Publication Cover
Materials Technology
Advanced Performance Materials
Volume 32, 2017 - Issue 12
254
Views
26
CrossRef citations to date
0
Altmetric
Research Paper

Structural and optical properties of Cu-doped ZnO nanorods by silar method

, &
Pages 755-763 | Received 06 Feb 2017, Accepted 01 Jul 2017, Published online: 18 Jul 2017

References

  • Guo T, Luo Y, Zhang Y, et al. Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current. Cryst Growth Des. 2014;14:2329–2334.10.1021/cg500031t
  • Pung SY, Ong CS, Mohd Isha K, et al. Synthesis and characterization of Cu-doped zno nanorods. Sains Malays. 2014;43:273–281.
  • All Abergenov B, Tursunkulov O, Abidov AI, et al. Microstructural analysis and optical characteristics of Cu-doped ZnO thin films prepared by DC magnetron sputtering. J Cryst Growth. 2014;401:573–576.10.1016/j.jcrysgro.2014.01.040
  • Xian F, Li X. Effect of Nd doping level on optical and structural properties of ZnO: Nd thin films synthesized by the sol-gel route. Opt Laser Technol. 2013;45:508–512.10.1016/j.optlastec.2012.06.002
  • Dosmailov M, Leonat LN, Patek J, et al. Transparent conductive ZnO layers on polymer substrates: Thinfilm deposition and application in organic solar cells. Thin Solid Films. 2015;591:97–104.10.1016/j.tsf.2015.08.015
  • Ahn KY, Kwon K, Huh J, et al. A sensitive diagnostic assay of rheumatoid arthritis using three dimensional ZnO nanorod structure. Biosens Bioelectron. 2011;28:378–385.10.1016/j.bios.2011.07.052
  • Chakraborty R, Das U, Mohanta D. Fabrication of ZnO nanorods for optoelectronic device applications. Indian J Phys. 2009;83:553–558.10.1007/s12648-009-0019-x
  • Lee SY, Shim ES, Kang HS, et al. Fabrication of ZnO thin film diode using laser annealing. Thin Solid Films. 2005;473:31–34.10.1016/j.tsf.2004.06.194
  • Chandrasekaran S. Synthesis of ZnO nano particles via simple solution route for DSSC’s using synthetic and natural dyes. J Nanoeng Nanomanuf. 2011;1:242–247.10.1166/jnan.2011.1024
  • Bie YQ, Liao ZM, Wang PW, et al. Single ZnO nanowire/p-type GaN heterojunctions for photovoltaic devices and UV light-emitting diodes. Adv Mater. 2010;22:4284–4287.10.1002/adma.201000985
  • Marin AT, Munoz-Rojas D, Iza DC, et al. Novel atmospheric growth technique to improve both light absorption and charge collection in ZnO/Cu2O thin film solar cells. Adv Func Mater. 2013;23:3413–3419.10.1002/adfm.v23.27
  • Nam GM, Kwon MS. Transparent conducting Ga-doped ZnO thin film for flat-panel displays with a sol-gel spin coating. J Inf Disp. 2008;9:8–11.
  • Weng WY, Hsueh TJ, Chang SJ, et al. Laterally-grown ZnO-nanowire photodetectors on glass substrate. Superlattices Microstruct. 2009;46:797–802.10.1016/j.spmi.2009.08.002
  • You HC. Transistor characteristics of zinc oxide active layers at various zinc acetate dihydrate solution concentrations of zinc oxide thin-film. J Appl Res Technol. 2015;13:291–296.10.1016/j.jart.2015.06.003
  • Ali AM, Emanuelsson EAC, Patterson DA. Photocatalysis with nanostructured zinc oxide thin films: The relationship between morphology and photocatalytic activity under oxygen limited and oxygen rich conditions and evidence for a Mars Van Krevelen mechanism. Appl Catal B. 2010;97:168–181.
  • Shewale PS, Patil VB, Shin SW, et al. H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis. Sens Actuators B. 2013;186:226–234.10.1016/j.snb.2013.05.073
  • Chandrasekaran S, Chung JS, Kim EJ, et al. Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting. Chem Eng J. 2016;290:465–476.
  • Deepan D, Misra RDK. Structural and physico-chemical aspects of silica encapsulated ZnO quantum dots with high quantum yield and their natural uptake in HeLa cells. J Biomed Res A. 2014;102:2934–2941.
