353
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Morphology-tailored synthesis and electrochemical performances of CuBi2O4 hierarchical architectures with the aid of KCl

, , , &
Pages 606-613 | Received 16 Feb 2017, Accepted 02 Apr 2017, Published online: 21 Apr 2017

References

  • Oshikiri M, Boero M, Ye JH, et al. Electronic structures of promising photocatalysts InMO4 (M = V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J Chem Phys. 2002;117:7313–7318.10.1063/1.1507101
  • Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc. 1999;121:11459–11467.10.1021/ja992541y
  • Zhu L, Basnet P, Larson SR, et al. Visible light-induced photoeletrochemical and antimicrobial properties of hierarchical CuBi2O4 by facile hydrothermal synthesis. Chem Sel. 2016;1:1518–1524.
  • Berglund SP, Abdi FF, Bogdanoff P, et al. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem Mater. 2016;28:4231–4242.10.1021/acs.chemmater.6b00830
  • Nakabayashi Y, Nishikawa M, Nosaka Y. Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production. Electrochim Acta. 2014;125:191–198.10.1016/j.electacta.2014.01.088
  • White BD, Patzold WM, Neumeier JJ. Three-dimensional Ising behavior of antiferromagnetic Bi2CuO4. Phys Rev B. 2010;82:094439.10.1103/PhysRevB.82.094439
  • Yoshii K, Fukuda T, Akahama H, et al. Magnetic and dielectric study of Bi2CuO4. Physica C. 2011;471:766–769.10.1016/j.physc.2011.05.049
  • Denisov VM, Irtyugo LA, Denisova LT, et al. High-temperature heat capacity of Bi2CuO4. Phys Solid State. 2012;54:1943–1945.10.1134/S1063783412090089
  • Abdulkarem AM, Li JL, Aref AA, et al. CuBi2O4 single crystal nanorods prepared by hydrothermal method: Growth mechanism and optical properties. Mater Res Bull. 2011;46:1443–1450.10.1016/j.materresbull.2011.05.005
  • Ensafi AA, Ahmadi N, Rezaei B. Electrochemical preparation of CuBi2O4 nanoparticles on nanoporous stainless steel as a binder-free supercapacitor electrode. J Alloy Compd. 2015;652:39–47.10.1016/j.jallcom.2015.08.226
  • Zhang YC, Yang H, Wang WP, et al. A promising supercapacitor electrode material of CuBi2O4 hierarchical microspheres synthesized via a coprecipitation route. J Alloy Compd. 2016;684:707–713.10.1016/j.jallcom.2016.05.201
  • Javed MS, Dai SG, Wang MJ, et al. High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J Power Sources. 2015;285:63–69.10.1016/j.jpowsour.2015.03.079
  • Cui ZM, Yang H, Wang B, et al. Effect of experimental parameters on the hydrothermal synthesis of Bi2WO6 nanostructures. Nanoscale Res Lett. 2016;11:190. doi:10.1186/s11671-016-1413-x10.1186/s11671-016-1413-x
  • Bhowmik B, Manjuladevi V, Gupta RK, et al. Highly selective low-temperature acetone sensor based on hierarchical 3-D TiO2 nanoflowers. IEEE Sens J. 2016;16:3488–3495.10.1109/JSEN.2016.2530827
  • Di LJ, Yang H, Xian T, et al. Influence of precursor Bi3+/Fe3+ ion concentration on hydrothermal synthesis of BiFeO3 crystallites. Ceram Int. 2014;40:4575–4578.10.1016/j.ceramint.2013.08.134
  • Zhang Y, Xie Y, Li J, et al. Effects of synthetic conditions on the morphology and catalytic properties of hierarchical CuBi2O4 nanoflowers grown by low-temperature solution process. J Alloy Compd. 2013;580:172–175.10.1016/j.jallcom.2013.05.121
  • Wang M, Zai J, Wei X, et al. N-type hedgehog-like CuBi2O4 hierarchical microspheres: room temperature synthesis and their photoelectrochemical properties. Cryst Eng Comm. 2015;17:4019–4025.10.1039/C5CE00040H
  • Oha W-D, Lua S-K, Dong Z, et al. A novel three-dimensional spherical CuBi2O4 nanocolumn arrays with persulfate and peroxymonosulfate activation functionalities for 1H-benzotriazole removal. Nanoscale. 2015;7:8149–8158.10.1039/C5NR01428J
  • Chen X, Dai Y, Guo J. Hydrothermal synthesis of well-distributed spherical CuBi2O4 with enhanced photocatalytic activity under visible light irradiation. Mater Lett. 2015;161:251–254.10.1016/j.matlet.2015.08.118
  • Vivier V, Regis A, Sagon G, et al. Cyclic voltammetry study of bismuth oxide Bi2O3 powder by means of a cavity microelectrode coupled with Raman microspectrometry. Electrochim Acta. 2001;46:907–914.10.1016/S0013-4686(00)00677-0
  • Wang F, Yang H, Zhang HM, et al. Electrochemical performances of morphologically different Bi2WO6 nanostructures synthesized via a hydrothermal route. J Electron Mater. 2016;46:182–187.
  • Vivier V, Cachet-Vivier C, Mezaille S, et al. Electrochemical study of Bi2O3 and Bi2O2CO3 by means of a cavity microelectrode. I. Observed phenomena and direct analysis of results. J Electrochem Soc. 2000;147:4252–4262.10.1149/1.1394049
  • Aghazadeh M, Golikand AN, Ghaemi M. Synthesis, characterization, and electrochemical properties of ultrafine b-Ni(OH)2 nanoparticles. Int J Hydrogen Energy. 2011;36:8674–8679.10.1016/j.ijhydene.2011.03.144
  • Stoller MD, Park SJ, Zhu YW, et al. Graphene-based ultracapacitors. Nano Lett. 2008;8:3498–3502.10.1021/nl802558y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.