454
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

Mechanically assisted crevice corrosion in metallic biomaterials: a review

Pages 732-739 | Received 01 Aug 2016, Accepted 09 Aug 2016, Published online: 14 Sep 2016

References

  • Jacobs JJ, Gilbert JL, Urban RM. Current concepts review-corrosion of metal orthopaedic implants. J. Bone Joint Surg. 1998;80:268–282.
  • Gilbert J. Mechanically assisted corrosion of metallic biomaterials. ASM Int. Hand. 2006;13:826–836.
  • Gilbert J. Electrochemical behavior of metals in the biological milieu. In: Ducheyne P, Healy K, Dietmar E, Hutmacher DW, Grainger C, James K, editors. Comprehensive biomaterials. Elsevier Science: Amsterdam; 2011. p. 21–48.
  • Gilbert JL, Mali SA. Medical implant corrosion: electrochemistry at metallic biomaterials surfaces. In: Eliaz N, editor. Degradation of implant materials. New York, NY: Springer; 2012. p. 1–28.
  • Gilbert JL, Mehta M, Pinder B. Fretting crevice corrosion of stainless steel stem-CoCr femoral head connections: Comparisons of materials, initial moisture, and offset length. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009;88B:162–173.10.1002/jbm.b.v88b:1
  • Gilbert JL, Buckley CA, Jacobs JJ. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J. Biomed. Mater. Res. 1993;27:1533–1544.10.1002/(ISSN)1097-4636
  • Gilbert JL, Jacobs JJ. The mechanical and electrochemical processes associated with taper fretting crevice corrosion: a review. Modularity Ortho. Implants. 1997;1301:45–49.10.1520/STP1301-EB
  • Kirkpatrick JS, Venugopalan R, Beck P, et al. Corrosion on spinal implants. J. Spinal Disord. Tech. 2005;18:247–251.
  • Swaminathan V, Gilbert JL. Fretting corrosion of Co-Cr-Mo and Ti6Al4V interfaces. Biomaterials. 2012;33:5487–5503.10.1016/j.biomaterials.2012.04.015
  • Swaminathan V, Gilbert JL, Potential and frequency effects on fretting corrosion of Ti6Al4V and Co-Cr-Mo surfaces. J. Biomed. Mater. Res. Part A. 2013;101A:2602–2612.10.1002/jbm.a.v101a.9
  • Okazaki Y, Gotoh E, Comparison of metal release from various metallic biomaterials in vitro. Biomater. 2005;26:11–21.10.1016/j.biomaterials.2004.02.005
  • Wapner KL. Implications of metallic corrosion in total knee arthroplasty. Clin. Orthop. 1991;271:12–20.
  • McGregor D, Baan R, Partensky C, et al. Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies — a report of an IARC Monographs programme meeting. Eur. J. Cancer. 2000;36:307–313.10.1016/S0959-8049(99)00312-3
  • Jacobs JJ, Silverton C, Hallab NJ, et al. Metal release and excretion from cementless titanium alloy total knee replacements. Clin. Orthop. 1999;358:173–180.
  • Ratner BD. Biomaterials science: an introduction to materials in medicine. In: Buddy D, Ratner AS, Hoffman FJ, Schoen, Jack EL, editors. Oxford, UK: Academic press; 2004.
  • Hallab NJ, Cunningham BW, Jacobs JJ. Spinal implant debris-induced osteolysis. Spine. 2003;28:S125–S138.10.1097/00007632-200310151-00006
  • Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the united states from 2005 to 2030. J. Bone Joint Surg. 2007;89:780–785.10.2106/JBJS.F.00222
  • US Food and Drug Administration. Stryker initiates voluntary product recall of rejuvenate and ABG II modular-neck stems [Internet]; [c201207/09]. Available from: http://www.fda.gov/Safety/Recalls/ucm311043.htm.
  • US Food and Drug administration. Recalls specific to metal-on-metal hip implants [Internet]; [c201407/02]. Available from: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/MetalonMetalHipImplants/ucm241770.htm.
  • Babis GC, Sakellariou VI. Modular interfaces. In: Karachalios, Theofilos, editor. Bone-implant interface in orthopedic surgery. London: Springer; 2014. p. 255–268.
  • Cooper JH, Della Valle CJ, Jacobs JJ. Biologic implications of taper corrosion in total hip arthroplasty. Semin. Arthroplasty. 2012;23:273–278.10.1053/j.sart.2013.01.013
  • Higgs GB, Hanzlik JA, MacDonald DW, et al. Is increased modularity associated with increased fretting and corrosion damage in metal-on-metal total hip arthroplasty devices?: a retrieval study. J. Arthroplasty. 2013;28:2–6.