  • Chandrasekaran S, Misra RDK. Photonic antioxidant ZnS (Cd) nanorod synthesis for drug carrier and bioimaging. Mater Technol. 2013;28:228–233.10.1179/1753555713Y.0000000084
  • Yuan Q, Shah J, Hein S, et al. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater. 2010;6:1140–1148.10.1016/j.actbio.2009.08.027
  • Jia Z, Misra RDK. Tunable ZnO quantum dots for bioimaging: synthesis and photoluminiscence, Materials Technology. Adv Perform Mater. 2013;28:221–227.10.1179/1753555713Y.0000000061
  • Tsoutsouva MG, Panagopoulos CN, Papadimitriou D, et al. ZnO thin films prepared by pulsed laser deposition. Mater Sci Eng B. 2011;176:480–483.10.1016/j.mseb.2010.03.059
  • Cho JS, Kim YJ, Lee JC, et al. Structural and optical properties of textured ZnO: Al films on glass substrates prepared by in-line rf magnetron sputtering. Sol Energy Mater Sol Cells. 2011;95:190–194.10.1016/j.solmat.2010.03.032
  • Linhua Xu, Li Xiangyin, Chen Yulin, et al. Structural and optical properties of ZnO thin films prepared by sol–gel method with different thickness. Appl Surf Sci. 2011;257:4031–4037.
  • Dutta A, Basu S. Modified CVD growth and characterization of ZnO thin films. Mater Chem Phys. 1993;34:41–45.10.1016/0254-0584(93)90117-5
  • Papadimitriou DN. Structural, optical, electrical properties, and strain/stress of electrochemically deposited highly doped ZnO layers and nanostructured ZnO antireflective coatings for cost-effective photovoltaic device technology. Thin Solid Films. 2016;605:215–231.10.1016/j.tsf.2015.10.047
  • Jin Z, Murakami M, Fukumura T, et al. Combinatorial laser MBE synthesis of 3d ion doped epitaxial ZnO thin films. J Cryst Growth. 2000;2:55–58.
  • Tarwal NL, Patil PS. Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique. Appl Surf Sci. 2010;256:7451–7456.10.1016/j.apsusc.2010.05.089
  • Yu Lee P, Chang SP, Chang SJ. Synthesis and optical properties of ZnO thin films prepared by SILAR method with ethylene glycol. Adv Nano Res. 2013;1:93–103.10.12989/anr.2013.1.2.093
  • Jeon JH, Jeong SY, Cho CR, et al. Heteroepitaxial relation and optical properties of Cu-doped ZnO films grown by using pulsed laser deposition. J Korean Phys Soc. 2009;54:858–862.
  • Bedir M, Oztas M, Yazici AN, et al. Characterization of undoped and Cu-Doped ZnO Thin films deposited on glass substrates by spray pyrolysis. Chin Phys Lett. 2006;23:939–942.10.1088/0256-307X/23/4/049
  • Chandrasekar L, Bruno R, Chandramohan R. Preparation and characterization of Mn-doped ZnS nanoparticles. Int Nano Lett. 2015;5:71–75.10.1007/s40089-015-0139-6
  • Chandrasekar L, Bruno R, Chandramohan S, et al. Luminescence and Unit Cell Analysis of Zn1-x Cd x O Nanoparticles. Adv Sci Focus. 2013;1:292–296.
  • Renzt R, Schulz HJ. The decay of infra red luminescence II-VI compound semiconductors doped by 3d transition elements. J Phys C Solid State Phys. 1983;16:4917–4932.10.1088/0022-3719/16/24/021
  • Ariponnammal S, Chandrasekaran S, Sanjeeviraja C. Low temperature photoluminescence studies on semiorganic tris thiourea copper (I) chloride single crystal. Cryst Res Technol. 2012;47:145–150.10.1002/crat.v47.2
  • Ariponnammal S, Chandrasekaran S, Sanjeeviraja C. Low temperature photoluminescence study on zinc tris thiourea sulphate single crystal. Dig J Nanomater Biostruct. 2012;7:947–957.
  • Chandrasekaran S, Chung JS, Kim EJ, Hur SH. Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting. Chem Eng J. 2016;290:465–476.
