204
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Facile synthesis of grape-like Li[Li0.13Mn0.56Ni0.31]O2 with good electrochemical performance for lithium ion batteries

&
Pages 614-621 | Received 13 Mar 2017, Accepted 12 May 2017, Published online: 01 Jun 2017

References

  • Li L, Lee KS, Lu L. Li-rich layer-structured cathode materials for high energy Li-ion batteries. Funct Mater Lett. 2014;7:1430002.
  • Thackeray MM, Kang S-H, Johnson CS, et al. Li2MnO3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17:3112–3125.10.1039/b702425h
  • Song B, Lai MO, Liu Z, et al. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J Mater Chem A. 2013;1:9954–9965.10.1039/c3ta11580a
  • Ye D, Wang L. Li2MnO3 based Li-rich cathode materials: towards a better tomorrow of high energy lithium ion batteries. Mater Technol. 2014;29:A59–A69.10.1179/1753555714Y.0000000166
  • Chen D, Yu Q, Xiang X, et al. Porous layered lithium-rich oxide nanorods: synthesis and performances as cathode of lithium ion battery. Electrochim Acta. 2015;154:83–93.10.1016/j.electacta.2014.12.037
  • Chen D, Tu W, Chen M, et al. Synthesis and performances of Li-Rich@AlF3@ graphene as cathode of lithium ion battery. Electrochim Acta. 2016;193:45–53.10.1016/j.electacta.2016.02.043
  • Shojan J, Chitturi VR, Torres L, et al. Lithium-ion battery performance of layered 0.3Li2MnO3–0.7LiNi0.5Mn0.5O2 composite cathode prepared by co-precipitation and sol–gel methods. Mater Lett. 2013;104:57–60.10.1016/j.matlet.2013.04.001
  • Kim MG, Jo M, Hong Y-S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem Commun. 2009;218–220.10.1039/B815378G
  • Xiang X, Li X, Li W. Preparation and characterization of size-uniform Li [Li0.131Ni0.304Mn0.565]O2 particles as cathode materials for high energy lithium ion battery. J Power Sources. 2013;230:89–95.10.1016/j.jpowsour.2012.12.050
  • Johnson CS, Kim J-S, Lefief C, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun. 2004;6(10):1085–1091.10.1016/j.elecom.2004.08.002
  • Chen M, Chen D, Liao Y, et al. Layered lithium-rich oxide nanoparticles doped with spinel phase: acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery. ACS Appl Mater Int. 2016;8:4575–4584.10.1021/acsami.5b10219
  • Liu J, Liu J, Wang R, et al. Degradation and structural evolution of xLi2MnO3·(1–x)LiMn1/3Ni1/3Co1/3O2 during cycling. J Electrochem Soc. 2014;161:A160–A167.
  • Xiang X, Knight JC, Li W, et al. Understanding the effect of Co3+ substitution on the electrochemical properties of lithium-rich layered oxide cathodes for lithium-ion batteries. J Phys Chem C. 2014;118:21826–21833.10.1021/jp506731v
  • Chen D, Zheng F, Li L, et al. Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance. J Power Sources. 2017;341:147–155.10.1016/j.jpowsour.2016.11.020
  • Song B, Lai MO, Lu L. Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim Acta. 2012;80:187–195.10.1016/j.electacta.2012.06.118
  • Li Z, Du F, Bie X, et al. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J Phys Chem C. 2010;114:22751–22757.10.1021/jp1088788
  • Xiang X, Xing L, Li W. A novel manganese-based lithium-intercalated cathode material with high cyclic stability for lithium-ion batteries. Sci Adv Mater. 2014;6:1506–1510.10.1166/sam.2014.1826
  • Oh P, Ko M, Myeong S, et al. A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO3–0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv Eng Mater. 2014;4:1400631.10.1002/aenm.201400631
  • Xiao Q, Sun K, Zhang H, et al. High performance Li1·2(Mn0·54Co0·13Ni0·13)O2 with AlF3/carbon hybrid shell for lithium ion batteries. Mater Technol. 2014;29:A70–A76.10.1179/1753555714Y.0000000180
  • Jin B, Jin E, Park K-H, et al. Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem Commun. 2008;10:1537–1540.10.1016/j.elecom.2008.08.001
  • Zhu Z, Cheng F, Chen J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J Mater Chem A. 2013;1:9484–9490.10.1039/c3ta00114h
  • Jiang Z, Jiang Z-J. Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source. J Alloy Compd. 2012;537:308–317.10.1016/j.jallcom.2012.05.066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.