545
Views
17
CrossRef citations to date
0
Altmetric
Research Papers

Isostructural metal organic frameworks based on 1,4-naphthalene dicarboxylate as anodes for lithium ion battery

, , , , , , & show all
Pages 630-637 | Received 24 Jan 2017, Accepted 26 May 2017, Published online: 04 Jul 2017

References

  • Ohzuku T, Brodd RJ. An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources. 2007;174:449–456.10.1016/j.jpowsour.2007.06.154
  • Ohtani M, Kamat PV, Fukuzumi S. Supramolecular donor–acceptor assemblies composed of carbon nanodiamond and porphyrin for photoinduced electron transfer and photocurrent generation. J Mater Chem. 2010;20:582–587.10.1039/B916634C
  • Tan L, Wang MS, Liu YJ, et al. Synthesis of SnO2 nanorods and hollow spheres and their electrochemical properties as anode materials for lithium ion batteries.Mater Technol. 2012;27:191–195.10.1179/1753555712Y.0000000001
  • Gu CD, Mai YJ, Zhou JP, et al. SnO2 nanocrystallite: novel synthetic route from deep eutectic solvent and lithium storage performance. Funct Mater Lett. 2011;04:377–381.10.1142/S1793604711002251
  • Chen D, Ji G, Ding B, et al. Double transition-metal chalcogenide as a high-performance lithium-ion battery anode material.Ind Eng Chem Res. 2014;53:17901–17908.10.1021/ie503759v
  • Su X, Wu Q, Li J, et al. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv Energy Mater. 2014;4:375–379.
  • Park CM, Kim JH, Kim H, et al. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev. 2010;39:3115–3141.10.1039/b919877f
  • Molenda M, Chojnacka A, Bakierska M, et al. Facile synthesis of C/Sn nanocomposite anode material for li ion batteries. Mater Technol. 2014;29:A88–A92.10.1179/1753555714Y.0000000192
  • Chen Y, Song BH, Lu L, et al. Synthesis of carbon coated Fe3O4/SnO2 composite beads and their application as anodes for lithium ion batteries. Mater Technol. 2013;28:254–259.10.1179/1753555713Y.0000000072
  • Bennett TD, Cheetham AK, Fuchs AH, et al. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat Chem. 2017;9:11–16.
  • Liu H, Wang H, Chu T, et al. An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution. J Mater Chem C. 2014;2:8683–8690.10.1039/C4TC01551G
  • Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science. 2013;341:974–986.
  • Liu Q, Yu L, Wang Y, et al. Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. Inorg Chem. 2013;52:2817–2822.10.1021/ic301579g
  • Shi C, Xia Q, Xue X, et al. Synthesis of cobalt-based layered coordination polymer nanosheets and their application in lithium-ion batteries as anode materials. RSC Adv. 2016;6:4442–4447.10.1039/C5RA22038F
  • Fei H, Liu X, Li Z, et al. Synthesis of manganese coordination polymer microspheres for lithium-ion batteries with good cycling performance. Electrochim Acta. 2015;174:1088–1095.10.1016/j.electacta.2015.06.088
  • Wang L, Zhang H, Mou C, et al. Dicarboxylate CaC8H4O4 as a high-performance anode for li-ion batteries. Nano Res. 2015;8:523–532.10.1007/s12274-014-0666-x
  • Hu X, Hu H, Li C, et al. Cobalt-based metal organic framework with superior lithium anodic performance. J Solid State Chem. 2016;242:71–76.10.1016/j.jssc.2016.07.021
  • Wang Z, Dou Z, Cui Y, et al. Sulfur encapsulated ZIF-8 as cathode material for lithium–sulfur battery with improved cyclability. Microporous Mesoporous Mater. 2014;185:92–96.10.1016/j.micromeso.2013.11.011
  • Wang L, Han Y, Feng X, et al. Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev. 2016;307:361–381.10.1016/j.ccr.2015.09.002
  • Li SL, Xu Q. Metal–organic frameworks as platforms for clean energy. Energy Environ Sci. 2013;6:1656–1683.10.1039/c3ee40507a
  • Xia W, Mahmood A, Zou R, et al. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015;8:1837–1866.10.1039/C5EE00762C
  • Armand M, Grugeon S, Vezin H, et al. Conjugated dicarboxylate anodes for Li-ion batteries. Nat Mater. 2009;8:120–125.10.1038/nmat2372
  • Gou L, Hao LM, Shi YX, et al. One-pot synthesis of a metal–organic framework as an anode for li-ion batteries with improved capacity and cycling stability. J Solid State Chem. 2014;210:121–124.10.1016/j.jssc.2013.11.014
  • Maiti S, Pramanik A, Manju U, et al. Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal–organic framework with high capacity and rate performance. ACS Appl Mater Interfaces. 2015;7:16357–16363.10.1021/acsami.5b03414
  • Li C, Lou X, Shen M, et al. High anodic performance of co 1, 3, 5-benzenetricarboxylate coordination polymers for li-ion battery. ACS Appl Mater Interfaces. 2016;8:15352–15360.10.1021/acsami.6b03648
