634
Views
15
CrossRef citations to date
0
Altmetric
Research Papers

Self-templated biomass-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries

, , , ORCID Icon, &
Pages 592-597 | Received 02 Jan 2017, Accepted 19 Jan 2017, Published online: 13 Feb 2017

References

  • Ni J, Zhang L, Fu S, et al. A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon. 2015;92:15–25.10.1016/j.carbon.2015.02.047
  • Arunachalam V, Fleischer E. The global energy landscape and materials innovation. MRS Bull. 2008;33:264–288.10.1557/mrs2008.61
  • Xia H, Xia Q, Lin B, et al. Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy. 2016;22:475–482.10.1016/j.nanoen.2016.01.022
  • Zhong Y, Xia X, Shi F, et al. Transition metal carbides and nitrides in energy storage and conversion. Adv Sci. 2016;3:1500286.10.1002/advs.201500286
  • Xia H, Wan Y, Assenmacher W, et al. Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries. NPG Asia Mater. 2014;6:e126.10.1038/am.2014.72
  • Ni J, Fu S, Wu C, et al. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv Energy Mater. 2016;6:1502568.10.1002/aenm.201502568
  • Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–367.10.1038/35104644
  • Ni J, Fu S, Wu C, et al. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv Mater. 2016;28:2259–2265.10.1002/adma.201504412
  • Ni J, Li Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater. 2016;6:1600278.10.1002/aenm.v6.17
  • Hong S, Kim Y, Park Y, et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ Sci. 2013;6:2067–2081.10.1039/c3ee40811f
  • Zhong Y, Xia X, Zhan J, et al. A CNT cocoon on sodium manganate nanotubes forming a core/branch cathode coupled with a helical carbon nanofibre anode for enhanced sodium ion batteries. J Mater Chem A. 2016;4:11207–11213.10.1039/C6TA05069G
  • Zhao Y, Gao D, Ni J, et al. One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014;7:765–773.10.1007/s12274-014-0437-8
  • Ni J, Huang Y, Gao L. A high-performance hard carbon for Li-ion batteries and supercapacitors application. J Power Sources. 2013;223:306–311.10.1016/j.jpowsour.2012.09.047
  • Zhang L, Liu Z, Cui G, et al. Biomass-derived materials for electrochemical energy storages. Prog Polym Sci. 2015;43:136–164.10.1016/j.progpolymsci.2014.09.003
  • Yao Y, Wu F. Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. Nano Energy. 2015;17:91–103.10.1016/j.nanoen.2015.08.004
  • Wang H, Yu W, Shi J, et al. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta. 2016;188:103–110.10.1016/j.electacta.2015.12.002
  • Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano. 2013;7:11004–11015.10.1021/nn404640c
  • Ni J, Han Y, Gao L, et al. One-pot synthesis of CNT-wired LiCo0.5Mn0.5PO4 nanocomposites. Electrochem Commun. 2013;31:84–87.10.1016/j.elecom.2013.03.022
  • Xia Y, Yang Z, Mokaya R. Templated nanoscale porous carbons. Nanoscale. 2010;2:639–659.10.1039/b9nr00207c
  • Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Adv Mater. 2012;24:4473–4498.10.1002/adma.v24.33
  • Yang T, Qian T, Wang M, et al. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater. 2016;28:539–545.10.1002/adma.v28.3
  • Hong K, Qie L, Zeng R, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A. 2014;2:12733–12738.10.1039/C4TA02068E
  • Sun N, Liu H, Xu B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J Mater Chem A. 2015;3:20560–20566.10.1039/C5TA05118E
  • Xie D, Xia X, Zhong Y, et al. Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv Energy Mater. 2016:1601804. DOI:10.1002/aenm.201601804
  • Zhang K, Li X, Liang J, et al. Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim Acta. 2015;155:174–182.10.1016/j.electacta.2014.12.108
  • Xu G, Han J, Ding B, et al. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 2015;17:1668–1674.10.1039/C4GC02185A
  • Wang Z, Qie L, Yuan L, et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon. 2013;55:328–334.10.1016/j.carbon.2012.12.072
  • Liu J, Zheng M, Shi X, et al. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv Funct Mater. 2016;26:919–930.10.1002/adfm.v26.6
  • He T, Ren X, Cai K, et al. Electrochemical performance of activated carbon treated by vacuum impregnation using fluorinated surfactant. Mater Technol. 2013;28:364–369.10.1179/1753555713Y.0000000087
  • Xiao L, Cao Y, Hendersonc W, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy. 2016;19:279–288.10.1016/j.nanoen.2015.10.034
  • Savilov S, Ivanov A, Arkhipova E, et al. Pseudocapacity of N-doped and polymer modified carbon nanomaterials in non-aqueous media. Mater Technol. 2014;29:A98–A106.10.1179/1753555714Y.0000000187

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.