinc-tricalcium phosphate composite as an implant’, Biointerphases, 2014, 9, 031004.
  • F. Witte: ‘Reprint of: the history of biodegradable magnesium implants: a review’, Acta Biomater., 2015, 23, S28–S40.
  • C. Glass: ‘Klinische und experimentelle Untersuchungen über die Payrsche Magnesiumpfeilbehandlung von Angiomen‘, Dtsch. Z. Chir., 1926, 194, 352–366.
  • P. Wilflingseder, R. Martin and C. Papp: ‘Magnesium seeds in the treatment of lymph- and haemangiomata’, Chir. Plastica, 1981, 6, 105–116.
  • ASM Handbook: ‘Volume 15: Casting’, 798; 2008, Ohio, ASM International, 783–907.
  • M. Gupta, N. M. Ling and Sharon: ‘Magnesium, magnesium alloys, & magnesium composites’, 39–85; 2010, New Jersey, Wiley.
  • K. U. Kainer: ‘Magnesium – alloys and technologies’, 2003, Weinheim, Wiley-VCH.
  • M. M. Avedesian and H. Baker: ‘ASMSpecialty handbook – magnesium and magnesium alloys’, 1999, Materials Park, OH: ASM International.
  • T. Beline, I. D. S. V. Marques, A. O. Matos, E. S. Ogawa, A. P. Ricomini-Filho, E. C. Rangel, N. C. D. Cruz, C. Sukotjo, M. T. Mathew, R. Landers, R. L. X. Consani, M. F. Mesquita and V. A. R. Barão: ‘Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications’, Biointerphases, 2016, 11, 011013.10.1116/1.4944061
  • V. A. Barao, M. T. Mathew, W. G. Assuncao, J. C. Yuan, M. A. Wimmer and C. Sukotjo: ‘Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study’,Clin. Oral Implants Res., 2012, 23, 1055–1062.
  • D. G. Olmedo, M. L. Paparella, M. Spielberg, D. Brandizzi, M. B. Guglielmotti and R. L. Cabrini: ‘Oral mucosa tissue response to titanium cover screws’, J. Periodontol., 2012, 83, 973–980.
  • N. Somsanith, T. S. N. Sankara Narayanan, Y.-K. KimI.-S., Park, T.-S. Bae and M.-H. Lee: ‘Surface medication of Ti–15Mo alloy by thermal oxidation: evaluation of surface characteristics and corrosion resistance in Ringer’s solution’, Appl. Surf. Sci., 2015, 356, 1117–1126.10.1016/j.apsusc.2015.08.181
  • S. Goenka, R. Balu and T. S. Sampath Kumar: ‘Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements‘, J. Mech. Behav. Biomed. Mater., 2012, 7, 69–76.10.1016/j.jmbbm.2011.08.002
  • N. Eliaz and T. M. Sridhar: ‘Electrocrystallization of hydroxyapatite and its dependence on solution conditions‘, J. Cryst. Growth Des., 2008, 8, 3965–3977.10.1021/cg800016h
  • T. S. N. Sankara Narayanan and M. H. Lee: ‘A simple strategy to modify the porous structure of plasma electrolytic oxidation coatings on magnesium’, RSC Adv., 2016, 6, 16100.
  • P. Varun Prasath, K. Ravichandran, V. Sowmya and R. Sindu: ‘Synthesis of hydroxyapatite-nanorods with the effect of non-ionic surfactant as a drug carrier for the treatment of bone infections’, Int. J. Innovative Res. Sci. Eng., 2014, 2, 590–594.
  • T. Balusamy, T. S. N. Sankara Narayanan, K. Ravichandran, L. M. Ho and T. Nishimura: ‘A facile approach to modify the characteristics and corrosion behaviour of 304 stainless steel by surface nanostructuring towards biomedical applications’, ACS Appl. Mater. Interfaces, 2015, 7, 17731–17747.