  • Blaha DJ. Remove the neck, retain the stem. Semin. Arthroplasty. 2012;23:179–180.10.1053/j.sart.2012.06.001
  • Porter DA, Urban RM, Jacobs JJ, et al. Modern trunnions are more flexible: a mechanical analysis of tha taper designs. Clin. Orthop. Relat. Res. 2014;472:3963–3970.10.1007/s11999-014-3965-3
  • Kop AM, Swarts E. Corrosion of a hip stem with a modular neck taper junction: a retrieval study of 16 cases. J. Arthroplasty. 2009;24:1019–1023.10.1016/j.arth.2008.09.009
  • Collier JP, Surprenant VA, Jensen RE, et al. Corrosion between the components of modular femoral hip prostheses. J. Bone Joint Surg. Br. 1992;74:511–517.
  • Goldberg JR, Gilbert JL. In vitro corrosion testing of modular hip tapers. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003;64B:78–93.10.1002/(ISSN)1097-4636
  • Goldberg JR, Buckley CA, Jacobs JJ, et al. Corrosion testing of modular hip implants. Modularity Ortho. Implants ASTM STP. 1997;1301:157–176.10.1520/STP1301-EB
  • Brown S, Flemming C, Kawalec J, et al. Fretting corrosion accelerates crevice corrosion of modular hip tapers. J. Appl. Biomater. 1995;6:19–26.10.1002/(ISSN)1549-9316
  • Gilbert JL, Mehta M, Pinder B. Fretting crevice corrosion of stainless steel stem-CoCr femoral head connections: comparisons of materials, initial moisture, and offset length. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009;88B:162–173.10.1002/jbm.b.v88b:1
  • Jacobs JJ, Urban RM, Gilbert JL, et al. Local and distant products from modularity. Clin. Orthop. Relat. Res. 1995;319:94–105.
  • Urban RM, Jacobs J, Gilbert J, et al. Migration of corrosion products from modular hip prostheses. J. Bone Joint Surg. Am. 1994;76:1345–1359.
  • Cooper HJ, Urban RM, Wixson RL, et al. Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck. J. Bone Joint Surg. 2013;95:865–872.10.2106/JBJS.L.01042
  • Kawalec JS, Brown SA, Payer JH, et al. Mixed-metal fretting corrosion of Ti-6-Al-4V and wrought cobalt alloy. J. Biomed. Mater. Res. 1995;29: 867–873.10.1002/(ISSN)1097-4636
  • Cook SD, Barrack RL, Clemow AJ. Corrosion and wear at the modular interface of uncemented femoral stems. J. Bone Joint Surg. Br. 1994;76:68–72.
  • Collier JP, Surprenant VA, Jensen RE, et al. Corrosion at the interface of cobalt-alloy heads on titanium-alloy stems. Clin. Orthop. 1991;271:305–312.
  • Lieberman JR, Rimnac CM, Garvin KL, et al. An analysis of the head-neck taper interface in retrieved hip prostheses. Clin. Orthop. 1994;300:162–167.
  • Gilbert J, Buckley C, Jacobs J, et al. Intergranular corrosion-fatigue failure of cobalt-alloy femoral stems. J. Bone Joint Surg. Am. 1994;76:110–115.
  • Scales JT, Winter GD, Shirley HT. Corrosion of orthopedic implants. J. Bone Surg. 1959;41B:810–820.
  • Cohen J, Lindenbaum B. Fretting corrosion in orthopaedic implants. Clin. Orthop. Relat. Res. 1968;61:167–178.
  • Weinstein AM, Spires WP, Klawitter JJ, et al. Orthopaedic implant retrieval and analysis study. In: Syrett BC, Acharya A, editors. Corrosion and degradation of implant materials, ASTM STP 684. Philadelphia (PA): American Society for Testing and Materials;1979. p. 212–228.10.1520/STP684-EB
  • Brown SA, Merritt K. Fretting corrosion of plates and screws: an in vitro test method. In: Fraker AC, Griffin CD. editors. Corrosion and degradation of implant materials. , Philadelphia (PA): ASTM STP 859 American Society for Testing and Materials; 1983. p. 105–116.
  • Buchert PK, Vaughn BK, Mallory TH, et al. Excessive metal release due to loosening and fretting of sintered particles on porous-coated hip prostheses. Report of two cases. J. Bone Joint Surg. Am. 1986;68:606–609.
