Publication Cover
Materials Technology
Advanced Performance Materials
Volume 32, 2017 - Issue 9
123
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Investigation of properties of chemically cross-linked silk nanofibrous mat as a nerve guide

, , , , , & show all
Pages 551-559 | Received 23 Jan 2017, Accepted 01 Apr 2017, Published online: 19 Apr 2017

References

  • Hughes RAC. Regular review: peripheral neuropathy. BMJ. 2002;324:466–469.10.1136/bmj.324.7335.466
  • Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury. Neurosurg Focus. 2004;11:161–168.
  • Biazar E, Khorasani MT, Montazeri N, et al. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Int J Nanomed. 2010;5:839–852.10.2147/IJN
  • Biazar E, Heidari SK. Chitosan–Cross-linked nanofibrous PHBV nerve guide for rat for sciatic nerve regeneration across a defect bridge. ASAIO J. 2013a;59:651–659.10.1097/MAT.0b013e3182a79151
  • Biazar E, Heidari SK. Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cell as artificial nerve graft. Cell Commun Adhes. 2013b;20:93–103.10.3109/15419061.2013.833191
  • Biazar E, Heidari SK. Rat sciatic nerve regeneration across a 30-mm defect bridged by a nanofibrous PHBV and Schwann cell as artificial nerve graft. Cell Commun Adhes. 2013c;20:41–49.10.3109/15419061.2013.774378
  • Biazar E, Heidari SK, Pouya M, et al. Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects. Neural Regen Res. 2013a;8:2266–2274.
  • Biazar E, Heidari SK, Pouya M. Efficacy of nanofibrous conduits in repair of long-segment sciatic nerve defects. Neural Regen Res. 2013b;8:2501–2509.
  • Biazar E, Heidari SK. Gelatin-modified nanofibrous PHBV tube as artificial nerve graft for rat sciatic nerve regeneration. Int J Polym Mater Po. 2014a;63:330–336.10.1080/00914037.2013.845187
  • Biazar E, Heidari SK. Design of an oriented porous polymeric guide for neural regeneration. Int J Polym Mater Polym Biomater. 2014b;63:753–757.10.1080/00914037.2013.879446
  • Biazar E, Heidari SK. Rat sciatic nerve reconstruction across a 30 mm defect bridged by an oiented porous PHBV tube with Schwann cell as artificial nerve graft. ASAIO J. 2014c;60:224–233.
  • Ameri R, Biazar E. Development of oriented nanofibrous silk guide for repair of nerve defects. Int J Polym Mater Po. 2016;65:91–95.10.1080/00914037.2015.1074907
  • Baradaran-Rafii A, Biazar E, Heidari-keshel S, et al. Oriented nanofibrous silk as a natural scaffold for ocular epithelial Regeneration. J Biomat Sci-Polym E. 2015a;26:1139–1151.
  • Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26:2775–2785.10.1016/j.biomaterials.2004.07.044
  • Ohgo K, Zhao C, Kobayashi M, et al. Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer. 2003;44:841–846.10.1016/S0032-3861(02)00819-4
  • Ai J, Heidari SK, Ghorbani F, et al. Fabrication of coated-collagen electrospun PHBV nanofiber film by plasma method; and its cellular study. J Nanomater. 2011;2011:1–8.
  • Sahebalzamani A, Biazar E, Shahrezaei M, et al. Surface modification of PHBV nanofibrous mat by laminin protein and its cellular study. Int J Polym Mater Po. 2015;64:149–154.10.1080/00914037.2014.911179
  • Sahebalzamani A, Biazar E. Modification of poly caprolactone nanofibrous mat by laminin protein and its cellular study. J Biomater Tissue Eng. 2014;4:423–429.10.1166/jbt.2014.1195
  • Momenzadeh D, Baradaran-Rafii A, Heidari KS, et al. Electrospun mat with eyelid fat-derived stem cells as a scaffold for ocular epithelial regeneration. Artif Cells Nanomed Biotechnol. 2017;45(1):120–127. doi:10.3109/21694101.2016.1138483.
  • Majdi A, Biazar E, Heidari S. Fabrication and comparison of electro-spun poly hydroxy butyrate valrate nanofiber and normal film and its cellular study. Orient J Chem. 2011;27:523–528.
  • Baradaran-Rafii A, Biazar E, Heidari-Keshel S. Cellular response of limbal stem cells on PHBV/Gelatin nanofibrous scaffold for ocular epithelial regeneration. Int J Polym Mater Po. 2015b;64:879–887.10.1080/00914037.2015.1030658
  • Baradaran-Rafii A, Biazar E, Heidari-keshel S. Cellular response of stem cells on nanofibrous scaffold for ocular surface bioengineering. ASAIO J. 2015c;61:605–612.10.1097/MAT.0000000000000242
  • Baradaran-Rafii A, Biazar E, Heidari-keshel S. Cellular response of limbal stem cells on polycaprolactone nanofibrous scaffolds for ocular epithelial regeneration. Curr Eye Res. 2016;41(3):326–333. doi:10.3109/02713683.2015.1019004.
  • Baradaran-Rafii A, Biazar E, Heidari-Keshel S. Cellular response of limbal stem cells on poly (hydroxybuthyrate-co-hydroxyvalerate) porous scaffolds for ocular surface bioengineering. Int J Polym Mater Po. 2015e;64:815–821.10.1080/00914037.2015.1030651
