119
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Calcium ion modification of TiO2 nanotube arrays to enhance apatite formation

, , , &
Pages 791-798 | Received 31 Mar 2016, Accepted 24 Oct 2016, Published online: 08 Dec 2016

References

  • A. Fujishima and K. Honda: ‘Electrochemical photolysis of water at a semiconductor electrode’, Nature, 1972, 238, 37–38.10.1038/238037a0
  • S. Rana, R. S. Srivastava, M. M. Sorensson and R. D. K Misra: ‘Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2-NiFe2O4 system’, Mater. Sci. Eng. B., 2005, 119, 144–151.10.1016/j.mseb.2005.02.043
  • S. Rana, J. Rawat, M. M. Sorensson and R. D. K. Misra: ‘Antibactericidal function of Nd3+ doped anatase titania-coated nickel ferrite composite nanoparticles: A biomaterial system’, Acta Biomater., 2006, 2, 421–432.10.1016/j.actbio.2006.03.005
  • B.K. Sunkara and R. D. K. Misra: ‘Enhanced antibactericidal function of W4+-doped titania coated nickel ferrite composite nanoparticles: A biomaterial system’, Acta Biomater., 2008, 4, 273–283.10.1016/j.actbio.2007.07.002
  • S. Rana, J. Rawat and R. D. K. Misra: ‘Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2-NiFe2O4 biomaterial system’, Acta Biomater., 2005, 1, 691–703.10.1016/j.actbio.2005.07.007
  • J. Rawat, S. Rana, M. M. Sorensson and R. D. K. Misra: ‘Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles’, Mater Sci. Eng., 2007, 23, 97–102.
  • R. D. K. Misra: ‘Core-shell magnetic nanoparticles carrier for targeted drug delivery: Challenges and design’, Mater. Technol., 2010, 25, 118–126.10.1179/175355510X12723642365241
  • D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey: ‘Titanium oxide nanotube arrays prepared by anodic oxidation’, J. Mater. Res., 2001, 16, 3331–3334.10.1557/JMR.2001.0457
  • K. Shankar, K. C. Tep, G. K. Mor and C. A. Grimes: ‘An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties’, J. Phys. D: Appl. Phys., 2006, 39, 544–553.10.1088/0022-3727/39/11/008
  • R. Hahn, A. Ghicov, J. Salonen, V. Lehto and P. Schmuki: ‘Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment’, Nanotechnology, 2007, 18, 202–207.10.1088/0957-4484/18/10/105604
  • S. Liu, L. Yang, S. Xu, S. Luo and Q. Cai: ‘Photocatalytic activities of C-N-doped TiO2 nanotube array/carbon nanorod composite’, Electrochem. Commun., 2009, 11, 1748–1751.10.1016/j.elecom.2009.07.007
  • J. M. Macak, F. Schmidt-Stein and P. Schmuki: ‘Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles’, Electrochem. Commun., 2007, 9, 1783–1787.10.1016/j.elecom.2007.04.002
  • S. Kuang, L. Yang, S. Luo and Q. Cai: ‘Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays’, Appl. Surf. Sci., 2009, 255, 7385–7388.10.1016/j.apsusc.2009.04.005
  • L. Yang, S. Luo, R. Liu, Q. Cai, Y. Xiao, S. Liu, F. Su and L. Wen: ‘Fabrication of CdSe nanoparticles sensitized long TiO2 nanotube arrays for photocatalytic degradation of anthracene-9-carboxylic acid under green monochromatic light’, J. Phys. Chem. C, 2010, 114, 4783–4789.10.1021/jp910489h
  • R. Liu, Y. Liu, C. Liu, S. Luo, Y. Teng, L. Yang, R. Yang and Q. Cai: ‘Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CuInS2 nanoparticles deposition onto TiO2 nanotube arrays’, J. Alloys. Compd., 2011, 509, 2434–2440.10.1016/j.jallcom.2010.11.040
  • K. Y. Chun, B. W. Park, Y. M. Sung, D. J. Kwak, Y. T. Hyun and M. W. Park: ‘Fabrication of dye-sensitized solar cells using TiO2-nanotube arrays on Ti-grid substrates’, Thin Solid Films., 2009, 517, 4196–4198.10.1016/j.tsf.2009.02.042
  • O. K. Varghese, M. Paulose and C. A. Grimes: ‘Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells’, Nat. Nanatechnol., 2009, 4, 592–597.10.1038/nnano.2009.226
  • C. A. Grimes, K. G. Ong, O. K. Varghese, X. Yang, G. Mor, M. Paulose, E. C. Dickey, C. Ruan, M. V. Pishko, J. W. Kendig and A. J. Mason: ‘A sentinel sensor network for hydrogen sensing’, Sensors, 2003, 3, 69–82.10.3390/s30300069
  • O. K. Varghese, X. Yang, S. Kendig, M. Paulose, K. Zeng, C. Palmer, K. G. Ong and C. A. Grimes: ‘A transcutaneous hydrogen sensor: From design to application’, Sens. Lett., 2006, 4, 120–128.10.1166/sl.2006.022
  • S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn and P. Schmuki: ‘Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications’, Nano. Lett., 2007, 7, 1286–1289.10.1021/nl070264k
  • L. Sun, J.Li, C. Wang, S. Li, Y. Lai, H. Chen and C. J. Lin: ‘Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity’, J. Hazard Mater., 2009, 171, 1045–1050.10.1016/j.jhazmat.2009.06.115
  • Z. R. Zhang, Y. H. Tang, C. B. Liu and L. Wan: ‘Fabrication of In2S3 nanoparticle decorated TiO2 nanotube arrays by successive ionic layer adsorption and reaction technique and their photocatalytic application’, J. Nanosci. Nanotechnol., 2015, 14, 4170–4177.