  • Rahmani MB, Keshmiri SH, Shafiei M, et al. Transition from n- to p-type of spray pyrolysis deposited Cu doped ZnO thin films for NO2 sensing’. Sens Lett. 2009;4:621–628.10.1166/sl.2009.1121
  • Fons P, Yamada A, Iwata K, et al. An EXAFS and XANES study of MBE grown Cu-doped ZnO. Nucl Instrum Methods Phys Res B. 2003;199:190–194.10.1016/S0168-583X(02)01553-7
  • Fons P, Nakahara K, Yamada A, et al. A XANES study of Cu valency in cu-doped epitaxial ZnO. Phys Stat Sol B. 2002;229:849–852.10.1002/(ISSN)1521-3951
  • Wahl U, Rita E, Correia JG, et al. The ISOLDE Collaboration: ‘lattice sites of implanted Cu and Ag in ZnO’. Superlatt Microstruct. 2006;39:229–237.10.1016/j.spmi.2005.08.065
  • Xing GZ, Xing GC, Li MJ, et al. Charge transfer dynamics in Cu-doped ZnO nanowires. Appl Phys Lett. 2011;98:102–105.10.1063/1.3558912
  • Joint Committee Powder Diffraction Standard. 36–1451.
  • Chandrasekaran S. A novel single step synthesis, high efficiency and cost effective photovoltaic applications of oxidized copper nano particles. Sol Energy Mater Sol Cells. 2013;109:220–226.10.1016/j.solmat.2012.11.003
  • Bruno Chandrasekar L, Chandramohan R, Karunakaran M, et al. Synthesis and characterization of copper oxide and zinc oxide nanomaterials. Nat Sci Mater. 2017;1:18–22.
  • Liu Y, Lian J. Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition. Appl Surf Sci. 2007;253:3727–3730.10.1016/j.apsusc.2006.08.012
  • Nayak PK, Yang J, Kim J, et al. Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes. J Phys D: Appl Phys. 2009;42:1–6.
  • Vijayaprasath G, Ravi G, Haja Hameed AS, et al. Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J Phys Chem C. 2014;118:9715–9725.
  • Suryanarayana C, Norton MG. X-ray diffraction: a practical approach. 1st edition. 1998;125–152. Springer Science + Business Media New York, Plenum publishing Corporation (e-book, available at https://link.springer.com/book/10.1007/978-1-4899-0148-4).
  • Muiva CM, Sathiaraj TS, Maabong K. Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode application. Ceram Inter. 2011;37:555–560.10.1016/j.ceramint.2010.09.042
  • Hameed AS, Karthikeyan C, Sasikumar S, et al. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. J Mater Chem B. 2013;1:5950–5962.10.1039/c3tb21068e
  • Lin S, Hu H, Zheng W, et al. Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film. Nanoscale Res Lett. 2013;8:158–163.10.1186/1556-276X-8-158
  • Vijayaprasath G, Murugan R, Ravi G, et al. Characterization of dilute magnetic semiconducting transition metal doped ZnO thin films by sol–gel spin coating method. Appl Surf Sci. 2014;313:870–876.10.1016/j.apsusc.2014.06.093
  • Ivanova T, Harizanova A, Koutzarova T, et al. Study of ZnO sol–gel films: effect of annealing. Mater Lett. 2010;64:1147–1149.10.1016/j.matlet.2010.02.033
  • Khan ZR, Khan MS, Zulfequar M, et al. Optical and structural properties of ZnO thin films fabricated by sol-gel method. Mater Sci Appl. 2011;2:340–345.
  • Kaur G, Mitra A, Yadav KL. Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog Nat Sci Mater Int. 2015;25:12–21.
  • Mishra P, Yadav RS, Pandy AC. Controlled growth of flower-like, rod-like, and snowflake-like ZnO nanostructures using agarose as biotemplate and its photoluminescence property. Struct Chem. 2011;22:1281–1286.10.1007/s11224-011-9822-z
  • Wang QP, Zhang DH, Xue ZY, et al. Violet luminescence emitted from ZnO films deposited on Si substrate by rf magnetron sputtering. Appl Surf Sci. 2002;201:123–128.10.1016/S0169-4332(02)00570-6
  • Wei XQ, Man BY, Liu M, et al. Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Phys B. 2007;388:145–152.10.1016/j.physb.2006.05.346
  • Hsu E, Hung WK, Chen YF. Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods. J Appl Phys. 2004;96:4671–4673.10.1063/1.1787905
  • Muthukumaran S, Gopalakrishnan R. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater. 2012;34:1946–1953.10.1016/j.optmat.2012.06.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.