  • A. Balamurugan, A. H. S. Rebelo, A. F. Lemos, J. H. G. Rocha, J. M. G. Ventura and J. M. F. Ferreira: ‘Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response’, Dent. Mater., 2008, 24, 1374–1380.10.1016/j.dental.2008.02.017
  • K. K. Chew, S. Hussein, S. Zein and A. L. Ahmad: ‘The corrosion scenario in human body: Stainless steel 316L orthopaedic implants’, Natural Sci., 2012, 4, 184–188.
  • H. Attar, K. G. Prashanth, A. K. Chaubey, M. Calin, L. C. Zhang, S. Scudino and J. Eckert: ‘Comparison of wear properties of commercially titanium prepared by selective laser melting and casting processes’, Mater. Lett., 2015, 142, 38–41.10.1016/j.matlet.2014.11.156
  • J. P. Talreja, M. A. Eloubeidi, B. G. Sauer, B. S. Al-Awabdy, T. Lopes, M. Kahaleh and V. M. Shami: ‘Fully covered removable nitinol self-expandablemetal stents (SEMS) in malignant strictures of the esophagus: a multicenter analysis‘, Surg. Endosc., 2012, 26, 1664–1669.10.1007/s00464-011-2089-z
  • E. Mendonca, D. B. S. Mendonca, L. G. P. Simoes, A. L. Araujo, E. R. Leite, W. R. Duarte, F. J. L. Aragao and L. F. Cooper: ‘The effects of implant surface nanoscale features on osteoblast-specific gene expression’, Biomaterials, 2009, 30, 4053–4062.
  • T. M. Sridhar, N. Eliaz, U. Kamachi Mudali and B. Raj: ‘Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants’’, Corros. Rev., 2002, 20, 255–293.
  • T. M. Sridhar, U. Kamachi Mudali and M. Subbaiyan: ‘Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel’, Corros. Sci., 2003, 45, 237–252.10.1016/S0010-938X(02)00091-4
  • O. Albayrak, O. El-Atwani and S. Altintas: ‘Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition’, Surf. Coat. Technol., 2008, 202, 2482–2487.10.1016/j.surfcoat.2007.09.031
  • L. Mohan, D. Durgalakshmi, M. Geetha, T. S. N. Sankara Narayanan and R. Asokamani: ‘Electrophoretic deposition of nanocomposite (Hap + TiO2) on titanium alloy for biomedical applications’, Ceram. Int., 2012, 38, 3435–3443.10.1016/j.ceramint.2011.12.056
  • C. P. Rath, L. Besra, B. P. Singh and S. Bhattacharjee: ‘Characterization and corrosion behavior of titania/hydroxyapatite composite coating on Ti by electrophoretic deposition’, Ceram. Int., 2012, 38, 3209–3216.10.1016/j.ceramint.2011.12.026
  • H. Farnoush, G. Aldıç, H. Çimenoğlu: ‘Functionally graded HA–TiO2 nanostructured composite coating on Ti–6Al–4V substrate via electrophoretic deposition’, Surf. Coat. Technol., 2015, 265, 7–15.
  • A. Balamurugan, G. Balossier, J. Michel and J. M. F. Ferreira: ‘Electrochemical and structural evaluation of functionally graded bioglass – apatite composite electrophoretic deposition on Ti–6Al–4V alloy’, Electrochim. Acta, 2009, 54, 1192–1198.10.1016/j.electacta.2008.08.055
  • S. Kumar, T. S. N. Sankara Narayanan, S. G. S. Raman and S. K. Seshadri: ‘Thermal oxidation of Ti–6Al–4V alloy: microstructural and electrochemical characterization‘, Mater. Chem. Phys., 2010, 119, 337–346.10.1016/j.matchemphys.2009.09.007
  • T. Balusamy, T. S. N. Sankara Narayanan, K. Ravichandran, I. S. Park, M. H. Lee and T. Nishimura: ‘Surface nanocrystallization of EN8 steel: correlation of change in material characteristics with corrosion behaviour’, J. Electrochem. Soc., 2015, 162, C285–C293.10.1149/2.0931506jes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.