  • Svensson O, Mathiesen EB, Reinholt FP, et al. Formation of a fulminant soft-tissue pseudotumor after uncemented hip arthroplasty. A case report. J. Bone Joint Surg. Am. 1988;70:1238–1242.
  • Rodrigues DC, Urban RM, Jacobs JJ, et al. In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009;88B:206–219.10.1002/jbm.b.v88b:1
  • Mathiesen EB, Lindgren JU, Blomgren GG, et al. Corrosion of modular hip prostheses. J. Bone Joint Surg. Br. 1991 Jul; 73:569–575.
  • Urban R, Gilbert J, Hall D, et al. Fretting corrosion and fracture of modular neck-body junctions in hip replacement femoral components. J. Bone Joint Surg. Am. 2010;92:1518–1521.
  • Collier JP, Mayor MB, Jensen RE, et al. Mechanisms of failure of modular prostheses. Clin. Orthop. 1992;285:129–139.
  • Rostoker W, Pretzel C, Galante J. Couple corrosion among alloys for skeletal prostheses. J. Biomed. Mater. Res. 1974;8:407–419.10.1002/(ISSN)1097-4636
  • Lucas L, Buchanan R, Lemons J. Investigations on the galvanic corrosion of multialloy total hip prostheses. J. Biomed. Mater. Res. 1981;15:731–747.10.1002/(ISSN)1097-4636
  • Griffin CD, Buchanan R., Lemons J. In vitro electrochemical corrosion study of coupled surgical implant materials. J. Biomed. Mater. Res. 1983;17:489–500.10.1002/(ISSN)1097-4636
  • Gilbert JL, Mali SA, Urban RM, et al. In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck-stem modular taper: Emergent behavior in a new mechanism of in vivo corrosion. J. Biomed. Res. Part B. 2012;100B:584–594.10.1002/jbm.b.v100b.2
  • Gilbert JL, Bai Z. The dynamics of oxide films on metallic biomaterials. Proceedings of materials and processes from medical devices conference. Anaheim (CA). ASM International; 2004.
  • Bundy KJ. Corrosion and other electrochemical aspects of biomaterials. Crit. Rev. Biomed. Eng. 1994;22:139–251.
  • Goldberg JR, Gilbert JL. Electrochemical response of Co-Cr-Mo to high-speed fracture of its metal oxide using an electrochemical scratch test method. J. Biomed. Mater. Res. 1997;37:421–431.10.1002/(ISSN)1097-4636
  • Goldberg Saryn R., Gilbert JL. Transient electric fields induced by mechanically assisted corrosion of Ti-6Al-4V. J. Biomed. Mater. Res. 2001;56:184–194.10.1002/(ISSN)1097-4636
  • Gilbert JL, Buckley CA, Lautenschlager EP. Titanium oxide film fracture and repassivation: the effect of potential, pH and aeration. ASTM Spec. Tech. Publ. 1996;1272:199–218.
  • Barril S, Debaud N, Mischler S, et al. A tribo-electrochemical apparatus for in vitro investigation of fretting–corrosion of metallic implant materials. Wear. 2002;252:744–754.10.1016/S0043-1648(02)00027-3
  • Landolt D, Mischler S, Stemp M. Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim. Acta. 2001;46:3913–3929.10.1016/S0013-4686(01)00679-X
  • Papageorgiou N., Mischler S. Electrochemical simulation of the current and potential response in sliding tribocorrosion. Tribol. Lett. 2012;48:271–283.10.1007/s11249-012-0022-9
  • Mathew M, Uth T, Hallab N, et al. Construction of a tribocorrosion test apparatus for the hip joint: validation, test methodology and analysis. Wear. 2011;271:2651–2659.10.1016/j.wear.2011.01.085
  • Brown SA, Abera A, D’Onofrio M, et al. Effects of neck extension, coverage and frequency on the fretting corrosion of modular THR bore and cone interface. Modularity Ortho. Implants. ASTM. 1997:189–210.
  • Flemming C, Brown S, Payer J. Mechanical testing for fretting corrosion of modular total hip tapers. ASTM Spec. Tech. Publ. 1994;1173:156–166.