  • Walker W, Grugeon S, Vezin H, et al. Electrochemical characterization of lithium 4, 4′-tolane-dicarboxylate for use as a negative electrode in li-ion batteries. J Mater Chem. 2011;21:1615–1620.10.1039/C0JM03458D
  • Fei H, Liu X, Li Z. Hollow cobalt coordination polymer microspheres: a promising anode material for lithium-ion batteries with high performance. Chem Eng J. 2015;281:453–458.10.1016/j.cej.2015.06.082
  • Fei H, Liu X, Li Z, et al. Synthesis of manganese coordination polymer microspheres for lithium-ion batteries with good cycling performance. Electrochim Acta. 2015;174:1088–1095.10.1016/j.electacta.2015.06.088
  • Gou L, Zhang HX, Fan XY, et al. Lithium based coordination polymer as anode for Li-ion battery. Inorg Chim Acta. 2013;394:10–14.10.1016/j.ica.2012.07.024
  • Maji TK, Ohba M, Kitagawa S. Transformation from a 2D stacked layer to 3D interpenetrated framework by changing the spacer functionality: synthesis, structure, adsorption, and magnetic properties. Inorg Chem. 2005;44:9225–9231.10.1021/ic050835g
  • Choi IH, Kim Y, Lee DN, et al. Three-dimensional cobalt (II) and cadmium (II) MOFs containing 1, 4-naphthalenedicarboxylate: catalytic activity of Cd-MOF. Polyhedron. 2016;105:96–103.10.1016/j.poly.2015.12.022
  • Hyunsoo P, Britten JF, Mueller U, et al. Synthesis, structure determination, and hydrogen sorption studies of new metal−organic frameworks using triazole and naphthalenedicarboxylic acid. Chem Mater. 2007;19:1302–1308.
  • Yang J, Yue Q, Li GD, et al. Structures, photoluminescence, up-conversion, and magnetism of 2D and 3D rare-earth coordination polymers with multicarboxylate linkages. Inorg Chem. 2006;45:2857–2865.10.1021/ic051557o
  • Wang L, Zhang L, Song T, et al. Solvothermal syntheses, structures and properties of two new in-MOFs based on rigid 1, 4-naphthalenedicarboxylate ligand. Microporous Mesoporous Mater. 2012;155:281–286.10.1016/j.micromeso.2011.11.043
  • Zheng XJ, Jin LP, Song G, et al. Second ligand-directed self-assembly of lanthanide (III) coordination polymers with 1, 4-naphthalenedicarboxylate. New J Chem. 2005;29:798–804.10.1039/b415337e
  • Loiseau T, Serre C, Huguenard C, et al. A rationale for the large breathing of the porous aluminum terephthalate (mil‐53) upon hydration. Chem Eur J. 2004;10:1373–1382.10.1002/(ISSN)1521-3765
  • Raja DS, Luo JH, Yeh CT, et al. Novel alkali and alkaline earth metal coordination polymers based on 1, 4-naphthalenedicarboxylic acid: synthesis, structural characterization and properties. CrystEngComm. 2014;16:1985–1994.10.1039/c3ce42208a
  • Vodak DT, Braun ME, Kim J, et al. Metal–organic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units. Chem Commun. 2001;24:2534–2535.10.1039/b108684g
  • Maji TK, Kaneko W, Ohba M, et al. Diversity in magnetic properties of 3D isomorphous networks of Co (II) and Mn (II) constructed by napthalene-1, 4-dicarboxylate. Chem Commun. 2005;43:4613–4615.10.1039/b507953e
  • Choi IH, Kim Y, Lee DN, et al. Three-dimensional cobalt (II) and cadmium (II) MOFs containing 1, 4-naphthalenedicarboxylate: catalytic activity of Cd-MOF. Polyhedron. 2016;105:96–103.10.1016/j.poly.2015.12.022
  • Wang Q, Yan T, Du L. Structure of a new three-dimensional metal-organic framework: poly [manganese (II)-bis-(µ4-1, 4-naphthalenedicarboxylate)-bis-(N, N-dimethylformamide)]. Crystallogr Rep. 2015;60:869–873.10.1134/S1063774515060371
  • Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun. 2014;5:5261.10.1038/ncomms6261
  • Li C, Lou X, Shen M, et al. High anodic performance of co 1, 3, 5-benzenetricarboxylate coordination polymers for li-ion battery. ACS Appl Mater Interfaces. 2016;8:15352–15360.10.1021/acsami.6b03648
  • Maiti S, Pramanik A, Manju U, et al. Cu3(1,3,5-benzenetricarboxylate)2 metal-organic framework: A promising anode material for lithium-ion battery. Microporous Mesoporous Mater. 2016;226:353–359.10.1016/j.micromeso.2016.02.011
  • Xu F, Yuan Y, Han H, et al. Synthesis of ZnO/CdS hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight. CrystEngComm. 2012;14:3615–3622.10.1039/c2ce06267d
  • Tian B, Ning GH, Gao Q, et al. Crystal engineering of naphthalenediimide-based metal–organic frameworks: structure-dependent lithium storage. ACS Appl Mater Interfaces. 2016;8:31067–31075.10.1021/acsami.6b11772

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.