  • Biazar E, Heidari SK. Effects of chitosan cross linked nanofibrous PHBV scaffold combined with mesenchymal stem cells on healing of full-thickness skin defects. J Biomed Nanotechnol. 2013d;9:1471–1482.10.1166/jbn.2013.1639
  • Biazar E, Heidari SK, Sahebalzamani A, et al. The healing effect of unrestricted somatic stem cells loaded in nanofibrous Polyhydroxybutyrate-co-hydroxyvalerate scaffold on full-thickness skin defects. J Biomater Tiss Eng. 2014;4:20–27.10.1166/jbt.2014.1137
  • Biazar E. Polyhydroxyalkanoates as potential biomaterials for neural tissue regeneration. Int J Polym Mater Po. 2014;63:898–908.10.1080/00914037.2014.886227
  • Unger RE, Wolf M, Peters K, et al. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials. 2004;25:1069–1075.10.1016/S0142-9612(03)00619-7
  • Gotoh Y, Niimi S, Hayakawa T, et al. Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment. Biomaterials. 2004;25:1131–1140.10.1016/S0142-9612(03)00633-1
  • Sofia S, McCarthy MB, Gronowicz G, et al. Functionalized silk-based biomaterials for bone formation. J. Biomed Mater Res. 2001;54:139–148.10.1002/(ISSN)1097-4636
  • Chen X, Qi YY, Wang LL, et al. Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials. 2008;29:3683–3692.10.1016/j.biomaterials.2008.05.017
  • Lovett M, Cannizzaro C, Daheron L, et al. Silk fibroin microtubes for blood vessel engineering. Biomaterials. 2007;28:5271–5279.10.1016/j.biomaterials.2007.08.008
  • Soffer L, Wang X, Zhang X, et al. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed. 2008;19:653–664.10.1163/156856208784089607
  • Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater. 2005;15:1988–1994.10.1002/(ISSN)1616-3028
  • Mandal BB, Kundu SC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 2009;30:2956–2965.10.1016/j.biomaterials.2009.02.006
  • Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules. 2004;5:718–726.10.1021/bm034327e
  • Makaya K, Terada S, Ohgo K, et al. Comparative study of silk fibroin porous scaffolds derived from salt/water and sucrose/hexafluoroisopropanol in cartilage formation. J Biosci Bioeng. 2009;108:68–75.10.1016/j.jbiosc.2009.02.015
  • Matthews JA, Wnek GE, Simpson DG, et al. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–238.10.1021/bm015533u
  • Casper CL, Yang W, Farach-Carson MC, et al. Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules. 2007;8:1116–1123.10.1021/bm061003s
  • Newton D, Mahajan R, Ayres C, et al. Regulation of material properties in electrospun scaffolds: role of cross-linking and fiber tertiary structure. Acta Biomater. 2009;5:518–529.10.1016/j.actbio.2008.06.016
  • Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, et al. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials. 2006;27:724–734.10.1016/j.biomaterials.2005.06.024
  • Meng L, Arnoult O, Smith M, et al. Electrospinning of in situ crosslinked collagen nanofibers. J Mater Chem. 2012;22:19412–19417.10.1039/c2jm31618h
  • Torres-Giner S, Gimeno-Alcañiz JV, Okuyama O, et al. Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces. 2009;1:218–223.10.1021/am800063x
  • Yang YM, Ding F, Wu J, et al. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials. 2007;28:5526–5535.10.1016/j.biomaterials.2007.09.001
  • Zhang F, Zuo BQ, Zhang HX, et al. Studies of electrospun regenerated SF/TSF nanofibers. Polymer. 2009;50:279–285.10.1016/j.polymer.2008.10.053
  • Biazar E. Use of umbilical cord and cord blood-derived stem cells for tissue repair and regeneration. Expert Opin Biol Th. 2013;13:1653–1662.10.1517/14712598.2013.840284
  • Heidari S, Biazar E, Rezaei M, et al. The healing effect of unrestricted somatic stem cells loaded in collagen-modified nanofibrous PHBV scaffold on full-thickness skin defects. Artif Cell Nanomed B. 2014;42:210–216.
  • Wang XH, Li DP, Wang WJ, et al. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials. 2003;24:3213–3220.10.1016/S0142-9612(03)00170-4
  • Noishiki Y, Nishiyama Y, Wada M, et al. Mechanical properties of silk fibroin-microcrystalline cellulose composite films. J Appl Polym Sci. 2002;86:3425–3429.10.1002/(ISSN)1097-4628
  • Argento G, Simonet M, Oomens CWJ, et al. Multiscale mechanical characterization of scaffolds for heart valve tissue engineering. J Biomech. 2012;45:2893–2898.10.1016/j.jbiomech.2012.07.037
  • Pai CL, Boyce MC, Rutledge GC. On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes. Polymer. 2011;52:6126–6133.10.1016/j.polymer.2011.10.055

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.