  • G. K. Mor, M. A. Carvalho, O. K. Varghese, M. Paulose and C. A. Grimes: ‘A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination’, J. Mater. Res., 2004, 19, 628–634.10.1557/jmr.2004.19.2.628
  • L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu and P. K. Chu: ‘Antibacterial nano-structured titania coating incorporated with silver nanoparticles’, Biomaterials, 2011, 32, 5706–5716.10.1016/j.biomaterials.2011.04.040
  • K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese and C. A. Grimes: ‘Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells’, Nanotechnology, 2007, 18, 065707.10.1088/0957-4484/18/6/065707
  • G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes: ‘A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications’, Sol. Energy Mater. Sol. Cells, 2006, 90, 2011–2075.10.1016/j.solmat.2006.04.007
  • K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank: ‘Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays’, Nano. Lett., 2007, 7, 69–74.10.1021/nl062000o
  • M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes: ‘Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in Length’, J. Phys. Chem. B, 2006, 110, 16179–16184.10.1021/jp064020k
  • G. K. Mor, H. E. Prakasam, O. K. Varghese, K. Shankar and C. A. Grimes: ‘Vertically oriented Ti-Fe-O nanotube array films:  Toward a useful material architecture for solar spectrum water photoelectrolysis’, Nano. Lett., 2007, 7, 2356–2364.10.1021/nl0710046
  • K. C. Popat, L. Leoni, C. A. Grimes and T. A. Desai: ‘Influence of engineered titania nanotubular surfaces on bone cells’, Biomaterials, 2007, 28, 3188–3197.10.1016/j.biomaterials.2007.03.020
  • D. Krupa, J. Baszkiewicz, J. W. Sobczak, A. Biliński, A. Barcz and B. Rajchel: ‘Influence of anodic oxidation on the bioactivity and corrosion resistance of phosphorus-ion implanted titanium’,Vacuum, 2003, 70, 109–113.10.1016/S0042-207X(02)00628-0
  • B. Yang, M. Uchida, H. M. Kim, X. Zhang and T. Kokubo: ‘Preparation of bioactive titanium metal via anodic oxidation treatment’, Biomaterials, 2004, 25, 1003–1010.10.1016/S0142-9612(03)00626-4
  • H. Tsuchiya, J. M. Macak, L. Müller, J. Kunze, F. Müller, P. Greil, S. Virtanen and P. Schmuki: ‘Hydroxyapatite growth on anodic TiO2 nanotubes’, J. Biomed. Mater. Res, 2006, 77A, 534–541.10.1002/(ISSN)1552-4965
  • S. Oh and S. Jin: ‘Titanium oxide nanotubes with controlled morphology for enhanced bone growth’, Mater. Sci. Eng. C, 2006, 26, 1301–1306.10.1016/j.msec.2005.08.014
  • S. H. Oh, R. R. Finõnes, C. Daraio, L. H. Chen and S. Jin: ‘Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes’, Biomaterials, 2005, 26, 4938–4943.10.1016/j.biomaterials.2005.01.048
  • A. Kar, K. S. Rajaand and M. Misra: ‘Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications’, Surf. Coat. Technol., 2006, 201, 3723–3731.10.1016/j.surfcoat.2006.09.008
  • X. F. Xiao, R. F. Liu and T. Tian: ‘Preparation of bioactivity of embedded-style hydroxyapatite-titania nanotube arrays’, Mater. Sci., 2009, 27, 23–31.