  • Anderson TN, Anderson JL, Eyring H. Nature of fresh metal surfaces in aqueous solutions. J. Phys. Chem. 1969;73:3562–3570.10.1021/j100845a006
  • Ambrose JR. Repassivation kinetics. Acad. Press Treatise Mat. Sci. Techn., 1983;23:175–204.10.1016/B978-0-12-633670-2.50009-7
  • Beck T. Electrochemistry of freshly-generated titanium surfaces – I. Scraped-rotating-disk experiments. Electrochim. Acta. 1973;18:807–814.10.1016/0013-4686(73)85032-7
  • Fricker D., Shivanatii R. Fretting corrosion studies of universal femoral head prostheses and cone taper spigots. Biomaterials. 1990;11:495–500.10.1016/0142-9612(90)90064-W
  • ASTM F1875-98. standard practice for fretting corrosion testing of modular implant interfaces: hip femoral head-bore and cone taper interface. west conshohocken, PA: ASTM International; 2014.
  • Shareef N, Levine D. Effect of manufacturing tolerances on the micromotion at the morse taper interface in modular hip implants using the finite element technique. Biomaterials. 1996;17:623–630.10.1016/0142-9612(96)88713-8
  • Chu Y, Elias JJ, Duda GN, et al. Stress and micromotion in the taper lock joint of a modular segmental bone replacement prosthesis. J. Biomech. 2000;33: 1175–1179.10.1016/S0021-9290(00)00058-0
  • Jauch S, Huber G, Hoenig E, et al. Influence of material coupling and assembly condition on the magnitude of micromotion at the stem–neck interface of a modular hip endoprosthesis. J. Biomech. 2011, 44:1747–1751.10.1016/j.jbiomech.2011.04.007
  • Jauch SY, Huber G, Sellenschloh K, et al. Micromotions at the taper interface between stem and neck adapter of a bimodular hip prosthesis during activities of daily living. J. Orthop. Res. 2013;31:1165–1171.10.1002/jor.v31.8
  • Lambert RD, McLean TW. Test method comparing torsional fatigue of modular acetabular components. Modularity Ortho. Implants ASTM. 1997;1301:177–188.10.1520/STP1301-EB
  • Schmidt AH, Loch DA, Bechtold JE, et al. Assessing morse taper function: the relationship between impaction force, disassembly force, and design variables. Modularity Ortho. Implants ASTM STP. 1997;1301:114–126.10.1520/STP1301-EB
  • Mroczkowski ML, Hertzler JS, Humphrey SM, et al. Effect of impact assembly on the fretting corrosion of modular hip tapers. J. Orthop. Res. 2006;24:271–279.10.1002/(ISSN)1554-527X
  • Mali SA, Gilbert JL. Correlating fretting corrosion and micromotions in modular tapers: test method development and assessment. STP 1591. In: Kurtz S, Lemons J, Mihalko M, Seth Greenwald A, editors. Modularity and tapers in total joint replacement devises. West Conshohocken (PA): ASTM International; 2015. p. 259–282.
  • Mischler S. Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation. Tribol. Int. 2008;41:573–583.10.1016/j.triboint.2007.11.003
  • Barril S, Mischler S, Landolt D. Electrochemical effects on the fretting corrosion behaviour of Ti-6-Al-4V in 0.9% sodium chloride solution. Wear. 2005;259:282–291.10.1016/j.wear.2004.12.012
  • Barril S, Mischler S, Landolt D. Influence of fretting regimes on the tribocorrosion behaviour of Ti-6-Al-4V in 0.9 wt.% sodium chloride solution. Wear. 2004;256:963–972.10.1016/j.wear.2003.11.003
  • Ehrensberger MT, Sivan S, Gilbert JL. Titanium is not “the most biocompatible metal” under cathodic potential: the relationship between voltage and MC3T3 preosteoblast behavior on electrically polarized cpTi surfaces. J. Biomed. Mater. Res. Part A. 2010;93: 1500–1509.
  • Sivan S, Kaul S, Gilbert JL. The effect of cathodic electrochemical potential of Ti-6Al-4V on cell viability: voltage threshold and time dependence. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101: 1489–1497.10.1002/jbm.b.32970
  • Haeri M, Wӧllert T, Langford GM, et al. Electrochemical control of cell death by reduction-induced intrinsic apoptosis and oxidation-induced necrosis on Co-Cr-Mo alloy in vitro. Biomaterials. 2012;33:6295–6304.10.1016/j.biomaterials.2012.05.054
  • Gilbert JL, Sivan S, Liu Y, et al. Direct in vivo inflammatory cell-induced corrosion of Co-Cr-Mo alloy orthopedic implant surfaces. J. Biomed. Mater. Res. Part A. 2014;103:211–213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.