  • X. F. Xiao, R. F. Liu and T. Tian: ‘Preparation of bioactive titania nanotube arrays in HF/Na2HPO4 electrolyte’, J. Alloys Compd., 2008, 466, 356–362.10.1016/j.jallcom.2007.11.032
  • T. Tian, X. F. Xiao, H. D. She and R. F. Liu: ‘Biomimetic growth of apatite on titania nanotube arrays fabricated by titanium anodization in NH4F/H2SO4 electrolyte’, Mater. Sci., 2008, 26, 487–494.
  • P. Li, I. Kangasniemi, K. Groot and T. Kokubo: ‘Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate’, J. Am. Ceram. Soc., 1994, 77, 1307–1312.10.1111/jace.1994.77.issue-5
  • J. G. Lin, Y. C. Li, C. S. Wong, P. D. Hodgson and C. Wen: ‘Degradation of the strength of porous titanium after alkali and heat treatment’, J. Alloys Compd., 2009, 485, 316–319.10.1016/j.jallcom.2009.05.048
  • X. B. Chen, Y. C. Li, J. D. Plessis, P. D. Hodgson and C. Wen: ‘Degradation of the strength of porous titanium after alkali and heat treatment’, Acta Biomater., 2009, 5, 1808–1820.10.1016/j.actbio.2009.01.015
  • X. F. Xiao, T. Tian, R. F. Liu and H. D. She: ‘Influence of titania nanotube arrays on biomimetic deposition apatite on titanium by alkali treatment’, Mater. Chem. Phys., 2007, 106, 27–32.10.1016/j.matchemphys.2007.05.014
  • T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro: ‘Solutions able to reproduce in vivo surface changes in bioactive glass-ceramic A-W3’, J. Biomed. Mater. Res., 1990, 24, 721–734.10.1002/(ISSN)1097-4636
  • A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki and T. Nakamura: ‘Preparation and assessment of revised simulated body fluid’, J. Biomed. Mater. Res., 2003, 65A, 188–195.10.1002/(ISSN)1097-4636
  • H. Xu, Q. Zhang, C. L. Zheng, W. Yan and W. Chu: ‘Application of ultrasonic wave to clean the surface of the TiO2 nanotubes prepared by the electrochemical anodization’, Appl. Surf. Sci., 2011, 257, 8478–8480.10.1016/j.apsusc.2011.04.135
  • J. W. Wang, G. Q. Xu, X. Zhang, P. B. Zhai, J. Lv, D. M. Wang, Z. X. Zheng and Y. C. Wu: ‘Photoelectrochemical performances of TiO2 nanotube arrays hydrothermally treated in sulfide’, Appl. Surf. Sci., 2016, 363, 644–650.10.1016/j.apsusc.2015.12.038
  • J. C. Yu, X. C. Wang, L. Wu, W. K. Ho, L. Z. Zhang and G. T. Zhou: ‘Sono- and photochemical routes for the formation of highly dispersed gold nanoclusters in mesoporous titania films’, Adv. Funct. Mater., 2004, 14, 1178–1183.10.1002/(ISSN)1616-3028
  • T. Hanawa, M. Kon, H. Ukai, K. Murakami, Y. Miyamoto and K. Asaoka: ‘Surface modification of titanium in calcium-ion-containing solutions’, J. Biomed. Mater. Res. A, 1997, 34, 273–278.10.1002/(ISSN)1097-4636
  • H. A. Lowenstam and S. Weiner: On biomineralization; 1989, Oxford: Oxford University Press.
  • J. Coreno and O. Coreno: ‘Evaluation of calcium titanate as apatite growth promoter’, J. Biomed. Mater. Res. A, 2005, 75A, 478–484.10.1002/(ISSN)1552-4965
  • S. Koutsopoulos: ‘Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods’, J. Biomed. Mater. Res. A, 2002, 62, 600–612.10.1002/(ISSN)1097-4636
  • A. Stoch, W. Jastrzebski, A. Brozek, J. Stoch, J. Szaraniec, B. Trybalska and G. Knita: ‘FTIR absorption-reflection study of biomimetic growth of phosphates on titanium implants’, J. Mol. Struct., 2000, 555, 375–382.10.1016/S0022-2860(00)00623-2
  • T. Kasuga, H. Kondo and M. Nogami: ‘Apatite formation on TiO2 in simulated body fluid’, J. Cryst. Growth, 2002, 235, 235–240.10.1016/S0022-0248(01)01782-1
  • H. M. Kim, T. Himeno, M. Kawashita, J. H. Lee, T. Kokubo and T. Nakamura: ‘Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid’, J. Biomed. Mater. Res. A, 2003, 67A, 1305–1309.10.1002/(ISSN)1097-4636
  • H. Takadama, H. M. Kim, T. Kokubo and T. Nakamura: ‘TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid’, J. Biomed. Mater. Res. A, 2001, 57, 441–448.10.1002/(ISSN)1097-4636

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.